ALMOST SKOLEM FORMS FOR RELEVANT (AND OTHER)
LOGICS

R.K. MEYER

In [1], it was established that relevant logics are 'second—degree
reducible. In [2], this result was generalized to a number of additional
sentential and first-order calculi, including the first-order versions of
the relevant logics. In this paper, I explore some consequences of this
reduction, especially as they involve finding normal forms for formulas
of relevant logics. Acquaintance with [2] will be helpful.

For definiteness, consider the first-order version R* of R introduced
in [3].7 According to [2], every formula of R* may be given a
second-degree normal form which looks like this:

(1) AX (A) o Fx,...x,

In (1), o is material implication, and F is an atomic predicate. X ,,...,X,
are just the variables that occur free in A itself. And AX(A) is a
conjunction of exact equivalences (universally quantified coimplica-
tions), whose conjuncts are determined univocally by the form of A
itself. Leaving the reader to check [2] for details, we note merely that
the following are typical formulas that might be conjuncts of
AX(A).?

(2) ¥ x (Gx < ~Hx)

(3) ¥xVy (Rxy < Gx VHy)

(4) ¥xVy (Rxy < Gx—Syx)

(5) ¥xVy (Rxy < ¥z (Txyz))

(6) ¥x (Gx <« 3JzHx)

(7) ¥x (Gx <« Hx&Sxx)

(8) p < t (where t is a sentential constant)
(9) p < ¥xGx

This suffices, I trust, to convey the flavor of the reduction. Every
conjunct in AX (A) is the closure of a biconditional, with an atomic
formula on the left and the result of applying a single logical operation
to one or two atomic formulas on the right. There are further
specifications on AX (A), but we shall ignore these here. But we note
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that AX (A), may contain predicate letters which need not occur in A
itself.

Let us now turn to the normal form question for R* and related
logics. R*, like the intuitionist predicate calculus H* and unlike
classical logic TV*, resists straightforward normal forming
techniques. For example, for a given formula A we cannot necessarily
find a relevantly (or even materially) equivalent formula A’ of R* in
prenex normal form. The reason is as in the intuitionist case. Some of
the classical theorems that are used to justify transformation into
normal form are not relevantly valid. In fact, as [3] observes, the
reasons that intuitionists and relevantists have for holding certain
quantifier formulas invalid differ, but there is significant (though not
inevitable) agreement on the particular formulas to be held valid and
invalid. In R*, the classical move to prenex normal form is blocked by
the relevant invalidity of the following pair of lemons.

(10) p— 3xFx —» 3x (p—»Fx)
(11) ¥xFx—p — Ix(Fx—p)

Since the principles are dual, by the classical quantifier interchange
and contraposition properties that do remain relevantly valid, we may
identify them as embodying a single rejected principle. The reason
that it is rejected is clear from the similar rejection of the sentential
analogue p—»qVr — (p—q) V (p—r), which would do terrible things to
relevant insights.(®) Also interesting is the form of the rejected
principle when expressed with the handy fusion connective o, which
is R-definable by ~(p V~q). This is
(12) ¥x (Fxop) V VxFxop.

Nordo any of (10) - (12) hold in R* when their main — is weakened to a
material o, defined as usual by ~pVq. This justifies our assertion
above that there is not even a materially available way acceptable in
R* to transform arbitrary formulas A into prenex normal form.

Not having prenex normal forms available is a nuisance. It blocks,
for example, straightforward efforts to prove R* semantically com-
plete. For quantifiers may be deeply buried structurally in formulas,
within nested arrows within quantifiers within nested arrows and so
forth, and there is no immediately evident way to extract these
quantifiers from their nests, so that we can get a clearer picture of
what a formula intends to say. (There are different sorts of opacity,
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and one of them occurs when it is difficult to make out what is being
said.)

Perhaps in attempted recompense for its justifiable but annoying
recalcitrance to pronounce (10)-(12) valid, R* (unlike H*) does pro-
nounce valid all the other principles that one needs for prenex normal
form, including rewriting laws for bound variables. In particular, the
converses of each of (10)-(12) hold as true-blue relevant implications.
This is locking the barn door after the horse has had half his legs
chopped off. (He won’t run away, and it is equivalences , not one way
implications, that most facilitate normal forming arguments.)

