GENTZEN-TYPE SYSTEMS FOR C, K AND SEVERAL
EXTENSIONS OF C AND K; CONSTRUCTIVE
COMPLETENESS PROOFS AND EFFECTIVE DECISION
PROCEDURES FOR THESE SYSTEMS*

H.C.M. DE SWART

§ 0. Introduction

In [1], page 42, M. Fitting gives an elegant Gentzen-type calculus
for the system S4 of intensional logic. In this paper we will develop
similar systems for C, K, CM, KM, C4, K4, CM4, KM4 (= S4), KD,
KX, KB, KMB and KM4B (= S5). For each of these systems we can
describe an effective procedure for searching a derivation of a given
formula, which in a finite number of steps either will give a derivation
of the formula or a countermodel for the formula. This yields us
practical decision procedure and completeness for these systems.

As will become clear from the completeness proofs in section 2, for
the semantics of these intensional logics we can restrict ourselves to
frames <I, R> (or, in case of C-logics, normal frames <I, R, N>),
where 1 is (a subset of) the set of all finite sequences of natural
numbers and R is defined as follows:
for C, K: iRj iff j is an immediate successor of
i(i.e. ifi = <ny, ..., n>,
then j = <n,, ..., n,, m> for some natural number m),
for CM, KM: iRjiff i = j or j is an immediate successor of i,
for C4, K4: iRj iff j is a successor of i (i.e. if i = <ny, ..., n,>,
then j = <n,,..., Ny, Ny,py..es Ny > for some m = 1 and natural

numbers n,,, ..., N, ),
for CM4, KM4: iRj iff i = j or jis a successor of i,
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given to me by the Niels Stensen Stichting in Amsterdam, the Department of
Philosophy of the Catholic University in Nijmegen and Princeton University. I also like
to thank professor D. Lewis for the many things I learned from him about intensional
logics.
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for KB: iRj iff j is an immediate successor of i or i is an
immediate successor of j,
for KMB: iRj iff i = j or j is an immediate successor of i or i is
an immediate successor of j,
for KM4B (= S5): iRjfor all i, j € I.
As shown in [7], the ideas used in this paper also can be used for
a constructive treatment of the Counterfactual Logics VC and VCS
of D. Lewis and R. Stalnaker respectively.

The procedures for searching derivations in the different systems
and the completeness proofs in this paper are adaptations of the
author’s procedure and completeness proof for intuitionistic logic in
[5].

As was pointed out to the author by S. Kripke, the results of this
paper essentially are already in [6]. What is new, is the presenta-
tion, which, in the author’s opinion, is less cumbersome and more
perspicuous than the one in [6]; also more systems than in [6] are
treated here, with great uniformity, and more Gentzen-type systems
are explicitly presented.

In [4], page 75-82, K. Schiitte gives constructive completeness
proofs for the systems KM, KM4 (= S4), KMB and KM4B (= S5):
however, he does not present Gentzen-type systems for these
logics.

In [2], page 331-334, Hughes and Cresswell give systems of
natural deduction for KM (= T), S4 and S5.

In [3], page 74-80, Prawitz gives systems of natural deduction for
S4 and S5. However, neither Hughes and Cresswell, nor Prawitz
give constructive completeness proofs with respect to these Sys-
tems. (Hughes and Cresswell give constructive completeness proofs
with respect to axiomatic systems, however only for T (= KM), S4
and S5).

In order to make this paper self contained, I will give all the

necessary definitions below.
Definition 0.1: A logic is by definition a set L of formulas, which is
closed under TFL (truthfunctional logic), INT (interchange of B
and C, whenever B < C is in L) and SUB (uniform substitution of
formulas for primitive formulas). A logic is regular if it contains
O P&Q«~DOP&OQ and OP« 10 "1P. A logic is normal if it
is regular and it contains O T.
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Definition 0.2: C is the least regular logic.
K is the least normal logic.

M:=0P—-P ,D:=CT

4:=0P-00P ,X:=P—>OP

, B:=P-0OCP ,
,E:=CP->OCP.

C —is defined as the least regular logic which contains — and K — is
defined as the least normal logic which contains —.

Definition 0.3: A (Lemmon-Scott) normal frame is a triple <I, R,
N>, where I is a non empty set, R is a binary relation on I and N
is a subset of I. The elements of N are called normal worlds. A
(Lemmon-Scott) frame is a normal frame <I, R, N> with N = I.
Instead of <I, R, I> we will simply write <I, R>.

[ |is an interpretation based on a normal frame <I, R. N> iff
[ ] associates to each formula A a subset [A] of I, such that [ ]is
truthfunctionally standard, i.e.

[T)=1,[B& C]=[B]N[C],[B VC]=

[B] U[C],[T1B]=1—[B],[B— C] =["1B v C}, and
[B < C] = [(B— C) & (C — B)], and such that

[OB] = {ieN|V¥jel(iRj—je[B])}, and

[OB] = {ieN|3jel(iRj&je[B])} U{iel|i¢N}.

Definition 0.4: Let [ ] be an interpretation based on a normal
frame <I,R,N> -<I,R,N,[ ]> = A iff i e[A].

If not confusing, we write «il=A» instead of «<I,R,N, [ |> =
A» <I,LR,N,[ |>FE Aiff[A] = 1.

<I, R, N> = A (A is true in <I,R,N> iff for all interpretations
[ 1based on <I,R,N>, [A] = I. For F a class of normal frames,
F A iff for all <I,R,N>in F, <I,R,N> = A.

