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Introduction

In the paper[ Nishimura (1980) the author develops sequent calculi
GO and GOM for orthologic and orthomodular logic, the latter
usually going under the ambiguous name of quantum logic. In
Nishimura’s calculi there is a fundamental lack of duality in the
treatment of the disjunction V and the conjunction A. Moreover, his
calculi are not regular in the following sense : a sequent calculus SC is
regular iff for finite sets (of formulae) I" and A

ke T=A iff g, AT> VA,

The non-regularity of GO and GOM follows from the non-classical
disjunction property established by Nishimura for these calculi (see
§ 2 below).

In this paper we develop two regular sequent calculi GOt and
GOTM which are related to Nishimura’s calculi in the following way.
The calculi GOt and GOTM are extensions of GO and GOM in that

lGoon I = A implies  tgopp T > A

but not conversely. However, for normal sequents ' A’, in which
A’ has at most one member

IEO(M) r o A * iff l"GOf{M} 1-‘—) A !

Besides their intrinsic interest as formulations of orthologic and
quantum logic, GOT and GOTM have some relevance to the philoso-
phical discussion of the nature of logic. We say that a sequent calculus
SC tolerates a rule R when the calculus SC + R, obtained by adding
the rule R to SC, has the same class of provable sequents as SC.
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Neither GOT nor GOTM tolerates the (full) cut rule of GO(M). There
is reason to think that GOT(M) are logics if GO(M) are. Therefore
toleration of the (full) cut rule cannot be held to be a necessary
condition for a sequent calculus to be a logic. We reserve discussion
of this and other philosophical points to our final section.

The organisation of this paper is as follows. § 1 contains some
preliminaries. In § 2 we discuss Nishimura’s calculus GO. § 3 deve-
lops GOT. We prove the regularity of GOT and demonstrate its
equivalence to GO for normal sequents. Soundness and completeness
for GOT with respect to a version of the relational semantics for
orthologic devised by [ Goldblatt (1974)] are obtained in § 4. In § 5 we
sketch GOTM, our orthomodular extension of GOt, together with its
relational semantics. We conclude in § 6 with some philosophical
remarks prompted by GOT(M).

§ I Preliminaries

In this paper we are concerned only with propositional sequent
calculi. A (propositional) sequent calculus SC has a denumerable set
of propositional variables {p,, pi,...}, a set of logical connectives
(which in our case will be {—, A} for GOM) and {—, A, V} for
GOT(M)), and brackets ), (. The set of wffs is the smallest set
containing the propositional variables that is closed under the
connectives. We use Greek letters a, 3, . .. to denote wffs, the capitals
I', A... to denote sets (possibly empty, possibly infinite) of wifs.

In a sequent calculus the proved objects, namely sequents, are of
the form I' - A. Their intuitive interpretation is either

(i) ‘whenever all the wffs in I are true, at least one wff in A is true’,
or

(ii) for finite T, A, ‘whenever any conjunction of all the formulae in I’
is true, any disjunction of all the formulae in A is true’. (i) and (ii) are
equivalent for the classical propositional calculus.

The use of sets of formulae, rather than sequences, trivialises
certain structural rules which appear in Gentzen’s original sequent
calculi, and whenever we apply a trivial rule in a proof we shall cite
[df]. In the usual fashion we write ‘T, o’ forT" U{a}; ‘T’, A’ forT UA
etc. Sequents of the form {a}— A and I' - {a} are written as a— A
and I' - a respectively. ‘I denotes the set {—a:aell.
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Definitions

(@) A proof in a sequent calculus SC is a finite tree of sequents such
that

(1) the topmost sequents are axiom sequents;

(2) every sequent in the tree except the topmost sequents is the
lower sequent of a rule of SC whose upper sequents are in
the tree.

(b) The sequent proved by a proof in SC is the unique lowest sequent
in the tree.
We write 5. I'> A for I'> A is provable in SC.

For a finite set of formulae A there are many (logically equivalent)
ways to define the conjunction of the formulae in A. Let [AA] denote
the set of all the possible ways of forming conjunctions of all the
formulae in A. We will write AA to mean any of the formulae in [AA]
For a language with V (primitive or defined), we define [VA] and VA

similarly. When A is empty we understand both [AA] and [VA] to
mean the empty set.

The following notions enable us to see more clearly the distinction
between our calculi and those of Nishimura.