More useful is the fact that all of the other formulas needed for
prenex normal form arguments do hold in R* as genuine relevant
equivalences. Some specimens follow.

(13) ¥x (p—Fx) < p—>VxFx

(14) 3xFx—p < ¥Xx (Fx—p)
(15) ¥x (p&Fx) < p&VxFx
(16) ¥x (pVFx) < pVW¥xFx
(17) Ix (p&Fx) <« p& IxFx
(18) Ix (pVFx) « pV3IxFx
(19) 3x (poFx) « po3xFx
(20) ¥x (poFx) <« po>¥xFx
(21) 3x (poFx) < po>3&Fx
(22) ~¥xFx — Ix~Fx
(23) ~ IxFx — V¥x~Fx
(24) po3IxFx < 3Ix (poFx)
(25) ¥VxFxop « 3Ix (Fxop)

(24) and (25) are the exact analogues of (10) and (11), and they are
interesting as evidence that the failures of exact equivalence for —
statements do not infect the corresponding o statements, where the
steps that lead to normal form are concerned. Thus, for example,
every — free formula of R* has an equivalent prenex normal form,
determined as in the classical case. But arrow-free R* is just TV*
anyway, so the fact is not that interesting.

If we cannot get prenex normal forms for R*, perhaps we can get
something like Skolem normai forms, which, although not provably
equivalent to their parent formulas, are at least deductively equivalent
in the sense that, if A’ is the Skolem normal form of a formula of TV¥,
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namely A, then A and A’ are at least deductively equivalent in the
sense that A is a theorem of TV*iff A’ is a theorem of TV*, and where
A’ also simplifies A in some conceptual respects (say by putting all
existential quantifiers first). This would be particulary useful for R,
which lacks the convenience of ordinary prenex normal forms.

We cannot guite achieve this goal, on present techniques. But we
can almost achieve it by applying the reduction methods of [2], which
prompts the title of this paper. For let us consider again the formula
A* associated with A by (1). A is always deductively equivalent in R*
to a closed formula, namely its universal closure, and so we may
without loss of generality think of A itself as already closed. Since A
in this case contains no free variables, we shall henceforth think of A*
simply as a formula of the following form.

(26) AX (A) o p,

where AX (A) is a formula satisfying the general specifications laid
down at the outset, and p is a sentential variable.

Let us now transform A* into an «almost Skolem form» A*. The
only quantifiers that occur in A* occur in the conjuncts of AX (A),
either as universal quantifiers prefaced to a biconditional or as either
universal or existential quantifiers occuring immediately to the right of
the biconditional. The following is near enough to a typical instance of
(26) for our purposes.

(27) ¥x (Fx «PxVQx) & V¥x (Gx<.Rx—SX) &... & VxVy
(Hxy+ 3z (Txyz)) &Vx Jx « ¥yUxy) op

We note first that the universal quantifiers prefaced to biconditionals
are immediately extractable, applying (15) to make their scope the
entire antecedent of (27), rewriting variables as necessary, and then
applying (25) to trade in these universal quantifiers governing the
antecedent of (27) for existential quantifiers governing the whole
formula. While it isn’t necessary for the method, we can ease the
picture visually, and save ourselves some rewriting, by appealing to
the fact that V distributes equivalently over & in R* (and in most other
logics). Making these moves we get the following from (27).

(28) Ix3y [(Fx~PxVQx)& (Gx«.Rx—Sx)&...&
(Hxy< 3aTxya) & (Jx<~VbUxb) >p]
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We assume that analogous moves have been made to rid the omitted
conjuncts presented simply as «...» of their prefaced universal quan-
tifiers also. Note that the move which puts the prefaced existential
quantifiers on the whole formula is available only because the main
connective of A* is always >. Were it an —, as it might be on some
applications of the method of [2], the equivalent transformation of (27)
into (28) would be blocked by the failure of (11).

