NOTES ON MODAL LOGICS

Jean PORTE

I. These notes are a sequel to [7]. Familiarity with that paper will
be assumed. The same notations will be used, except that a single
arrow (—) will denote material implication, while L and M are
respectively necessity and possibility.

The paper [7] needed an emendation, for the alleged proof of
Theorem 2.3 does not hold water. The Theorem itself is true and will
follow from the results of section 2 below.

In sections 2 and 3 sufficient conditions for thesishood in S, and in
vS, will be proved; they are named «completeness theorems» for
reasons which will become apparent in section 4, where possible
extensions of the relational semantic of Kripke to some of the systems
of [7] will be examined.

Sections 5 and 6 are devoted to various topics related to the
comparisons between the weak modal systems defined in [7].

2. A completeness theorem in S,.

Convention: In this paper a «tautology» (or a «PC-thesis») will
denote any substitution instance of a thesis of the classical proposi-
tional calculus proper (without connective L).

Definition 2.1. The system S¢ is defined by the following axiom
schemes and rules: P,, P,, P,, D, vP,, vP,, vP,, vD.

Definition 2.2. An extended assignment of values is a unary function
from modal formulas (i.e. S¢-formulas) to the classical set of values
{t.f}, which is constructed as in PC, except that we have adjoined to
PC a denumerable set of supplementary propositional variables,
(9w in one-one correspondence with all the S3-formulas of the form
Lx;, and that, for an extended assignment o

a(Lx; = tif x; is a tautology ;
a(Lxy) = alqy if x; is not a tautology.
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It must be remarked that when the value of a formula like
p;— L(p,— L(p;— p,)) is computed for a given assignment «, the
values a(p,), a(L{(p;— pJ)) and a(p,) are not used ; we have simply

a(p;— L(p,— L(p;—p3y)) = alp,) —* a(qw)
where q, is the supplementary variable corresponding to
L(p,— L(p;— p3)) — using the properties

a("1x) = Fa(x)
and  a(x-y) = ax)—>*aly)
where 1* and —* are the representations of |and — in the classical
two-valued matrix for PC.

Definition 2.3. A formula is E-valid if it takes the value t for every
extended assignement.

Lemma 2.4. Every E-valid formula is an SY-thesis. — This is the
fundamental result.

Proof: The axioms are E-valid. Then:

Let us suppose that there is a thesis, x, which is not E-valid. There
should be a formal deduction of x in S2, and in that deduction there
should be a first non-valid formula, z. It will be shown that z should be
preceded by another non-valid formula; whence a contradiction.

If z was obtained by D

u
u—=z

z
there should be an extended assignment « such that a(z) = f; whence
for the same assignment either a(u) =f or a(u — z) = a(u) — a(z) =1,
and either u or u— z should not be E-valid.

If z = Ly was obtained by D
Lu
l Lu—y)
Ly
y should not be a tautology, then either u or u—y should not be a
tautology. In either case we could find an extended assignement o’
such that a’(Lu) = f or another, a” such that a"(L(u—y)) = f.
Lemma 2.5 If —o Lx, then k5. x. For, if not, Lx would not be
E-valid. >
Lemma 2.6 Rule W is admissible in S2; from Lemma 2.5 and the fact
all PC-theses are Sg-theses.
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Lemma 2.7. S3and S, have the same theses. For S, is obtained from
S3 by postulating rule W, which is admissible in S3.

It follows: :

Theorem 2.7. Every E-valid formula is an S,-thesis.

Corollary 2.8. 5, Lx if and only if 5. X. From Lemmas 2.4 and 2.7
and Theorem 2.1 of [7]. — But this is Theorem 2.3 of [7], whose proof
needed an amendment.

3. A completeness theorem in vS,.

Definition 3.1. T being the particular tautology p— p, the T-reduc-
tion of a modal formula is the transformation which consists in
replacing by T every maximal subformula which either is a tautology
or has the form Lz where z is a tautology.

