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After taking great pains to establish axioms for — that avoid the
«paradoxes» of implication, many relevance logicians seem to accept
equally paradoxical statements such as

() (A= B) = ((B— C)— (A-=0))] ~4])

without due consideration. ((1) is an axiom of Anderson’s system
EQ([1]) and also of Belnap’s system RQ([2]). )

If the x in the above quantifier is taken to range over a certain set S,
it may be that for some x’s in S some parts of (1) may be meaningless.
Even if S is so chosen that every well formed formula with a free
variable x is meaningful for every x €8, it is clear that on some
occasions either (A— B), (B— C) or A, will be false and to assert (1)
on such occasion surely violates relevance.

What is required is a quantification only over the relevant x’s in S,
for example in (1) those for which A — B holds. This is given to us in
Combinatory Logic (see [5] and [6]) where we have = (restricted
generality) with the rule:

Rule = Z XY, XU~YU.
It PWZ represents W — Z (note P could be defined in terms of = as
in [3]), (1) can be rewritten as:

E[Ax(PAB)] [Lx(P(PBC) (PACQ))],
or using Wx o, Zx to stand for EWZ, as
A—B S5 B-=0—(A->0).

(To save on brackets we take o, to be a «stronger connective»
than —).

It could be argued that if U >, V is to be relevant, x should actually
appear both in U and in V. In that case the combinatory logic to be
used will be a Al - calculus (see [5]), i.e. one without the combinator
K. (P is then not definable in terms of =).
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On the other hand it might be thought that as
ADAVX=X
is relevant, that

ADAVX=X
should be as well, even if x is not in A. In that case we use the AK -
calculus of [3].

The notation that we have so far however is not sufficient to deal
with multiple quantification.

) ®) (A->B)-»((B-C)—(A->C)], -(2)

for example is also an axiom of EQ and RQ but cannot be represented
in terms of =Z.

This situation can be handled with a restricted version (that for
k=1) of the generalised restricted generality ¥="introduced in [4].
This (for k = 1) has the rule:

RI'J[E’ lEn IED XY, XU1 Uz...Unl_YUle ...U“.
If we write 'Zn XY as Xu,...u; Dy, ., YU, ... u,, (2) becomes:
A—-B>,,(B-C)—=(A-=0).

A suitable rule replacing the generalisation rule of [2] which
generates axioms such as (1) and (2) would then be:

If X2y, ... Y is an axiom for k <n then so is
,,,,, u. Y (uy,...,u, are/may be free variables in X and Y).

In this we take X o, ., Ytobe X—>Y if k = 0.

Universal and existential quantifiers can still be defined in this

system using a universal class E as in [3], so other axioms of EQ and
RQ such as

(x) (A— B)— ((dx) A— B)
and (x) (A= B)—- ((xX)A— x)O)

can be left in that form.

On the other hand they can also be generalised to:
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(AoB)—= ((dx)A— B)
and (A 5, C) = (XN A= (x)O)
where if A is D— E, (x) A could be replaced by D o, E etc.
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