We have now removed quantifiers from the first two conjuncts of
the antecedent of (28), which for the time being we assimilate to the
«...». Remaining, however, are the quantifiers buried within the last
two conjuncts. They are no longer very deeply buried, and we may
partly unbury them further by trading in < for the conjunction of —
statements in terms of which it is R-definable. Rearranging conjuncts
slightly, here is our next R-equivalent form of (27).

(29) 3x3y [(FaTxya—Hxy)& Jx—-¥bUxb)& ... &
(Hxy— JaTxya) & (VbUxb—Jx) op]

On our rearrangement, the first two conjuncts now contain extracta-
ble quantifiers, in virtue of the R*-valid principles (13) and (14). The
Ja of the first conjunct governs only the antecedent, but it may be
brought out by (14) as a Va whose scope is the whole first conjunct.
Using (15) as before, make the scope of this ¥a the whole antecedent
of the long o statement, and then apply (25) to bring it out front as a
Ja again. A similar move, using (13), will extract the ¥b of the second
conjunct as, eventually, a prefaced 3b. Rewriting the variables that
remain bound by interior quantifiers, we get this formula.

(30) Ix3dydadb [(Txya—sHxy)& Jx—Uxb)& ... &
(Hxy— 3zTxyz) & (VwUxw—Jx) op]

We have now reached the limit of straightforward application of these
methods, though we can pretty them up in some further respects.
Meanwhile, let us say that a formula A* of R* is in almost Skolem
normal form provided that it can be expressed in the way suggested by
(30). That is, A* must be a closed formula of the following form.

G1) ... X, (A—B) &...& (Ay—B,) 5p],
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where p is a sentential variable, and the A; and B; may be subjected

disjunctively to the following further restricions, for each i such that |
=i=n:

(i) A, and B, are both atomic formulas, or

(ii) A, is atomic and B; is ~C, where C is atomic, or

(iii) B, is atomic and A, is ~D, where D is atomic, or

(iv) One of A;, B, is atomic, and the other is of
the form C—D, where C and D are atomic, or

(v) A;is atomic, and B; is of the form 3xC, where
C is atomic, or

(vi) B;isatomic, and A, is of the form ¥xD, where D is atomic,
or

(vii) One of A;, B, is atomic, and the other is of one of the forms
C&D, CVD, where C and D are atomic.

Of course it is unnecessaryto specify the A; and B, as carefully as
we have, the main point lying in the conditions (v) and (vi) which limit
the quantificational complexity of non-prefixed quantifiers of a for-
mula A% in almost Skolem normal form.

We can now state and prove for relevant logics the theorem toward
which our informal considerations have tended.

Theorem [. Let S* be any of the first-order relevant logics E*, R*, T*,

RM*, EM* of [3]. Then for each formula A of S*, we can effectively
determine an associated formula A* in almost Skolem normal form
which is deductively equivalent to A, in the sense that A is a theorem
of S*iff A* is.
Proof. We may assume A closed, whence the principal corollary of [2]
delivers a sentence A* of S*, of the form (26), which is deductively
equivalent to A. Using the method just suggested illustratively, and
breaking up all « statements into their conjoined — statements, we
arrive eventually at a formula A* provably equivalent to A* in S*, with
all quantifiers prefaced existential ones except for the exceptions
allowed under (v) and (vi) above, and otherwise satisfying the
conditions laid down, by an easy verification. Since A* and A* are
provably equivalent in 8%, a fortiori they are deductively equivalent in
that system. By transitivity of deductive equivalence, A and A™ are
deductively equivalent in S*, ending the proof of the theorem.
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The title of the paper has suggested that our results hold for relevant
other logics. The reader is at this point entitled to know, «Which
other logics 7» He is hereby given leave to find out. The methods of [2]
were very general, and produced second-degree (or, at worst, third-
degree) formulas deductively equivalent to a given formula over a
wide spectrum of predicate logics (such as, for example, the in-
tuitionist predicate calculus H*). The methods of this paper are
equally general, depending as they do mainly on the quantifier
exchange principles (13)-(25), and in fact on only some of these
principles. These principles may be expected to hold over a wide
choice of logics. And even where they fail (as for example (13) fails for
some but not all quantified modal logics, for Barcan-formula-related
reasons), we can still press the method as far as it will go, since it will
always yield a bound on quantificational complexity (and on other
kinds of complexity), wherever the devices of [2] itself are applicable.