Definition 3.2. The T-reduct of a formula x is the formula obtained
by iterating the T-reduction as many times as it is possible.

If s is the operation of T-reducing, s* the k-th iteration of the same,
and § the operation of forming the T-reduct, then there is a number n
such that § = s",

Definition 3.3. A modal formula is T-valid if its T-reduct is T.

Theorem 3.4. Every T-valid formula is a vS,-thesis.

Proof: Every axiom is T-valid. Then:

Let us suppose that there is a vS,-thesis, x, which is not T-valid. We
will argue as in the proof of Lemma 2.4 : there should be, in the formal
deduction of x, a first formula z which should not be T-valid.

As 3(x) = Tiff s(Lx) = T, z can be obtained neither by W nor by 1.

If z was obtained by D

u

u—z

z
we would have

3u) =s"u) =T

3u—z) =s"u—z) =s"u)—»s"z) =T
and, with k = max(n,m) + 1

sf(u) =T

sfu)—s¥z) = T—(T—T)
whence s*(z) = T -contrary to hypothesis.
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If z = Ly is obtained by vD
Lu
Lu—y)
Ly
we would have 3(Lu) = T and 3(L(u—y)) = T, whence
S(u) = (u—vy) = T as in the preceding case, again contradicting
the hypothesis.

4. Variations about Kripke's semantics.

The twelve systems defined in [7] had been constructed in 1955-58,
before Kripke (and also Kanger, Hintikka, C.A. Meredith and Prior)
had created the possible worlds semantics. Is it possible to interpret
them in a similar way ?

As they are all «non-normal» (in the sense of Kripke [4] or as well in
the sense of Lemmon [5]), except voS, = T (of Feys) and vpvS, = S4,
it will be necessary to use more complex semantics than the frames of
[3] or of [5].

For gSa = S0.5, the problem has been solved by Cresswell ([1], see
also Hughes and Cresswell [2], pp. 286-288), using non-normal worlds
different from those of Kripke [4].

For gvpS, the problem has been solved by myself. The result,
presented to the Logic Symposion of Patras (August 1980) will be
published in full later: [9]. It can be proved that gvgS, is complete for
the model structure consisting of a triple {G, K, R}, where K is the set
of «possible worlds», R is a binary relation between worlds (accessi-
bility), and G=K is «the real world» (or «actual world»). Every world
is accessible to itself and every world is accessible to the real world
(this results into a kind of «restricted transitivity» : for all worlds w,,
w,, if GRw, and w,Rw, then GRw,). It is not possible to suppress the
mention of distinguished «real world» : the logic is incomplete on any
class of frames with non-normal worlds, these non-normal worlds
being defined in the way of Kripke [4], of Cresswell [1], or of the
«semi-normal worlds» defined below.

For S,, vS,, ovS,, and another logic (defined below) I have found
reasonable conjectures, which will presently be expounded.

Definition 4.1. Non-normal worlds are defined as in Cresswell [1],



NOTES ON MODAL LOGICS 403

except that accessibility is not restricted: Lx true in w is compatible
with x false in w' accessible to w, while Lx false in w is compatible
with x true in every world accessible to w.

Definition 4.2. A Semi-normal world is one in which Lx can be true
in w even if x is false in a w’ accessible to w, but Lx can be false in w
only if there is a w’ accessible to w in which x is false (the semi-normal
worlds are the «non-normal worlds» of [8], section 5).

Conjecture (I): S, is complete for the model structure (G, K, R)
where G (the real world) is semi-normal (or normal), while the other
worlds are non-normal (or semi-normal, or normal).

Conjecture (I1): vS, is complete for the model structure (G, K, R)
where all the worlds are semi-normal (or normal) — It is then useless to
single out a world as being the real one.

Conjecture (1) : pvS,is complete for the model structure (G, K, R)
where the real world is normal, while all the other worlds are
semi-normal (or normal), the relation R being reflexive and transitive.