Definitions
(a) A sequent calculus SC is regular iff, for all finite I’ and A
e T=>A iff o AT> VA
(b) A sequent calculus SC is dual iff for all finite I" and A
ke = A iff ge A*¥>T*
where, for a formula o, we obtain a* by replacing each occurrence of
A'by V, and vice versa; and for a set T", we define
'* = {y* : yel'l.

Finally, note that all the sequent calculi considered in this paper
possess the following feature.
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Theorem 1.1 (i) If 5o IT'> A, then there exists a finite subsequent
I''5>A"of '> A such that 5. T'' > A’

(ii) if a finite sequent I'> A is provable in SC, each
sequent occurring in any proof of I' — A is finite.

Proof
By induction on the construction of proofs in SC.
[Cp. Nishimura (1980) Theorems 2.1 and 2.2].

§ 2 The system GO (as developed in [Nishimura (1980)])

The formal language of GO lacks the logical connective V, which is
introduced as an abbreviation, namely a Vf is an abbreviation for
—(—a A —1|3)

Axioms of GO:
a—a

Rules of GO:

I'-A
6,154,z &
r,—->A1,(l (I,Fz—>A2
L, L= ALA,

(cut)

Ct,F—)A(Aq) B,F—)A

————————— ——AT A
aAB,T—>A G AB,T=A )

I'-A,a F—)A,B(_)

A
T>A,aAp )
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o,I'- A
—\_|0‘.,F—)A

F—)A, o

F—)A,—\—ﬂ(_)__l_‘)

GO has the following non-classical features.

(i) According to the normal form theorem [Nishimura (1980)] Theo-
rem 2.5 if i55 ' A, there exists a normal subsequent I'— A’ of
I'> A such that g, I'> A’, and I'> A’ has a normal proof, i.e. a
proof such that every sequent occurring in it is normal.

(ii) The normal form theorem has the disjunction theorem [Nishimura
(1980)] as a corollary, according to which if 5, '>A and A is
non-empty, then for some a €A, 5, I'— .

GO may be easily seen to be non-regular in the following way. If GO
were regular we would have 5, o VB— o, . But the addition of
o V- a, f as an axiom to GO results in an expansion to classical
logic, as the next theorem shows.

Theorem 2.1 GO+ +—a VB — a, B = classical logic.

Proof
Note that we have Ig, — (a0 V —a). From the additional axiom we
have —a V —a— a, —a giving —— a, —a via (cut). In the extended
system we can derive the following rule

a, ' A

I'—)A, —a (_> -_1)‘:

The derivation is as follows.

a,I‘->A - a, o

TsA, —a (cut)

But GO + (- —). = classical logic as noted in [Nishimura (1980)
p. 342].
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The non-duality of GO may be easily seen as follows.
Since g, o, B— a AP, the duality of GO would imply that a* V[*-
— a*, B* is GO-provable. But g, a* V*— a*, f* in general.

In the next section we develop the system GOT, an alternative
formulation of orthologic which is closely related to GO yet which is
regular and in which A and V are treated dually.

§ 3 The system GOt

The formal language of GO contains the full set of logical connec-
tives A, V, and —.
Axioms of GOT:
oa—a
Rules of GO7:

_ri(ext)

O, I'-AX

r—)u,AI 0.—>A2
r—) A], A2

(cut-1)

I'i-a I, a-A
r]! 1—‘2_>‘A

(cut-2)

alA B,T>A

i i —/\
aAB,T—A GABToA ™

'sa F—)[%_) nyt
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'-sa
—_— (—)T
I",—|a—> ( —>)
I'sA

We mark the rules specific to GOt with a ‘7.

In GOT the cut-rule is restricted. (*) (Cut-1) and (cut-2) are mutually
dual, as are the rules for A and V.

The rule (—->)T is a restriction of the corresponding rule in GO. But
the rule (= —) of GO is a restriction of the corresponding GO* rule
(- —)t.

Note that

(i) GO + (» —)T is equivalent to the classical propositional calculus
(i) GO + (V-)t is equivalent to the classical propositional calculus.

To see (i) note that we have 5, o, —a—. So thatin GO+ (- —) T

we have (- —), as a derived rule, as below.

a, 10— a— o
- /o, /A =0
(cut)
I'a->A - /a0, o
(cut)
| A, —0l

To see (ii) it is sufficient to note that in GO + (V—)T we have
FaVi-a,p.

