ELIMINARILITY, NON-CREARIVITY
AND EXPLICIT DEFINABILITY

R. KLEINKNECHT

Shoenfield has shown in [1], chap. 4.6, by means of a syntactical
proof, that every explicitly definable (predicate or function) constant
is both eliminable and occurs in a formula which satisfies the
condition of non-creativity. In the following it will be shown syntacti-
cally, that every eliminable constant is also explicitly definable.

Since, according to Beth’s definability theorem, explicit definability
is equivalent to implicit definability, if follows that the condition of
eliminability is equivalent both to explicit and implicit definability.

§ 1. Syntactical Preliminaries

All the following considerations refer to first-order logic with
identity. The primitive signs used will be object variables (ov’s),
object constants (oc’s), n-ary predicate constants (pc’s), n-ary func-
tion constants (fc's), the logical signs « I», «—=», «A», the identity
symbol «=» and the parantheses «(»and«)». A language is any
(possibly empty) class of constants. Terms and formulas are defined in
the usual manner. If A is any formula, if x4, ..., X, are distinct ov's and
Sq,...S, any terms, then [A, X;/sy,...,Xa/S,] is that formula which
results from A by simultaneous substitution of s;,....s, for x;,..., X,.
If X is a language and K is a constant, then we will denote the language
Z U{K} simply by 2 + K. Let Z-terms (Z-formulas) be terms (for-
mulas) which only contain constants from Z. We will denote the class
of free ov’s of a formula A by fr(A) and the class of all Z-formulas by
Sprs.

For further considerations we will need the concept of substitution
of a constant in a formula by a formula. Here we can limit ourselves to
the treatment of pc’s and fc’s, since the treatment of fc’s can easily be



224 R. KLEINKNECHT

transferred to oc’s. The treatment of substitution is needed for
lemmas 1 and 2 but not for theorems 1 and 2 (which are the heart of the
paper).

§ 1.1. Substitution of Formulas for Predicate Constants

Let p be an n-ary pc and E a formula which contains exactly n free
ov’s. Inductively, we now assign to every formula A a formula
[A, p/E], which results from A by substitution of E for p.

(la) If A ia an atomic formula of the form ps; ... s, and fr(E) =
{X1, ..., Xn} (Whereby x4, ..., X, are distinct ov’s and x; (1<i=<n)
is the i-th free ov of E), then let [A, p/E] = [E, X,/S1, .., Xo/Sa] -

(1b) If A is an atomic formula in which p does not occur, then let
[A,p/E] = A.

(2) If A and B are any formulas and if x is an ov, then let [ 1A,
p/El = "1[A, p/E|, [A— B, p/E| = [A, p/E|— [B, p/E] and
[AXA, p/E| = AX[A,p/E]|.

§ 1.2, Substitution of Formulas for Function Constants

Let f be an n-ary fc and E a formula which contains exactly n+ 1
free ov’'s. We shall assign to every formula A a formula [A,f/E],
which results from A by substitution of E for f. But since complex
terms, i.e., terms which contain several fc’s, can appear in A, [A, f/E|
can not be formed as easily as can [A, p/E]. To construct the formula
[A, f/E|, first we form a term normal form A which is equivalent to A,
in which the same constants and ov’s occur as in A, and which has the
property that each one of its atomic subformulas contains at most one
constant. The second step consists of constructing a formula [[A,
f/E]|, which results from A by substitution of E for f. If A is an
arbitrary formula, then [A, f/E] can be identified with the formula
[[A, f/E]]. In order to form A, we first inductively assign to every
term s and to every ov x an identity formula ifo (s, x):

(1) Ifsisanov oran oc, then let ifo(s,x) = s = x.
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(2) If s has the form gs, ... s,, then let ifo(s, x) =

Vg ... Vuy, (‘?\ ifo(s;,u) Aguy...u, = Xx), whereby uy,...,u,
are the first m ov’s which do not occur in sy, ..., s,,.

To every formula A there will now be assigned by induction a term

normal form A

(la) If A is an atomic formula of the form ps;...s,,, then let A =

Vug... Vug (R ifo (s;,u;) Apuy...u,), whereby uq,...,u, are

the first m ov’s which do not occur in Sy eees S
(1b) If A is an atomic formula of the form s, =s,, then let A =
Vuy Vu, (ifo (sq, ) aifo (sy, u) A u; = u,), whereby uy, u, are

the first two ov's, which do not occur in s, s,.
(2) If A and B are any formulas and x is an ov, then let 1A = TA,
A— B = A—B and AXA = AXA.

