QUANTIFIED RELEVANCE LOGIC AND GENERALISED RESTRICTED GENERALITY

M.W. BUNDER

After taking great pains to establish axioms for \rightarrow that avoid the «paradoxes» of implication, many relevance logicians seem to accept equally paradoxical statements such as

$$(x) [(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))] \qquad -(1)$$

without due consideration. ((1) is an axiom of Anderson's system EQ([1]) and also of Belnap's system RQ([2]).)

If the x in the above quantifier is taken to range over a certain set S, it may be that for some x's in S some parts of (1) may be meaningless. Even if S is so chosen that every well formed formula with a free variable x is meaningful for every $x \in S$, it is clear that on some occasions either $(A \rightarrow B)$, $(B \rightarrow C)$ or A, will be false and to assert (1) on such occasion surely violates relevance.

What is required is a quantification only over the relevant x's in S, for example in (1) those for which $A \rightarrow B$ holds. This is given to us in Combinatory Logic (see [5] and [6]) where we have Ξ (restricted generality) with the rule:

Rule
$$\Xi$$
 Ξ XY, XU \vdash YU.

If PWZ represents $W \rightarrow Z$ (note P could be defined in terms of Ξ as in [3]), (1) can be rewritten as:

$$\Xi[\lambda x (PAB)] [\lambda x (P(PBC) (PAC))],$$

or using $Wx \supset_x Zx$ to stand for ΞWZ , as

$$A \rightarrow B \supset_x (B \rightarrow C) \rightarrow (A \rightarrow C)$$
.

(To save on brackets we take \supset_x to be a «stronger connective» than \rightarrow).

It could be argued that if $U \supset_x V$ is to be relevant, x should actually appear both in U and in V. In that case the combinatory logic to be used will be a λI - calculus (see [5]), i.e. one without the combinator K. (P is then not definable in terms of Ξ).

On the other hand it might be thought that as

$$A \supset A \lor x = x$$

is relevant, that

$$A \supset_{\mathbf{x}} A \lor \mathbf{x} = \mathbf{x}$$

should be as well, even if x is not in A. In that case we use the λK -calculus of [5].

The notation that we have so far however is not sufficient to deal with multiple quantification.

$$(y) (x) [(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))], \qquad -(2)$$

for example is also an axiom of EQ and RQ but cannot be represented in terms of Ξ .

This situation can be handled with a restricted version (that for k=l) of the generalised restricted generality ${}^k\Xi^n$ introduced in [4]. This (for k=l) has the rule:

Rule
$$^{1}\Xi^{n}$$
 $^{1}\Xi^{n}$ XY, XU₁U₂...U_n \vdash YU₁U₂...U_n.

If we write $^{1}\Xi^{n}$ XY as $Xu_{1}...u_{n} \supset_{u_{1},...,u_{n}} Yu_{1}...u_{n}$, (2) becomes:

$$A \rightarrow B \supset_{x,y} (B \rightarrow C) \rightarrow (A \rightarrow C)$$
.

A suitable rule replacing the generalisation rule of [2] which generates axioms such as (1) and (2) would then be:

If $X \supset_{u_1, \dots, u_k} Y$ is an axiom for k < n then so is

$$X \supset_{u_1,...,u_n} Y (u_1,...,u_n \text{ are/may be free variables in } X \text{ and } Y).$$

In this we take $X \supset_{u_1,...,u_k} Y$ to be $X \rightarrow Y$ if k = 0.

Universal and existential quantifiers can still be defined in this system using a universal class E as in [3], so other axioms of EQ and RQ such as

$$(x) (A \rightarrow B) \rightarrow ((\exists x) A \rightarrow B)$$

and
$$(x) (A \rightarrow B) \rightarrow ((x) A \rightarrow (x) C)$$

can be left in that form.

On the other hand they can also be generalised to:

$$(A \supset_x B) \rightarrow ((\exists x) A \rightarrow B)$$

and $(A \supset_x C) \rightarrow ((x) A \rightarrow (x) C)$

where if A is $D \rightarrow E$, (x) A could be replaced by $D \supset_x E$ etc.

University of Wollongong

M.W. BUNDER

- [1] Anderson, A.R., «Completeness Theorems for the systems E of entailment and EQ of entailment with quantification», Zeitschrift für mathematische Logik und Grundlagen der Mathematik, Vol 6 (1959), pp. 201-216.
- [2] BELNAP, N.D., "Intensional models for first degree polynomials", The Journal of Symbolic Logic, Vol 32 (1967), pp. 1-22.
- [3] BUNDER, M.W., «Propositional and predicate calculuses based on combinatory Logic», Notre Dame Journal of Formal Logic (1974), pp. 25-32.
- [4] BUNDER, M.W., «Generalised restricted generality», Notre Dame Journal of Formal Logic (1979), pp. 620-624.
- [5] CURRY, H.B. and FEYS, R., Combinatory Logic, Vol I, North Holland, Amsterdam (1958).
- [6] CURRY, H.B., HINDLEY, J.R. and SELDIN, J.P., *Combinatory Logic*, Vol II, North Holland, Amsterdam (1972).