In Theorems 3.1 and 3.10 we further consider the relation between
GO and GOT and demonstrate their equivalence for normal sequents.

Theorem 3.1 5o T > A implies gy, - A

Proof
By the normal form theorem for GO, 15, I'— A implies g, I'—> A’
for some normal subsequentI' > A’ of ' — A. This normal subsequent

(*) Following a suggestion by Michael Dummett in an unpublished paper entitled
‘Introduction to Quantum Logic’.
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has a normal proof. But a normal proof in GO is also a (normal) proof
in GOT since in a normal proof in GO

(i) any axiom appearing in the GO proof is an axiom of GOt ;

(ii) any application of (cut) in GO is an application of (cut-2) in GO ;
(iii) any application of (——) in GO is an application of (——)T;
(iv) any application of (= A) in GO is an application of (= A)t;

(v) the remaining GO rules are all GOY rules.

Hence I' > A’ is provable in GOT, and ' - A may be proved in GOt
by (ext).

Before we prove the converse of Theorem 3.1 for normal sequents
we prove that GOT is regular. We require the following lemmas.

Lemma 3.2 For finite T,

%Ofr—)A iff IEOT Ar—)A
Proof
This is trivial if " has less than two members. For larger ', the ‘only

if” part of the result is obtained by repeated application of the derived
rule (DR-1)

a,B.I'sA

— =~ _(DR-1)
aAB,T>A

which is easily seen to be a derived rule of GOT.
For the ‘if’ part, use repeated application of the following rule
(DR-2) which is seen below to be a derived rule of GOfT.

aAB, TS A

o, B, T—>A (B2

Derivation of (DR-2)

L L =

wpoa ™ apop OO
a,fp-=a A GAB’F_)A(CUIQ)
o,pB,I=A

Lemma 3.3 For finite A,
ot T=> A iff e T'—> VA
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Proof

If A has fewer than 2 members this is trivial. For larger A, proceed
by repeated application of the derived rule (DR-3) of GOY to obtain
the ‘only if’ part of lemma 3.3.

I‘—>A,a,|3

T>A,aVp (DR-3)

Derivation of (DR-3)

r-A,o,p
T>A,a,aVp E: :2:
Fr-A,aVp,aVvp

(df.)
TSA,aVp

For the ‘if° part proceed by repeated application of (DR-4), the
following derived rule of GOft.
IT'-sA,a VB

DR-4
I'-A,a,p ( )

Derivation of (DR-4)

a—a (ext) p—B (ext)
a—-a, P B-oo,p (Vo)

T5>A,aVp aVp-a,p (cut-1)
r-A,a,p

Theorem 3.4 (The regularity of GOT) For finite I', A

Feot T = A iff FHgo A VA

Proof
Directly from lemmas 3.2 and 3.3.

Theorem 3.5 (The duality of GOt)

Foot T = A iff gor A*T*
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Proof
Since I'** =T and A** = A it is sufficient to prove that

Fgot I = A implies that o A*—>T*

Let us call A*— I'* the dual of I'> A. The dual of an instance of a
rule is obtained by taking the dual of each of the sequents occurring in
that rule.

Now observe that the dual of an axiom of GOT is an axiom of GO¥,
and the dual of an instance of a GOT rule is also an instance of a GOt
rule except for (——)t. However, the dual of a finite instance of
(——)7 is an instance of the derived rule of GOT for finite A

a—-A
- —1(1,A

which has the following derivation. It is sufficient, using the derived
rules (DR-3) and (DR-4) of Lemma 3.3 to consider the case A = {8}.

oa—0
— S
a, —|6—> 6—)6

g eut-)

Hence any GOt proof of a sequent I' > A (with finite sequents
throughout) can be converted to a GOt proof of A* - I'*, as required.

We now pro{'e the converse of Theorem 3.1, and hence the
equivalence of GO and GOt for normal sequents. We begin with the
following lemmas.