We return now to relevant logics, and to R* in particular. It would
be delightful to find a way to unbury the last buried quantifiers, which,
on the evident relations of duality, may always be taken to occur in
contexts like

(32) Fx < 3yGuxy,

with both F and G atomic. (As a degenerate case, these contexts can
be sometimes of forms like Fx — 3yGx, but then the quantifier can be
immediately eliminated as vacuous.) And, of course, our final elimi-
nation steps rid us of half the problem, leaving the following as the
tough context.

(33) Fx - 3yGxy

As a first stage in thinking about the problem (and, by the way,
uncovering some further implications which [1] has at the sentential
level for R itself), let us go back to our sample A*, which is (27). One
point that makes (27) and its various reductions difficult to think about
is that all the work is going on in the antecedent of material o, a
particle which does not interact too smoothly with the other notions
that are primitive in R and R*. So let us apply the definition of = to
turn (27) into a disjunction instead. When everything is dualized, and
the reduction steps which led to (30) are simultaneously carried out,
breaking up all the biconditionals and applying DeMorgan laws and
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the definition of fusion o, what (27) becomes, under provably R-equi-
valent transformation, is the following:

(34) 3x3yJadb [(Fxo.~Px&~Qx)V ((Px VQx)o~Fx) V
V(GxoRx0~Sx) V((Rx—Sx)0~Gx) V...V
... V(Txyao~Hxy) V(Jxo~Uxb) V
V(HxyoVz~Txyz) V(VwUxwo~Jx) Vp]

The reader, if he is up to it, is now invited to survey the form of the
disjuncts of (34). It is a form that, near enough, is perfectly general for
R*, and it is one which illustrates all of the simplifications to which our
reductions lead. Note that each disjunct, save the last, is now of the
form AoB. The second disjunct, (Px VQx) o~Fx, remains a little too
complicated, since o distributes in R over V. It should be replaced, in
thinking about (34), with Pxo~Fx VQxo~Fx. The point is just the
finite analogue of the way in which we got the existential quantifiers
outfront, whosebasis, inthis context, is the law (19) that gets Jout of the
interior fusion position, after which one may think truth-functionally.

Otherwise, our fusions turn out to have just five possible distinct
forms, given that all of 0,&, V are both commutative and associative in
R. We shall not fuss much over the distinction between atomic
formulas and their negates, identifying a formula A as a littoral if A is
either itself atomic or if A is the negation of an atomic formula. This
provides an alternative characterization of almost Skolem normal
form for R*, which in order to prevent confusion, we shall call almost
Skolem standard form. A formula A# shall be said to be of this form
provided that it is the following sort of closed formula:

(35) 3X,...3x, [Aj0oB, V... VA,0B, Vp],

where p is a sentential variable, and the disjuncts A,0B, are the subject
to the following conditions, for each i from 1 to n:

(a) A; and B; are both littorals, or

(b) A;is a littoral and B, is of the form CoD,
where C and D are littorals, or

(c) A;is a littoral and B, is of the form C—D,
where C and D are lirrotrals, or

(d) A, is a littoral and B, is of the form C&D,
where C and D are littorals, or
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(e) A, is a littoral and B, is of the form VyC,
where C is a littoral and the variable y occurs
free in C but not in A;. ‘

In addition, we may impose the condition that exactly the same
variables shall occur free in each of A;, B,, under any of the clauses
from (b) to (e). (Under clause (a), we may get an extra free variable on
one side as the result of exporting a 3a to the preface.) We pause for a
theorem.

Theorem 2. For each formula A of R,, we can effectively determine an
associated second-degree closed formula A# of R, such that (i) Aft is
in almost Skolem standard form and (ii) At is deductively equivalent
to A in R,.

