VON WRIGHT’S «<AND NEXT» VERSUS
A SEQUENTIAL TENSE-LOGIC

Wulf REHDER

0. Introduction

A general theory of action presupposes a logic of change. A change
in time takes place when the present state of affairs p is transformed
into a state of affairs q, say, where q = p is not excluded: p then
continues to obtain. In order to capture the formal properties of «p
change into q», G.H. von Wright introduced a tense-logical binary
constant T which was meant to play the réle of a non-commutative
connective, and pTq is read as «p and next g». The resulting calculus,
the T- calculus, was presented as a formalized axiomatic structure
in[19], whose axioms are the following:

A0. Any set of axioms of classical two-valued Propositional
Logic (PL).

Al. (pvqTrVs)«—(pTr) V(pTs) vV (qTr) vV (qTs). Distributivity.
A2. (pTq) V(rTs)—(p ArTq As). Co-ordination.
A3. p—(pTqV 1q). Redundancy.
A4. 1(pTq A 1g). Impossibility.
The rules of inference for the T-calculus are
R1. Substitution (of T-expressions for variables)
R2. Detachment (i.e. modus ponens)

R3. Extensionality (i.e. intersubstitutability of provably equival-
ent T-expressions).

The T-calculus has subsequently played an important part also in
studies in deontic logic (v. Wright [20], Aqvist [1]) and has been
complemented by a «logic of the past» (Clifford [4]). More important
from a logician’s point of view, its soundness and completeness have
been demonstrated by means of the method of semantic tableaux
(Aqvist [1]) or by the normal-form method already suggested in
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v.Wrights pioneering paper «And next» in [19]. Furthermore, L.
Aqvist has attempted a solution for «Chisholm’s Puzzle of Contrary-
to-Duty Imperatives» via his deontic tense-logical system DDT.

In this paper, however, we are only interested in the formal, not the
philosophical, aspect of the T-calculus. Nevertheless, we hold that
the philosophical impact of a theory is enhanced by a convincingly
adequate and cogent set of axioms rather than a merely intuitively
appealing formalization which otherwise is more or less arbitrary. We
content that the T-calculus is still too arbitrary, too general and not
uniquely determined by its axioms; it is, in short, not canonically
adapted to its underlying tense-logical ideas. Moreover, one would
like to see a realization of the T-calculus where, e.g. the non-com-
mutativity of T is shown by examples in that realization, not stipu-
lated a priori. Does the T-calculus have a model besides PL where T
collapses into classical conjunction ; is, in other words, the T-calculus
consistent and new ? Are the axioms independent? Or is there an
axiom which has to be omitted because it «leads to counterintuitive
results» as was the case with the axiom of associativity
(pTq) Tr < pT (qTr) (cf. the footnote on page 297 of [19]).

In proposing a «sequential logic »S» we shall in fact only retain
analogues to A3. and A4. as trivial consequences. In addition to A3.
we will have an analogue to p <> qvq‘Tp, which is not a theorem in the
T-calculus. Distributivity and co-ordination will not be valid in our
sequential calculus S which is also not associative and not commuta-
tive.

S is closely connected to quantum probability theory (viz. the
«conditional probability operator»); it has been interpreted in the
context of «counterfactuals» ; and S plays a major rdle in non-Boolean
lattices, Baer-Semi-Groups and general quantum logic.

At last we shall show how the S-calculus can be used to provide
necessary and sufficient conditions for qvq'Tp to be a necessity
operator and for the T-calculus to be nothing but classical PL.

1. von Wright’s «and next» is a Boolean homomorphism

Because of axiom A0 we may assume that the «states of affair»p,
q,... are elements of a Boolean lattice L =Ly, which contains,
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together withp and q, alsop Aq,p Vq, Ip, Ip Vq(writtenasp oq),
p T q, and finite combinations of these expressions. Let us write q* for
“1q, and abbreviate 1: =qVq*, 0: =q Aq". 1is the largest, 0 is the
smallest element of L. We shall rewrite here v. Wright’s theorems TS5
and T6 in terms of the above notation, using one further abbreviation :

f(p) :=1Tp
Then TS5. qnaf(p) =qTp
T6. f(p)Tq =f(pAq).
From these equalities follows
T7. f(p)Af(q)=f(p Arq)

and from Al we get

T8. f(p)Vf(q)=f( Vq).