Conjecture (IV): If the model structure is like in Conjecture (III),
except that R is not bound to be transitive, it determines a logic which
can be axiomatized by

vP,, vP,, vP,4, D, ovD, oW, I

This system could be represented as gvS, N vpS,, or as 0S,UvS,.

It is easy to prove that all these classes of model structures are
sound for the corresponding logics, i.e. that every thesis is valid (see
[8], section 5, for Conjectures (IIT) and (IV)). It remains to prove that
every valid formula is a thesis of the corresponding logic...

Now, the E-validity of Definition 2.3 is but a disguize of the
relational semantic notion contained in Conjecture (I), while the same
can be said for the T-validity of Definition 3.3 compared to the
relational semantic notion of Conjecture (II). — Then, from Theorems
2.7 and 3.1, it follows:

Theorem 4.3 Conjecture (I) is true.

Theorem 4.4 Conjecture (II) is true.

Conjectures (I11) and (IV) remain open problems. I have not even a
conjecture for the other systems defined in [7].
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5. The role of rule W.

It is well known that Kripke’s semantics with normal worlds is
particularly simple for the normal systems in which oW is not a
schema of theses (see Lemmon [5]).

Things seem to be different for the comparison of weak modal
logics studied in [7]. The simplicity of the discussion rests on
Theorem 5.1: vS = vv§, which is proved by the derivability of rule W.

A weaker but similar result could be obtained if W was admissible in
a system S, and the admissibility was conserved by the operations o
and v. Indeed W is admissible in S% and remains admissible in pS?
(Lemma 2.6 above) and vSg (which is the system K of Lemmon [5]).
— But the way to extend such results is not apparent...

6. A central result.

It appears that the Theorem 7.3 of [7] plays a somewhat central role
in the comparison of weak modal systems, as appears from its
similarity with result of Lewis and Langford ([6], p. 499) used by
Simons [10], and with a result of Yonemitsu [12] used by Hughes and
Cresswell ([2] pp. 227-228). It may be interesting to give it the most
general form.

On one hand, in the formulation of Theorem 7.3 ([7], p. 16), the
tautology t may be replaced by an arbitrary formula, u, as proved
below:

(1) u—=(t—u) is a tautology

(2) mL{u—(t—u)) - by S,

(3) Lu~L(t—>u) - by (2), vD

4) u—t — is a tautology

(5) FLu—t) - by S,

(6) Lu-L(u—t) — by (3), (9), S,

(7) Lu~L(LLu«~LLt) — by (6) and C (twice)
(8) Lu-LLu<LLt - by (7) and W

(9) Lu, LLu—LLt — by (8) and PC
(10) LLu+Lu - by W

(11) LLu~LLt — by (9), (10)
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and the argument goes on as in [7], p. 16, last line, and p. 17.

On the other hand, it was understood in [7] that when a rule «holds»
in a system, that means that it is derivable in it, and not only
admissible in the system (see for instance Wang [I1]). But it is
apparent, from the proof of Theorem 7.3 of [7] completed by the
foregoing argument, that the theorem remains true if @/l instances of
the word «holds» are understood as meaning «is admissible». Then
we have two generalized results:

Theorem 6.1. When the rule

C: Lix<vy)/L(Lx<Ly)
is derivable in a system at least as strong as S,, the rule

I: Lx/LLx

is derivable iff —LLu for a formula u.
Theorem 6.2. When the rule C is admissible in a system at least as
strong as S,, the rule I is admissible iff —~LLu for a formula u.
Corollary 6.3. When C is derivable in a canonical system, the
schema I: —Lx — LLx
holds iff —LLu for a formula u.
Corollary 6.4. 1ff we add any axiom of the form —LLu to a system at
least as strong as pS., we get a system at least as strong aspvpS..
Simons applied Corollary 6.4 to S3; Yonemitsu and Hughes-
Cresswell applied Theorem 6.1 to S1 (for Lewis and Langford
postulated C under the name of «rule of replacement of strict
equivalents»).
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