By induction we now assign a formula [[A, f/E]] to every term

normal form A.

(la) If A is an atomic term normal form of the form fy, ...
and if fr (E) = {X4,...,X,41} (Whereby xi,...,x,,, are distinct
ov'sand x; (Isi<n+ 1) is the i-th free ov of E), then let [[A,
f/Ei I = [Ev xl/Yl-: sery xn+1/Yn+1] L

(1b) If A is an atomic term normal form, in which f does not occur,

then let [[A, f/E]] = A

If A and B are any term normal forms and if x is an ov, then let

[[ 1A, f/E11= "1[[A,f/E]],[[A— B,f/E||=[[A, {/E| |- [[B,

f/E|]and [[AXA, f/E|] = AX[[A, f/E]].

= [[A, f/E]] .

Yn = ¥n+1

2
If A'is an arbitrary formula, then let [A, f/E]

§ 2. Lemmas

For the following considerations, we want to assume that a com-

plete and correct deductive system is given. We write T .
T U {A} < spryand a deduction of A from T exists in which all terms
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are X-formulas. Instead of Q@ kA we will simply write 5 A. We will
denote by cn 5(T) the consequence class {A |TPy_ A and fr (A) = @} of
T. We will furthermore say that T is an Z-theory (Th 4«T) for short), if
T = cn «(T). If A is any formula and x is any ov, then let V !XA stand
for the unity formula vx Ay (A, x/y]< x=Yy), whereby vy is the first
ov which does not occur in AxA. Now let T be any language, p an

n-ary pc with p& X and f an n-ary fc with f& =. In addition let
EEspr;.

Lemma I: Let A€ spry, and fr(E) = {x,, ..., X,} (Whereby x,, ..., X,

are distinct ov’s). Then Axy ... AX, (pXy...X, < E) e [As p/E]—A.

Lemma 2: Let Aespry,; and fr(E) = {xy,...,X,21} (whereby
X1,...,Xn41 are distinct ov’s). Then Ax;...AX,,; (X;...x, =
Xne1 - E) k5, [A, f/E] « A.

+f

The proofs of both these lemmas can be easily obtained by means of
induction of the degree of A.

The following lemma can be proved by elementary logical trans-
formations.

Lemma3 : Letfr(E) = {x4, ..., X, +,} (Whereby x,, ...,x, +, are distinct
ov’s). Then AX; ... AXpyq (FXy .o Xy = X441 < E) bgipe ANKY woe Ay W 1
Xn+1 E.

§ 3. Eliminability, Non-Creativity and Explicit Definability
The concept of eliminability of a constant in a theory can be
determined as follows:
K is eliminable in T relative to T (in brief: Elimys (K, T) iff
(1) K is a constant not contained in Z;
(2) Thy, (T);
(3) for every A in spry, there is a B in spry with Trg, B < A.

We will introduce the concept of non-creativity in two steps.

Relative to K, D satisfies the requirement of non-creativity in T on the
basis of S, Z (in brief: Ncry (D, K, T, S)) iff
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(1) Thy (S);

(2) K is a constant not contained in X ;
(3) De spry ;3

(4) T = cng, ¢ (SU{D});

(5) for every A in spry it holds that: if T,

A, then Sz A.

K can be non-creativly introduced into T on the basis of 2 (in brief:
Nerg (K, T)) iff there exists a D and an S with Nerg (D, K, T, S).
It can easily be shown that Nery (K, T) iff there exists a D with
Ner: (D, K, T, T N spry).

We will define the concept of explicit definability first for predicate
constants and then for function constants.

D is an explicit definition of the predicate constant pin T relative to =
(in brief: ExplDefPry (D, p, T)) iff

(1) pis a pc not contained in Z;

(2) D has the form Ax;... AX, (pX;...x, <>E), whereby E is a =-
formula with fr(E) = {x,,...,x,} and x,,...,x, are distinct
ov’s;

(3) Thy,,(T);

(4) DeT.

p is an explicitly definable predicate constant in T relative to
Z (in brief: ExpIDfr Pry(p, T)) iff there exists a D with
ExplDefPry (D, p, T).