Also, from v. Wright’s theorem T2 and his discussion at the bottom
of p. 296 in [19] we have:

T9. f(p)=f(p)"
and hence TI10. f(0) =0
TIL. f(1) =1.

In summa, we see that T defines a homomorphism f(p) =1Tp in L,
Conversely, it is an easy exercise to verify that every homomorphism
fin L which satisfies T7 and T8 defines a binary connective T through

1Tp : =f(p)

which in turn also satisfies A1 through A4. In other words:

(1.1) Theorem: von Wright’s T defines a Boolean homomorphism in
Lg; and conversely, every Boolean homomorphism de-
fines a T & la von Wright’s calculus.

This theorem expresses the fact that there are as many possible
connectives «and next» as there are homomorphism in Ly, and none
of the (possibly infinitely many) T’s has an edge over the others.

The notation f(p)=1Tp makes it especially transparent what
commutativity and associativity of T would mean: T is commutative
if and only if for all p and q in L zthe equality p Af(q) = q Af(p) holds.
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This implies, for q = 1, that p = f(p) for every p, so that from T6 we
infer

pTq=pAq,

i.e., T is nothing but the classical PL-conjunction A. Associativity
appears in f-notations as

p Af(q) Af(r)=p Af(q Af(r)), which for p=q=1 becomes
f(ry=£(f(r),

i.e., f is idempotent. Interpreted in terms of v. Wright’s «and
next»-language, this idempotency would mean that after the change of
r into f(r) =1 Tr (the state «next to r»), nothing more will happen to
f(r) (since f(r) =f(f (... (r))...) for any finite number of repetitions of
f). This is certainly «conterintuitive» to a concept of change.

If, moreover, fis injective, associativity entails f(r) =r forallr e Ly,
and so again, as with commutativity, T boils down to A.

Let us investigate the question: when is f injective ? In order to lay
down the ground for the more general discussion in Sections 2 seq. we
assume that L is a (not necessarily Boolean) orthomodular lattice and
f: L— L a homomorphism: f fulfills as axioms

T8. f(p)vi(Q=f(p Vq)
and T9* plqg=f(p)Lf(q)

(rls is the sy'rnmetrical predicate defined by r<s'or by s<r"),.
From T8 and T9* follows

T10. f(0)=0
since f(0) Lf(0). f is also isotone:
if p=q, then f(p)=f(p) V(@) =f(p Vq) =f(q).
Finally, since f(p) Lf(p"), we have

f() Af(p) =[f(p) VEEII Af(p) =f(p") Af(p) =f(p"), so that, if
J(l)=1, we get

T9. f(p")=f(p)-

But when is f(1) = 1? Certainly when f is an epimorphism because
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then there is a p €L such that f(p) = 1; consequently f(1)=f(p) =1
from isotony, which gives f(1) = 1. If T9 is valid, then we have also

T7. f(p) Af(q)=f(p Aq).

More generally, T7 holds for every homomorphism f such that
f(1) =1, as the following Lemma shows, which also answers our
initial question: when is f injective ?

(1.2) Lemma: Let f: L— L be a homomorphism such that f(1) = 1.

Then
(1 f(pAq)=(p) Af(q)  forall p, qeL
2) f is injective (a «monomorphism») if and only if

f(p) =0 implies p =0.

Proof (1) f(p AqQ) =f(1) Af(p*V@)) =f(1) Af(p") f(1) Af(g)"
=f(p) Af(q).

2) From f(p) =f(q) we have
fe A AQ)=f@ AP Vag))=f() AP VEQ))

=f(p) Af(q") from T9 and
orthomodularity
=f(1) AMf(p) Af(q")

=f(1) Af(p) Af(p)* =0.

Therefore p A(p Aq)' =0. Since p Aq=<p, it follows
that p=p Aq, and so p=gq. Similarly q<p,sop=q.