Lemma 3.6 The following is a derived rule in both GO and GOT:

— —a—= A

5 (DR-5)

Proof

(= ——)

(cut(-1))

— —a—-A a— — —/a

a— A
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Lemma 3.7 The following are derived rules of GO:

F'-aVvp a-—y ;
f‘ .
(a) TSBVy (I" finite);
a—0d p—95
®) aVp->46
Proofs

(a) Note first that lemma 3.2 for GOT holds in GO since (DR-1) and
(DR-2) are both derived rules of GO.
Thus we need only consider (a) in the following form:

ATl a Vf a—y
AC>p vy
Al - —|(—|0‘. A'_IB) (_) _‘)
—\—1(—|Ct/\—1[3)—> — AT (DR-5)

(—1(1/\‘—|,3)—) — AT (DR-2)
—a, —_IB—) — AT —Y—-> —d
——|[5, —y—> — A
—— All> —|(—1I3/\-—1'Y)

(DR-1)

&= —

DR-5
(b) 820 by B2
—/0—=> A —d- '_‘\B (_) /\)
—0 -—1(1/\—ﬁ
CtV|3—>6

Lemma 3.8 The following hold
@  god-dVa,

(b) for finite A (with A = Q)
'60 —A - — (VA),

© () go @VB) Vy—>a VB Vy),
(i) goa V(P Vy)> (@ VP) Vy.
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Proofs

ST S S
A
() —0 A —0o—> —d (A=)

&)
(DR-5)

—1—ﬂ6—> —1(—‘6/\'—“1)
d-90Va

(b) By induction on the size of A. Note first that the result is
trivial for A with one member.
Suppose that A has at least one member ; as the induction hypothe-
sis assume that

lGo mA—= —(VA)

Let 8 = VA ; then using the associative laws (c) it is sufficient to
show that for any a,

5o —A, —0—> —|(6 vVa)

as follows

—A—> —d —.6, —0—=> —0 A —a

(cut)

—|A, —0—> —d A —a
(- ——)

—|A, - —|—( —6 A ——L(])

(c) We leave the associative laws as an exercise for the reader.

In the next theorem we must take into account the fact that V is
primitive in GOT but not in GO. For any wff y we write ¥ for the
corresponding GO formula in which all occurrences of V are abbre-
viations, and similarly for sets of formulae.

Theorem 3.9
koot = A implies g, T— VA, for finite A.
Proof

By induction on the construction of the proof in GOt of [ - A. We
may assume that all sequents occurring in the proof are finite.
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Basis step

Trivial for proofs of unit length ; the axioms of GOt are axioms of
GO.

Induction Step
Let the last step in the proof of ' A be an application of

(i) (ext)

ie.

211 (ext)
'-A Z2crI,IIcA

By the induction hypothesis
Go T VII

So from lemma 3.8 (a), and the associative laws (lemma 3.8 (c)) as
required

Go F—> VK;
(i)  (cut-1)

A
ie. T8 Wb (cut-1)
r—) Al’ Az

By the induction hypothesis
o L > V(VA,) and
o G— VA,.
By lemma 3.7 (a) and 3.8 (c) as required
Go T~ (VA V (VA,)
(iii)  (cut-2)

'-ao I';,a-A
s A

i.e.

(cut-2)

where ' =", UT,,
obvious since (cut-2) is a special case of (cut);
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) (A>)
trivial;
V) &M
trivial;
) N
trivial;
(vi) (Vo)f
ie. “"’AGVB_)A[*"’A(V_,)

By the induction hypothesis
5o O VA and "Goﬁ—’ VA,
so, by lemma 3.7 (b)
Go®@ VB VA;
(vii) w

. '-II, a
£ _— V) v =
1. F—)H,QVB (_) )snu{a ﬁ} A

By the induction hypothesis
5o L= (VIT) Va
and so by lemma 3.8 (a)
5o L= (VIT Va) VB;
(viii) ()T
trivial ;

(ix) & )
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The last line in the proof is

pOpuy | |
—I1- —Z

where I' = —II and A = —Z. By the induction hypothesis
5o = — VI
By (— ——) we have i, — —2 — VII, and using lemma 3.2 for
GO we have g, A (— —Z)— VII.
Using & —) 5o — VIIo> — A (— —3)

ie. so — VII= V (—2)

Now use lemma 3.8 (b) to obtain

bo — - V (—Z)
as required.

x (o)

trivial ;
; I'sI1, a
1.e. _— (> — )
r-I, — —o where A = I U{— —a}

By the induction hypothesis
5o L= (VIT) V@, and 5, G- — —d,
so by lemma 3.7 (a)
6o T = (VII) V (— —a) as required.
Theorem 3.10 (The equivalence of GO and GOT for normal sequents)
For normal GO sequents I' - A

GolT=A iff g T A
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Proof
‘Only if* part from Theorem 3.1; ‘if’ part from Theorem 3.9.

