STRICT IMPLICATION IN T

Robert K. MEYER Steve GIAMBRONE

In [6] we showed that the positive fragment of R is contained under suitable translation in the positive fragment of the system T of ticket entailment. There we expressed the view that T might be more closely related to E and R than it is to the (motivationally similar) system P-W. The results presented here are further evidence in support of that view. For the «same translations» used to embed $S4(S4_+)$ in $E(E_+)$ in [4] will embed $S4(S4_+)$ in $T(T_+)$. That this would be so was suggested by yet another similarity between T and E. If ' \Box A' is defined in T^t as 't \rightarrow A', the resulting theory of modality is quite similar to that of E (which is itself very much like that of S4). The major difference between T^t-modality and E-modality is the unprovability in T^t of \Box A \rightarrow A.

The results of this paper also show that, just as with E and R (see [2] and [5]), the implications of some major non-relevant systems can be understood in T as kinds of implication. Theorem 2 below makes this claim obvious for strict implication à la S4. And given the results of [3], the same applies to intuitionistic implication.

In what follows we rely heavily on [4]. Much that is stated and proved there is assumed here.

Let $T(T_+)$ be formulated as in [1], and let $T^t(T_+^t)$ be the result of adding t to the vocabulary of $T(T_+)$ and adopting the new rules:

$$(R1) \qquad \frac{\vdash A}{\vdash t \to A} \qquad (R2) \qquad \frac{\vdash t \to A}{\vdash A}$$

 $S4(S4_+)$ can be (and is hereby) formulated by adding to $T(T_+)$

Ax0.
$$A \rightarrow (B \rightarrow B)$$
.

We trivially extend S4 (S4₊) to the system S4^t (S4₊) by again adding t to the vocabulary and adopting the new axiom

Axl.
$$t \leftrightarrow (p \rightarrow p)$$
.

As in [4], we give the following definitions for T_+ , T, $S4_+$, S4 where applicable:

D1.
$$f \leftrightarrow t$$

D2.
$$(A \supset B) \leftrightarrow ((A \& t) \rightarrow B)$$

D3.
$$(A \rightarrow B) \leftrightarrow ((A \& t) \rightarrow (Bvf))$$
.

Now define a translation + from S4^t to T^t as follows:

1.
$$A^+ = A$$
, for A atomic

2.
$$(B \& C)^+ = (B^+ \& C^+)$$

3.
$$(B \lor C)^+ = (B^+ \lor C^+)$$

4.
$$(B \to C)^+ = (B^+ \supset C^+).$$

And define a translation * from S4^t to T^t thusly:

1.
$$A^* = A$$
, for A atomic

$$2. \qquad (\overline{A})^* = \overline{A}^*$$

3.
$$(B \& C)^* = (B^* \& C^*)$$

4.
$$(B \lor C)^* = (B^* \lor C^*)$$

5.
$$(B \rightarrow C)^* = (B^* \rightarrow C^*).$$

Proofs of the following lemmas are straightforward:

We note only that Ax0 above does its job, and that Lemma 2 may be proved from right to left by using the admissible rule γ (essentially the rule of disjunctive syllogism), or adapting the argument of [4], pp. 189-92. For, E49-E55 of p. 191 (et al.) are theorems of and facts about T as well.

Since the exact translation of T_+^t to T_+ given in [6] can be straightforwardly extended for T^t to T, and given Lemmas 1 and 2 above, we now have an exact translation from $S4^t(S4_+^t)$ to $T(T_+)$. However, the more usual method of t-elimination can be used for our present purpose. In particular, let p_1, \ldots, p_{n-1} be all the propositional variables occurring in A, and let p_n be the first propositional variable (in some assumed ordering thereof) that does not occur in A. Define t_A as $((p_1 \rightarrow p_1) \& \ldots \& (p_n \rightarrow p_n))$, and $A^\#$ as $A[t/t_A]$ (the proper substitution of t_A for t in A).

Our major results can then be stated as:

Theorem 1.
$$\vdash_{S4_+^t} A$$
 iff $\vdash_{T_+ A^{+\#}}$
Theorem 2. $\vdash_{S4_-^t} A$ iff $\vdash_{T} A^{*\#}$.

The Australian National University

Robert K. MEYER Steve GIAMBRONE

REFERENCES

- [1] ANDERSON, A.R., and N.D. BELNAP, Jr., Entailment, The Logic of Relevance and Necessity, vol. I, Princeton University Press, Princeton, 1975.
- [2] ANDERSON, A.R., and N.D. BELNAP, Jr., "Enthymemes", The Journal of Philosophy, vol. 58 (1961), 713-23.
- [3] McKinsey, J.C.C. and A. Tarski, "Some Theorems about the Sentential Calculi of Lewis and Heyting", Journal of Symbolic Logic, vol. 13 (1948), 1-15.
- [4] MEYER, R.K., «E and S4», Notre Dame Journal of Formal Logic, vol. 11 (1970), 181-99.
- [5] MEYER, R.K., «Intuitionism, Entailment, Negation», Truth, Syntax, Modality, ed. H. Leblanc, North-Holland Amsterdam, (1973), 168-98.
- [6] MEYER, R.K., and S. GIAMBRONE, «R+ Is Contained in T+», (forthcoming).