Tosumup: Every homomorphism f of an orthomodular lattice such
that f(1) = 1 defines a tense-logical v. Wright-connec-
tive T. If f(p)=0 (i.e., 1(1Tp)) implies p=0 (.e.,
impossibility “1p T1) and if T is associative, then T = A,
and the T-calculus collapses into classical PL, which
latter also happens when T is commutative.

Remark: If an epimorphism f: L— L is not injective, f may at least
be factorized through the so-called canonical projection nt
such that the diagram
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f

L——L

\ 27
m ¢

Lo
commutes: f = fx.

L, is the orthomodular lattice which consists of equival-
ence classes, defined by the equivalence relation

p~q:=f(p) =f(q),

and f is injective and surjective (an «isomorphism»).

Thus, if f is not injective (but still surjective), substitute
L, for L and f for f, and L, is still a truthfull (viz.
isomorphic) image of L.

In terms of v. Wright’s interpretation of T it seems
natural anyhow that, if «next p» is false for every p
("1(1 Tp)) then p itself is false — which is just injectivity of
f.

2. Residuated maps

We assume L to be an ortholattice, and f is an automorphism of L.
In this section we shall discuss the classical conjunction A, then f and
our sequential connective t (defined below) in terms of the unifying
concepts of residuated maps.

Let us begin with the PL-conjunction A, and let L = L be Boolean.
Then, for any p, q, reLg,

MP. pA(poqg)=q
MAX. pArsq=r=poq,

where o> denotes «material» implication: p>q:=p*Vq, and =
stands for the usual meta-logical «if ... then».

MP is of course the modus ponens of PL, and MAX together with
MP define p > q uniquely as the maximal element r fulfilling MAX.
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We see therefore, that the map @, (r): =p Ar is an example of a
residuated map according to the following definition.

(2.1) Definition: A mapping ¢: L— L is residuated if
(1) o isisotone, and

(2) if qeL, then the subset

{reL|o(n=q)
possesses a greatest element.

The automorphism f of L = L also is a residuated map: f is isotone
(see section 1), and the maximum of {r e L|f(r) <q} is rpa =f71(q).
Therefore, also r—p Af(r) = p Tr is, for every fixed p, a residuated
map with f~(p > q) being the greatest element of {r eLg|p Af(r)=<q}
as we have seen above. If f is the identity, ¢, (r) and p Tr coincide ; but
for more general f there is more than one residuated map in a Boolean
lattice L.

What if L is orthomodular, but not Boolean ? In this 1mp0rtant case,
the map @, given by

@p(r): =p A(p' V1)

defines a residuated map, and the corresponding maximal element is

I'max=P" V(P Aq). Thus, writing @,(r) = :par and Iy, =:p—q we
introduce the sequential connective m (read: «and then») and a
so-called conditional implication or quasiimplication — by the stipu-
lation: p— q is the unique solution of MP, and MAX,:

MP, pA(p—q=q
MAX, pAT=gq=r<p-aq.

For this quasiimplication —, the following remarkable uniqueness
property holds:

(2.2) Theorem (Mittelstaedt) In an orthomodular lattice L there
exists for any two elements p, q € L one and only one
element p — q satisfying the modus ponens MP, and
QI: pAr=q=p'V(p Ar)<p—q and which is given
by
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J.)J.'

P—q=p'V(pAQ) =q,(q

Proof [11], Theorems 2.28 and 2.33, p. 38-39. Notice also ibid. p. 41,
Theorem 2.40 (b) which shows that pri(p— q) =p A(p—q). What is
so special about the conditions MP, and QI is the fact that they are the
strongest conditions which can be postulated for p— q as the exis-
tence of p— q already implies the quasi-modularity of L:

(2.3) Theorem (Mittelstaedt) An ortholattice L with the property
that for any two elements p,q eL there exists an
element p— q satisfying MP, and QI, is orthomodu-
lar.

Proof [11] Theorem (2.36), p. 40 and Theorem (2.9), p. 31. The
quasiimplication can, on the other hand, also been viewed as an

implication in an ortholattice L subject to the following three minimal
implicative conditions:

a. if p semantically entails q then p— q is true, i.e.
P=q=p—>q=1;
b. modus ponens:
PA(P—Q)=q;
¢. modus tollens:
q Ap—q=p".