§ 4 The Semantics of GOt : Soundness and Completeness

We now prove the soundness and (extended) completeness of GOt
with respect to the relational semantics due to [Goldblatt (1974)]. The
following account is similar to that of [Nishimura (1980) § 3], but with
a modified definition of the validity of sequents.

GOt : Soundness

A GOT-frame is a pair < X, L> where

(1) X is a non-empty set,
(2) Lis an orthogonality relation on X. That is, 1 =X x X,

and is irreflexive and symmetric.
For x eX and YS X we say (i) x LY iff forevery y €Y, x Ly;

(i) Y*={x :x1Y}
A subset Y of X is Ll-closed (or simply closed) iff Y** = Y.

A GO7-model is a triple < X, 1, D> where

(1) <X, 1> is a GOT-frame
(2) D is a function assigning to each propositional variable p a
closed subset D(p) of X.

Given a GOt-model #, the notation ||a ||, where a is a wif, is
defined as follows. Note that for any Y € X, Y* is closed, so || || , is
always closed.

(1) ipll« = D(p)

@ |—elle= (lall)*

B) lNloaABlle=llall NIBlL

@ NlaVvBlle= (lall* NIBI»*
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For arbitrary I" (not necessarily finite) it is convenient to define:

I AT = O llalle Simitarly, [ VA L= [, 0 18147

Definition

Define Val , (. ; X) for a GOt-model # = <X, 1, D> and x €X as
follows:
(1) for formulae
o lLif x€l|a|l,,
Valy @ ;%) = { 0 otherwise.
(2) for sequents
v _ J0ifxeE|| AT, and x &|| VA,
Vg —raiR) = { 1 otherwise.

Definitions

We say I' > A is GOT-realisable iff for some GOT-model # = < X,
1, D> and some x €X, Val,T—> A; x) = 0. .

A sequent which is not GOt-realisable is said to be GO1-valid. Thus
- A is GOt-valid iff || AT || , <|| VA || , for all 4.

The following will be useful in discussing the semantics of GOT. It is
easily seen that for any closed sets Y, Y, =X

(i) Y.€Y, implies Y,*CY,*;
(ii) YUY, (Y * NY, %)%

Hence

0 [[allys|IBlle implies ||B [ * <] el *;
() | ACLT) lg= Ty lle NIIT2 |4
(i) || VAL |le Ul VA2, S| V(AL A |4
(V) | VA [« Sl VA2, implies
| VAL A lh Sl VA, A,

Theorem 4.1 (Soundness of GOt)
Every GOf-provable sequent is GOt-valid.



238 N.J. CUTLAND and P.F. GIBBINS

Proof

By induction on the construction of proofs in GOf.

Every axiom of GOT is GOf-valid. The rules of GOT preserve
GOt-validity. Demonstration of this is routine, but we illustrate some
of the more awkward cases. The other cases are left to the reader.

(cut-1)

Suppose || AT|| ,<|| V(a, Ay) || 4 and ||a || ,S]|| VA, |l 4; then
| Ve, AD [ «Z] V(A4, Ay) || o by the above, and so || AT || ,<|| V (A4,
A,) || 4 as required.

(cut-2)

Suppose that || ATy || 4S|la |, and [| A T2, @) || S| VA,
Then || ATy, T2) || « | AT 1] N[ AT ]| 4

lalle NIl AT 2]l 4= | A @2, 0) |4
c || VA || , as required.

N

(Vo)f

Suppose that ||a || (<|| VAl 4, and [|B[|,<[| VAl .

Then || VA| ,*Slal 4* and || VA L*<IIBIle*

Therefore || VA || ,*<|la || ,*N||B] ,*, and

Ulall* NIBILA* Sl VAL = VAL

Therefore whenever both a— A and B—> A are GOt-valid, so is
aVB->A.

This completes the soundness proof for GO¥.

GO7: Completeness

The following is similar to Nishimura’s treatment for GO.

Definitions

A sequent I' > A is consistent iff =55, T > A.
The set T is consistent iff for some a., +o. T — a.
The set I is complete iff (a) I’ is consistent

and B)T = {y : g T > v}.
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Lemma 4.2 [Lindenbaum’s Lemma] Any consistent set I’ can be
extended to some complete set I'’.