Instead of the concept ExplDefPr; (D, p, T) many authors use the
more general concept ExplDefPr#% (D, p, T) which differs from the
former only in that fr (E) S {x,, ..., X,} is required insted of fr(E) =
{Xy,...,%,}. This procedure is however somewhat artificial and is not
conform with the usual manner of defining scientific concepts. Nor-
mally it is required that the same free ov’s occur in the definiendum as
in the definiens. Also technically there is no advantage to using the
weaker requirement fr(E)S{x,,...,X,}. To show this we define:
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ExplDfrPr¥ (p, T) iff there is a D with ExplDefPr#% (D, p, T). Then it
can easily be proved that ExplDfrPry (p, T) iff ExplDfrPr< (p, T) (see
proof of Theorem 1). Thus we - see that the condition
fr(E) = {Xy,...,X,} is not too strong. The same holds true for the
following definitions which refer to fc’s.

D is an explicit definition of the function constant fin T relative to =
(in brief: ExplDefFcts (D, f, T)) iff

(1) fis a fc not contained in X ;

(2) D has the form AXxy... AXpyq(fXq... X,=X,;, < E), whereby E
is a X-formula with fr (E) = {Xx4,...,Xy4+,} and X,,...,X,;, are
distinct ov’s;

(3) Thy,((T);
(4) DeT.

fis an explicitly definable function constant in T relative to X in brief:
ExpIDfrFct; (f, T)) iff there exists a D with ExplDefFct, (D, f, T).

We shall now show that a constant in a given theory can be
explicitly defined iff it satisfies the condition of eliminability in that
theory. The explicit definability of a constant is thus equivalent to the
eliminability of that constant.

Theorem I: Let p be any pc. Then ExplDfrPr; (p, T) iff Elim (p, T).

Proof: By Lemma 1 Expl DfrPrs (p, T} is a sufficient condition for
Elimg (p, T). Conversely, let Elimy (p, T). Also, let n be the degree of p
and let X,,...,X, be distinct ov’s. Then px, ... X, €sprs,, and there
exists, by the eliminability condition, a B from spry such that

TIEer pPX;... X, < B.

Case I: fr(B) = @. Let D = Ax,... A%, (PX,... X, < B A _l\l X = X))
Then Tz, D. =

Case 2: fr(B) = @.
Case 2.1: fr(B)S{xy,...,X,}. Let

B = ‘B if {X1, ..., X} " fr(B) = O
[BA A yi= 0 if (X1o s X} O B) = (Y10 V).
i=1
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Then 5 B<B' and fr(B) = {X;,....,X,}. Now let D =
AXq... AX,(PX;... X, <> B’). Then T*_z+p D.

Case 2.2': 0 (BYEC Ry ois %bs LoEY e Vi) = ARy 0. %:)

n
and D = AXq... AXp(pPXq... X; < Ay, B A ./\1 X; = X;). Then TF§+p D.
j=

In all cases it results that there exists a D with ExplDefPr; (D, p, T).

Theorem 2: Let f be an arbitrary fc. Then ExpIDfrFcty (f, T) iff
Elimg (f, T).

Proof: Similar to Theorem 1 (by Lemma 2).

What has been proved for fc’s holds also for oc’s. The theorems and
proofs for the oc’s will however not be formulated here. Since oc¢’'s
can be treated as O-ary fc’s all results which hold for fc's can be
transferred to oc’s.

We will now show that a constant which can be non-creatively
introduced into a theory also satisfies the condition of eliminability in
this theory. ;

Theorem 3: 1f Elimg (K, T), then Nery (K, T).

Proof: According to Theorem 1 and Theorem 2, it tollows from
Elimy (K, T) that there exists an explicit definition D of K in T relative
toX. Let T* = T Nspry. Then Thy (T*) and, by Lemma 1 and Lemma
2, T = cng,x (T* U {D}). If D has the form Ax; ... AXys+,
(fX1 ... X, =X,41 < E), then, since De T, by Lemma 3 T ARy e
AXy V!Xn4q1 E. As Shoenfield ([1], pp. 58-60) has shown, T is then a
conservative extension of T*, i.e., Ncry(D,K, T, T*) holds. Con-
sequently Nerg (K, T).
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