It can be shown that only three implications or «conditionals» C,,
C,, C; satisfy the conditions. They are given by (Hardegree [7]):

Ci(p,a)=p'V(pAQ
C.(p,a)=(p' Aq) Vq
Cip, =A@ V(P AQ V(P Ag).
We see that C,(p,q) =q,(q")' =p—q. C, is sometimes called the
Sasaki arrow. For fixed p, the function C,(p,.) is usually written
¢p () i.e.,
@5 (@ :=gp(q)".
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The Sasaki arrow @ is dual to the Sasaki projection ¢, (which is
our n-sequential (function) and named «residual» (for more informa-
tion see [5]).

The following uniqueness property for the Sasaki arrow, i.e. for our
I'max=P — q, provides another uniqueness proof for the Sasaki pro-
jection @,:

(2.4) Theorem (Hardegree) gy ()=C,(p,") is the only conditional
in L that is both residual and locally Boolean.

Proof. Hardegree [7].

(To say that a conditional is locally Boolean is to say that it agrees
with the classical PL-material implication > on all Boolean sub-or-
tholattices Ly = L.)

3. The sequential calculus S

We took pains (and the reader’s patience) in stating the above
uniqueness results using residuated maps as a unifying thread in order
to motivate and justify the introduction of the connective m («and
then») as the building block of a tense logic different from Prior’s [13]
and v. Wright’s T-calculus. To fix ideas and also to have a sufficiently
rich model at hand we choose as our propositional lattice the
ortholattice L = L of closed subspaces of a complex Hilbert space H.

This choice sounds rather special ; but Piron [12] and Jauch [8] have
shown, following Mackey [10] and Birkhoff — von Neumann [3] that
Ly 1s the realization of non-classical logic at least for physical
systems: Ly is not distributive, and so a fortiori not Boolean. Closed
subspaces, or equivalently their projections P, Q,... represent
«measurable properties» of a (physical) system «in action», and the
intrinsic non-commutativity of projections, e.g. PQ= QP unless P and
Q are «jointly measurable» without interfering with each other, makes
Ly the canonical candidate for the object language of a theory of
change and action.

There is a superficial technical hitch, however, in the fact that the
product PQ of projections is in general not a projection anymore, and
no propositional (or physical) meaning can be given to these products.
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This seeming disadvantage has been overcome as early as 1936 by
John v. Neumann in his famous projection rule ([9] p. 200-201): he
took the self-adjoint operator («observable») PQP as the (unnor-
malized) conditional probability operator for a physical system in a
state 1 to have the property Q after the (earlier) property P had
obtained. The corresponding probability for this «joint» event is given
by the inner product <y PQPvy> in H, and the corresponding
proposition, also called yes-no event by Jauch, is the projection Px Q
onto the closed range of PQP. It can indeed been shown that this P Q
coincides with our earlier residuated map @p(Q):

9 (Q=PA(P'VQ =PnQ
is the projection onto range of PQP.

Reading P Q =P A (P* V Q) as P and from P follows materially Q

provides a certain justification for the suggested metalinguistic ex-
pression «P and then Q».

The next step is the introduction of «or then» via
PuQ:=(P'n QY
and «if (first) ... then»
P-Q:=P'xQ

which is nothing but the above quasiimplication or Sasaki arrow.
Beltrametti and Cassinelli read P— Q as follows:
«P— Q is true iff either P* is true or the occurrence of the yes-out-
come of P leaves the system in a state that makes true Q. In other
words, it is true that P quasi-implies Q iff either P* is true or the
conditional probability of Q given P is equal to 1». ([2], p. 378).
Although this is not the place to study these new connectives in
detail (see Rehder [14]), we must mention a few differences to v.
Wright’s «and next»:

Ly isnot a lattice with respect to m, 1, <;
@p is not a homomorphism with respect to 7 or 1 (fis !);

Ly is not a commutative propositional system although there are
several suggestive conditions for Pn Q= QP to hold (the physical
condition being commensurability ; the probabilistic condition being
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PQP = QPQ, i.e., the respective conditional probabilities are the
same).