Proof

PutI" = {y : go: T = v}.

(1) Suppose tgo; I' - . Then for some finite subset {y;, Y2,.. Ym}
of I'' got Y1s Y2eers Ym— P and gy Ty fori= 1, 2,...m.
By m applications of (cut-2) ;o - p. Hence B T
(ii) Since I is consistent, then for some o, g T — a.
Therefore a & T, so by (a) +go; I’ > a and I"’ is consistent.

Hence I'' is complete.

Lemma 4.3

(a) If T — o is consistent, then

(i) y<=T implies —a— —vy is consistent,
(i) —& €I’ implies —a — & is consistent ;

(b) if ' > —a is consistent, then
() yeET implies @ — —y is consistent,
(ii) —06 €I implies a.— & is consistent.
Proofs

We do (a)(i) and leave the rest as an exercise for the reader.
Since y €T, if g5; —a— —vy then ' - « can be proved as follows.

Y=Y

(= — —) (- 7t
Y= ——Y a‘—WﬂY—)'—lﬁCC (Cllt-]) 2%2 (_14‘
Y= 71— —/ -
-1
sy Y— o (cut-1)
(cut-1)
N'sao

Hence —a— —vy is consistent.
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Definition
The GOt -canonical model #T is defined as follows.
Mt =< X, L, D> where
(1) X = {T : T is complete}

(2) T LT iff for some «, either
(a) o €I’ and —a. €I,
or (b) a€l' and —a €T,
(3) for propositional variables p
D(p)={I' : p €T'}.

Lemma 4.4 M is a GOT-model.

Proof

(a) L is an orthogonality relation.
Symmetry is obvious from the definition. Irreflexivity follows as
below.
IfT" LT then for some o, a €T and —a €I'. Therefore g, I - B for
all B and I is not consistent, as follows:
o 0 (—o)t

a, o
__‘—_) (ext)

'-p

(b) D(p) is closed, i.e. D(p) = D(p)**

Since YCY** for all Y, it is sufficient to show that D(p)** < D(p).
Suppose therefore that some I' #D(p). p&T and I'— p is consistent.

LetX = {o: - ~p>al.

Then £ L D(p). That is, Z €D(p)*.

ButI' 1 X since (i) ify €', — p— —v is consistent by lemma 4.3 (a)
(i) and therefore —y &X;

(ii) if —d €', — p— O is consistent by lemma 4.3

(a)(ii) and therefore 6 £Z.

Hence D(p)** €D(p), and therefore D(p) is closed.

Before we prove the Main Theorem for #" we require the following
lemma.
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Lemma 4.5 (a) (i) Fgoa V= — (—a A —p)
(i) Fgor— (—ma A —B)—sa VP
(b) The following are derived rules of GOt

F'saAp TanAp
I'sa I'-p
Proofs
(a) Aﬁa—> —a (A>)
e RO PP B L . 6
a— — o — 0= —(—a A=)

a—- —(—a A ﬁB) (CUt_l)

a VP> —(—aA—p)

Vo
ﬁ—) —(—a A —ﬁB) ( )T

We leave (ii) as an easy exercise for the reader.
(b) Use (A—) and (cut-1).

Theorem 4.6 [Main Theorem for M =< X,1,D>]
ForanyleX,yeT iffr <|y|.#.

Proof (Throughout this proof we write ||a || for ||e||.#7.)
By induction on the length of the wff y.

(1) ¥ = p, some propositional variable

perl iff 'ED(p), by the definition of D(p);

2 y=anrB

aABel iff —~T'—-a AR, since ' is complete,
iff ~-I'-a and —I'—>p, by lemma 4.5 (b)(i) and
(- N
iff o €I and B €T, since I is complete
iff T €||al| and T €||B]|, by the induction hypothesis,
iff T €la AB||, by the definition of || .||;



242 N.J. CUTLAND and P.F. GIBBINS

B y=—a

There are two cases to consider:
(a) suppose —a €T

ThenI' LI'" for every I'’ such that o €T’
ie. [ L{I'" : a €T} = ||a|| by the induction hypothesis.
Hence I €||a. ||*.