Proof. Use theorem 1 and properties of R,, checking that the moves
(illustrated above) that transform (31) into (35) and (i) - (vii) into (a) -
(e) do not leave anything out. This is busy work, which may be safely
omitted, ending the proof of theorem 2.

As I hinted above, theorem 2 has significance not merely for R, but
also for its quantifier-free part R itself. References to Skolem are now
inappropriate, so let us say simply that a formula A# of R itself is in
standard form provided that it is so in virtue of the applicable parts of
the specifications just above. In this restricted context, littorals are
just sentential variables and their negates. And At is in standard form
provided that it is of the form

(36) AjoB, V... VA 0B, Vp,

where p is a sentential variable, each of the A; are littorals, and each of
the B; is one of the forms CoD, C—D, C&D, where C and D are
littorals. While it is clear enough from [1] anyway, we draw without
proof from theorem 2 the following evident corollary.

Corollary. Every formula A of R is deductively equivalentin R to a
second degree formula At in standard form.

Thinking about standard form in the sentential case offers insight
into why we have difficulty unburying the last buried quantifiers in
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expressions like (33). After dualizing, we can think of (33) as having
the form

(37) FxoVyGxy,

which might appear as a disjunct in an expression (35). The quantifier-
free analogue is

(38) go.r&s,

which might appear as a disjunct in an expression (36) (or even in (35),
for that matter). (36) provides (38) with a pretty simple context; the
only enclosing layer is truth-functional disjunction. And, just as the
conceptual problem posed by (37) is that of manipulating this formula,
in some way that will preserve deductive equivalence in context so
that the ¥y can be pulled outside the fusion in which it is nested, we
have a similar problem even with (38). Note that, in (36), all
occurrences of V have been pulled out to the enclosing layer. It would
be nice to do the same thing with &, which would yield a pretty
picture of simple intensional expressions in —, o0, and ~ (the latter
always having been counted in relevant logics, as Belnap remarks, as
an intensional negation) being enclosed in an extensional picture
supplied by & and V. For this is just the picture that we are looking for
in trying to find a way to prenex quantifiers, at least so far as we can.

However, theorem 2 has already gone as it is possible on present
knowledge to go in the quantifier case, and, even in the sentential
case, the corollary to the theorem is the best result. The problem,
which has been familiar to students of relevant logic for a long time, is
that o and & do not interact very well, even as the failure of (12) limits
analogously the interaction of ¥ and o.(*) Interestingly, if. one
proceeds to the stronger system RM, o does distribute over &,
yielding a sort of sentential analogue of prenex normal form for the
formulas of this system. (This has been known for a long time).
Perhaps not coincidentally, the decision problem for RM has also
been long since put away, while the conditions for its semantic
modelling are considerably simpler than any that have been disco-
vered for R, as Dunn and I have shown in a variety of ways.

So the problems of understanding R better, do not go away on
applications of the techniques surveyed in this paper. It is to be hoped
merely that, as I put it in [2], «decreasing the degree of relevant
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involvement» will help to render more transparent some problems of
relevant quantification theory that have hitherto appeared all too
opaque. At the very least, quantifiers can be brought towards the
surface, if not to the surface, by putting the formulas of R, and other
relevant logics in one of our almost Skolem forms, in which all of the
existential quantifiers can be brought out front, on the standard
recension that is conceptually clearest, and the universal quantifiers
are buried under just one layer of relevant involvement. (We pause for
a final technical aside on this subject ; while we were delighted to bring
dall the way to the front, the obvious alternative is to let V furnish the
outermost layer; since 3 distributes equivalently over Vin R,, as ¥
does over &, this would leave the occurrences of 3 on the second
outermost layer; after distribution, we could then drop some of the
I's as vacuous, allowing us to think semantically about the problem of
satisfying universally some existentially closed sentences. This redis-
tribution merely reverses the process by which we got into standard
form in the first place.)