Furthermore, our sequential system S = (L, ) displays a curious
duality between the logical constants A and n:

PrQ=PA(P'VQ)

PAQ=Prn(P'x Q).

It need not be stipulated but can be proven that the laws of
associativity, commutativity and contraposition (P— Q = Q*— P*) are
not valid.

As for completeness of the proposed sequential logic as well as its
semantical foundation by Lorenzen’s dialog-games see Stachow’s [16]
and also his recent survey Logical Foundation of Quantum Mechanics
[17].

For the philosophical relevance of — as a formalization of counter-
factual implication see v. Fraassen [6], Stalnaker and Thomason [18],
and Hardegree [7].

4. F as a necessity operator, and the case f = id

We have seen in section 1 that associativity of T implies idempo-
tency of f(p)=1Tp:f(p)=1f(f(p)). On the other hand, always
f(p vVq)=f(p) Vf(q). In this context it would be interesting to know
under what condition f(p)<p is valid, for then the associative
homomorphism f is a S4 necessity operator.

In fact the following Theorem is true even without f being idempo-
tent.

(4.1) Theorem 1If f: L— L is a homomorphism is an ortholattice L
and p eL, then (1) and (2) below are equivalent:

1 fe)=p
2) fucpp= (ppofocpp

Proof: If f(p)<p then gy ofeq,(q) = prf(pnq) = f(pn(pnq)) =
f(prq) = feg,(q) for all q eL.
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Note that f is a homomorphism with respect to xt !
Conversely, if (2) holds then

f(p) =f°(Pp(p) = (Pp°f°CPp(D) =p,
since
@p(p) =p and g, (r)<p for every r L.

Can we interpret the criterion in (4.1) (2) ? Put q: = p, then (2) says
f(p) =pnf(p), i.e. if we look at ‘p at the next moment’ (=f(p)) then
this is the same as looking at ‘p, and then next p’ (= pn f(p)). So we
do not know more of ‘p at the next moment’ by knowing about the
present of p as well : knowledge of p is redundant — or implicit in the
knowledge of f(p).

In this instance it may be tempting to suggest an interpretation of
f(p) as ‘p is necessary’, which is the interpretation of f as a necessity
operator.

With the help of Theorem 4.1 it is easy to characterize the identity
among all automorphisms f of L. If f(p) =f(f(p)) (from associativity
of T) we know already that then f is idempotent. ‘

The following Theorem is more general:

(4.2) Theorem Letf:L — L be an automorphism of the orthomodu-
lar ortholattice L and p e L. Then f(p) =p if and only
if foq,= @pof.

Proof: For necessity, since f(p)<p, we have by (4.1) (2) that
fop=qpofop,
Since ™' (p) <p we also have f1og,= g of log,

Taking the involution * on both sides gives
(f7loqp) * = @pof, (@pof togy)* = @yofoq, (here we have
used the fact that in an orthomodular ortholattice ¢,* = ¢,
holds).

For sufficiency, feg,=fogp,o@,= ¢, of o, s0 by Theorem
4.1 f(p)=p.

Since f log,=gpof™!, we also have f'(p)<p, so

p = f(p) which completes the proof.

If v. Wright’s f(p) =1Tp claims to capture the main features of



VON WRIGHT'S «<AND NEXT» VERSUS 45

«change», it must be tested first, how f fares as a mapping in the
propositional system Ly of projections in a complex Hilbert space H,
because where else is «change» as essential as in physics, or its
«object» : Nature? So let us assume f to be an automorphism of L,;.
Then the following amazing fact is true: there exists at least one
proposition (+0,1) in Ly, which does not change at all under f, i.e.,
f(P) = P. I do not know if this is a welcome result for the T-calculus or
another counterintuitive consequence.

3. Conclusion

It was the limited purpose of this paper to outline the general
framework of mathematization in which an adequate tense logic may
be formulated. Sequential logic, I claim, is a legitimate competitor of
v. Wright’s T-calculus, and I have given some mathematical (but
almost no philosophical) reasons for this claim.

A sound principle in philosophy is, that a good idea must be
expressible in a formal language ; an extraneous formalization, how-
ever, is but a fancy ornament.
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