(b) suppose —a &Il

Then I' > —a is consistent,

Let A = {8 : goa— 8} €X. Clearly a €A, s0 A €||a|
by the induction hypothesis. But I" LA, since if y €T, then o - —vy is
consistent by lemma 4.3 (b)(i) and therefore —yé A, and if —y €T,
then o — vy is consistent by lemma 4.3 (b)(ii), and therefore y €A. So
I &||a||*, therefore T || —a|;

@y=aVp

aVBEl iff +go I'—»a VP, since I is complete,
iff Got I's —(—aA ‘—||3) by lemm'a 4.5 (a)(l) and (ll)
iff —(—a A—p) €T,
iff T €| —(—aA—p)|, fromsteps(2)and (3) above,
iff Te|lavp].

Theorem 4.7 (Completeness of GOt)
IfI'> A is GOt-valid, then o, ' - A

Proof

Suppose +5o; I'— A, i.e. thatT' — A is consistent. Then we shall show
that | AT ||y &[| VA [L4r.

Letl' = {a : go; > a}. Then ! is complete, and it is easily checked
that I'— A is consistent. Then it is easy to show that —A — — I is
consistent.

LetZ = {a : g9 —A —>a}; then T is complete.

We claim that

(1  Te|Ar g

2) % E[[A—A || ¢
3) Iz



A REGULAR CALCULUS FOR QUANTUM LOGIC 243

(1) and (2) are immediate, using Theorem 4.6 and the fact that T <"

and —A c3. Consider claim (3). Suppose that y €I" and —y €X. Then
there is a finite A’ S A with g, —A'— —.
Hence go1— —y = — —A’, 80 go; Y— A, which is a contradiction.
Alternatively, suppose that —y €I’ and y €X. Then there is a finite
A'CA  with Fgot —A'5y. S0 Fgor —¥— — —A’, hence
—eot —Y—A’, which again contradicts the consistency of I'— A.

Thus claim (3) is verified.

By (2) and (3) together, I' &[| A —A || ,*;, ie. ['&| VA, Hence
Le|| AT || 4 \|| VA || 4+ and we have shown that ' A is not valid.

The following corollary is immediate.

Theorem 4.8 (Compactness of GOT)
For arbitrary I' and A, ' A is GOft-realisable iff every finite
subsequent of I' > A is GOT-realisable.

Remark IfI'— A is a finite GOt consistent sequent, the completeness
proof above can be modified to provide a finite GOT model that realises
I'> A. This is done as in [Nishimura (1980) § 4] by .restriction to a
suitable finite admissible set of formulae Q containing I’ and A. In our
case Q is admissible means

(a) Q is closed under subformulae;
(b) ifpeEQ then —peQ;
«©) ifa VB €Q then — (—a A —p) €Q.

Thus

Theorem 4.9 GOT has the finite model property.

§5 GOTM: Orthomodular Logic

We obtain GOTM, the orthomodular extension of GO¥, in a manner
similar to Nishimura, by adding to GOt the rule (OM)

_‘\B—) —/Q —|C£,B—>

(OM)

—/0— —1B
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The resulting calculus GOTM = GOt+ (OM) is equivalent to GOM
for normal sequents in virtue of the following theorem.

Theorem 5.1 Let R’ be a rule whose upper and lower sequents are all
normal. Let SC, and SC, be two sequent calculi which are equivalent for
normal sequents. The SC; + R’ and SC, + R’ are equivalent for normal
sequents.

Proof

By induction on the length of proofs

GOTM : Soundness and Completeness

We proceed by analogy with GOM. Thus
a GOtM-frame is a triple <X, L, ¥ > where

(1) <X, 1> is a GOt-frame

(2) W is a non-empty set of Lclosed subsets of X such that
(a) W is closed under set-theoretic intersection and the
operation *

(b) forany Y, ZeW,YSZand Y*NZ = @ impliesY = Z

A GOtT-model is a 4-tuple <X, 1, W, D> such that

(1) <X, L,¥>isaGOtM-frame;
(2) D is a function assigning to each propositional variable p a
closed subset in W,

The notations ||a|| ,, Val, (. ; x) are defined for a GOTM-model as
before. The expressions GOtM-realisable and GOTM-valid are defined
similarly.

Theorem 5.2 (Soundness of GOTM)
Every GOTM-provable sequent is GOt-valid.

Proof

By induction on the construction of proofs in GOTM: as in the GOt



A REGULAR CALCULUS FOR QUANTUM LOGIC 245

case but with the following addition. (Let .# be a GOTM-model, and
write ||a || for ||a|| ,.)