There is a price for our normal forming techniques, as Slaney has
pointed out in conversation. In the effort to gain technical and
semantical control over the relevant logics, it was sensible to concen-
trate on problems appropriate to formulas of reduced degree. Not
much thought was given to the number of variables , propositional and
predicate, appearing in these formulas. For a given formula, this
number must be finite, and one naturally expects the validity of a
given formula A to depend only on the variables that actually occur in
this formula. So it was easy to think of the degree-reducing problem as
the hard one, which, once solved, would work for any number of
variables.

But the methods of [1] and [2] work typically by adding new
variables. This is the feature which allows us to choose normal and
standard forms that are so simple. Moreover, for the relevant logics,
the degree-reducing problem has been permanently put to rest at
degree = 2. (This means, for relevant predicate logics also, that any
two distinct relevant logics must differ in their supply of second-de-
gree tautologies, upsetting any expectations that might have been
formed from Belnap's discovery that the first-degree tautologies
remain the same on substantial variation of underlying logic. In
particular, E_, R,, and T, all have the same first degree.) But, as



288 R.K. MEYER

Slaney observes, it might be more accurate to say that the degree-re-
ducing problem has itself been reduced to the variable-number
problem. The latter problem, which has hitherto masqueraded as
trivial, is now to be seen as part of a trade-off. If one is allowed more
variables, one can decrease degree. But, to make real progress, the
extra variables must be brought under control at the reduced degree.
Perhaps this is possible; perhaps not. At any rate, where the truly
hard problems are concerned, more effort is needed, if the methods of
this paper and its predecessors are to bear real fruit.

Our survey of almost Skolem forms has a surprising denouement.
While it was hardly the purpose of this paper to think about classical
problems (if only because, as [23] also will observe, somebody else is
sure to have thought about them first), we have by the way proved
that every formula A of TV, has a deductive equivalent in Skolem
normal form (no longer «almost»). Since a theorem to this effect is
scarcely required, we content ourselves with a concluding.

Observation. For every formula A of TV,, we can effectively find a
deductively equivalent A # oftheform 3x,... 3x, Vy,... Vy_B, whereBis
quantifier-free. Moreover, B may be required to satisfy disjunctively
(i)-(iv), (vii) attached to (31).(5: )

NOTES

(') Only the name R* will be introduced in [3] (more fully, on Anderson-Belnap
notational conventions, R* ™), the system itself being well-known in the relevant
literature as RQ. Full axiomatization and discussion of R* and other first-order relevant
logics will appear in [3].

(*) The binary connectives which we introduce below are ranked &, 0, V,—, —in order
of increasing scope.

(®) This is witnessed by the system RM, in which theoremhood of the displayed formula
does do terrible things to relevant insights. Added to R the formula suffices for the
relevantly dubious simple order principle (A—B) V(B—A), which in turn yields
fallacies of relevance like p&~p—qV~q. Interestingly, all of these principles are
properly weaker, when added to R than the RM axiom A—.A—A itself.

(%) The lack of interaction between o and & in R is most strikingly illustrated by Dunn’s
Gentzen formulation of R, (a similar formulation is due independently to Minc), which
introduces nwo sorts of sequences, intensional and extensional ones, to correspond
respectively to binding of premisses by o and binding them by &. Belnap had earlier
made a similar proposal, but Dunn’s succeeded because he allowed interlacing of the two
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sorts of sequence to arbitrary depth, precisely to take account of the lack of interaction
between & and o. Were some interaction after all discovered which would put effective
bounds on this interlacing, Dunn’s methods would presumtively lead to a decision
method for R,. But this problem is also open, and, infuriatingly, the Gentzenization
doesn’t seem to help.

(%) To complete the proof of the observation, note that all steps involved in the proof of
theorem | go through in the same fashion for TV*. Buried quantifiers are then restricted
to conjuncts of the antecedent of non-prenex part of (31), in contexts like Gy— ZHyz
and ¥xFx—q. Since (10) and (11) hold without restricion as biconditionals in TV*, these
quantifiers also may be unburied, whence they will eventually show up at the tail end of
the prefix as ¥'s.

(®) Thanks are due to Anderson, Belnap, Dunn, Routley, and Slaney for helpful
discussions of various topics, and (especially) to Mc Robbie for valuable assistance.
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