(OM)

Suppose || =B || < || —a/l, so that [|a|| < || I.
Suppose also that || —a|| N||B|| = @, so that ||a|* N||B|| = ©.
Then ||| = [[B ], so that [|B || <[|a|| and hence || —a|| || —B .

We now sketch the proof of the Completeness Theorem for GOtTM.
We say asequentT" - A is GOTM-consistent iff +5,,,, I’ - A. Similarly,
a set I' is GOtM-consistent iff for some o, +gotm L= 0.

The set " is GOTM-complete iff (a) T is GOTM-consistent

and (b) I' = {y: —gom = v}

Lindenbaum’s Lemma for GOTM can then be proved exactly as for

GOt in lemma 4.2.

Definition The GOtM-canonical model # } is defined as follows.
M =<X,1, ¥, D> where
() X={I : T is GOtM-complete} ;

(2) I LI iff for some a, either
(@) a €l and —a €I'’,
or (b) —ma€landa€l’;

(3) ¥ = {||a] : ais a formula}, where || a|| is defined
using (4);
(4) for propositional variables p,

D(p) = {T : peT’}.

Theorem 5.3 M } is a GOTM-model and realises every GOtM-consis-
tent sequent.

Proof

We sketch the proof. First show that <X, 1, D> is a GOT-model
exactly as in lemma 4.4 for #t, and then establish that
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5.4 Te|lal iff ael
exactly as in Theorem 4.6 (where we write || a || for |[a || 4).

Now, exactly as in the proof of completeness for GO, we show that if
I' > A is GOTtM-onsistent, then

(5.5) | AT[lE]l vAl.

To complete the proof we have to show that # § is a GOTM-model.

Suppose that ||a || <||B|], and [|a[* N[[B] = .

Then by (5.5) gom ¢ = P and goq — @, fp—, and using (OM) we
obtain goy —0a— —f and thus Hgo fp— a.

Using (5.4) this means that ||B || <||c||. We then have the following
theorem immediately.

Theorem 5.6 (Completeness of GOTM)
IfI’'— A is GOTM-valid, then g = A.

§ 6 Concluding Remarks

As noted in § 1, for finite I" and A, the intuitive interpretation of the
sequent I' - A in classical logic may be rendered equivalently as

(1) whenever all the formulae in " are true, at least one of the formulae
in A is true;

(ii) whenever a conjunction of all the formulae in T is true, any
disjunction of all the formulae in A is true.

The interpretation of finite GO(M) sequents follows (i), that of finite
GOT(M) sequents (ii). Since (i) and (ii) are not equivalent for both
GO(M) and GOT(M) there is reason to think that the meanings of
sequents in these calculi differ from their meanings in classical logic. But
there seems to be no conclusive reason for regarding either (i) or (ii) as
the more fundamental intuitive interpretation.

The primitive rules for the A - — fragment of GOt naturally differ
from those of GO. But the most interesting difference between the
systems occurs in their structural rules. GO(M) has the full cut rule
among its primitives. Owing to the normal form theorem GO(M)
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requires only the restricted cut-rules of GOT(M). But clearly GO(M)
tolerates full cut.

GOF(M) does not tolerate full cut. GOT(M) + (cut) = classical logic,
as in shown in the lemma below. There is in the literature the suggestion
(®) that one can expect only elastic constraints on what is to count as a
logic but that toleration of full cut is one constraint required to reflect
the necessary transitivity of implication. But GOt(M) illustrates the fact
that one can reflect the transitivity of implication with weaker rules. If
GO(M) are to count as logics, there seems to be no good reason for
denying that status to the extended calculi GOT(M).

Lemma 6.1 GOT(M) + (cut) = classical logic.

Proof

It is sufficient to obtain the result for finite sequents. We are
required to show that (——), (- —). and (= A) are derived rules of
GOT7 + (cut).

(—=)
a— o
—_—— (/)T
I'sA,a o, —o— Ecut_)))
F, —l(l—bA
= )
oo A - o, —a
F—>A, —/a (CUt)
=N

(*) Cf. Hacking (1979) § XIV.
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for finite A
T-A,a T A,B
finite number of applications
of (—|—))
r,—A
—1A—> 0 F,—WA—>[3 (_,)/\)j‘

F,-—!A—)O‘./\ﬁ

finite number of applications
of (—) '—|)c

'—|——|A,(I/\|3

's>A,aAB
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