Definition 0.5 : A normal frame <I,R,N> is a frame

for CM iff R is reflexive, i.e. Viel[iRi],

for C4 iff R is transitive, i.e. Vi,j,k eI[iRj&jRk—iRk],
for CM4  iff R is reflexive and transitive.
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A frame <I,R> is a frame
for KM iff R is reflexive,
for K4 iff R is transitive,
for KM4 (= S4) iff R is reflexive and transitive,
for KD iff R satisfies seriality, i.e. Yiel 3j el[iR]],
for KX iff R is trivial, i.e. Vi.j €el[iRj—i=]],
for KB iff R is symmetric, i.e. Vi,jel[iRj—jRi],
for KM B iff R is reflexive and symmetric.
for KM4B (=S5 = KM E)ff R is reflexive, transitive and
symmetric,

Definition 0.6: Fz A iff A is true in all normal frames.
/g A Iff A is true in all frames. z_ A iff A is true in all normal
frames for C —. k;_ Aiff A is true in all frames for K —.

The following results are known (see e.g. [2] and [4]):
AeCiff G A, AeC-ifflz_A,
AeKiff i A, AeK-iffE_A.

§1. Gentzen-type systems for C, K and several extensions of C and
K

By a signed formula we mean an expression of the form TA or
FA where A is a formula. A sequent S is a finite set of signed
formulas.

S, TB,, ..., TB,, FC,, ... , FC,, will stand for

SU{TB,, ..., TB,, FC,, ..., FC,}.

Interpretation of {TB,, ..., TB,, FCy, ... , FC,}: if

B, & ... & B,, then C,; V ... vV C,,. The rules below are to be read:
if the situation(s) below is (are) the case, then the situation above is
also the case.

Rules for &, V, land —:

S, TB&C S.FB & C

T &: S.TB.TC F des S, FB||S. FC
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§ TRvE 'S, FBVC
Vi Vo
T S, TB||S, TC F S, FB, FC
S, T 1B _ S,FTIB
.1 S, FB F: S, TB
T - S, TB->C Fos - S, FB—-C
=0 K
S, FB||S, TC - S, TB, FC

Note that because {TB & C, TB & C} = {TB & C}, e.g.

TB & C 5. asdesived pul
TB & C. TB, TC !S@derived rule.

Let A be a formula. A derivation of A in classical propositional
calculus is by definition a finite set of sequents such that 1. the upper
sequent is {FA} 2. the lowest sequents each contain TB and FB for
some formula B and 3. each sequent, except the upper sequent, is the
result of applying one of our rules to a sequent immediately above it.

Example: the following is a derivation of " (P& Q)— ~ 1PV "1Qin
classical propositional calculus.

FI(P&Q)— 1PV 1Q
T (P& Q),F PV T1Q
T 1(P&Q),F 1P,F "1Q
FP&Q,F 1P, F 1Q

FP,F 1P, FTIQ||FQ, F 1P, F T1Q

FP, TP,F 1Q [[FQ.F7IP, TQ

If the rules F " 1and F— are replaced by

F: S,F 1B and F— : SeBE-G respectively,
S, TB Sy, TB, FC

where S; = {TA|T A €S}, then one obtains a Gentzen-type system
for intuitionistic propositional calculus (see [1], page 28-30). I have
put a horizontal line in the intuitionistic F ~1and F — in order to stress
the transition from S to S;.

The systems C. K and others are obtained by adding to the rules,
mentioned above for classical propositional calculus, the following
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rules TO and FO. «C A» is defined as « 10 1A». In stating the
rules, the following abbreviations are used:

Sy = {Tb|TbeS}, Sy = {TOB|TOB €S},
Sto={T 1OB|T 10O0B€S},S,={TB|TOBEeS}

TO FO
C S,FOC,,....,FOC,, TODA(m=1) S, TOB,FOA
S..FC,, TA(I<i=<n) S,.TB.FA
K for C S.FOA
as for —_“S-L,,FA
S, TOA )
CM S.TA as for C
KM as for CM as for K
C4 S,FOC,,....,FOC,, TOAMn=1) S, TOB,FOA
SipUSo,FC, TOA, TA(I1<i<n) S USL. TOB,TB,FA
K4 as for C4 S, FUA
St USH, FA
CM4 as for CM as for C4
KM4 =S84 as for KM as for K4
S, TOA
KD —_ as fi
S TA as for K
KX S,FOC, TOA S.FOA
S,FC,TA S.FA
KB S,FOC, TOA S.FOA

S,US, US, FC,TA

S, US, US,.FA
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where S, = {T 10 IB|TB €S} and S, = {T "IOC|FCeS}
KMB as for KM as for KB

S, FOA
SioUS;— US, US,,FA

KM4B =S85 asfor KM

Because S, FOC, TOA = SU{FOC, TOA),FOC, TOA
and S, FOA = SU{FOA}, FO A, the following are derived rules:

S,FOC, TOA
KB
S,US,US,, T 1OOC, FC, T 1O 1OA,TA
S,FOA
S,US,US,,T IO0A,FA
&5 S, FO A
SuUS;US,US,, T IOOA,FA

For similar reasons the following are derived rules:

S, TOA

G S, TOA, TA

K X S,FOC. TOA S,FOA
S,FOC,FC, TOA, TA S,FO A, FA

Intuitive Motivation. The rules given above can be read in two
ways: '

1. read upwards, as rules in the sense of Gentzen, interpreting the
sequents rather than the signed formulas, the interpretation of
{TB,,...,TB,, FC,,...,FC,} being: if B, &...& B,, then
Cy V... VC,. For instance, rule KF O with S = {TOB, TC,
FE} then says: if BS A, then OB & C— O AVE. In this reading
a formula A is provable if {FA} (to be read as — A or A)
can be obtained by applying the rules to sequents of the form
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{...., TB, FB, ...} (to be read as: if ... and B, then B or ...),
which can be conceived as axioms.

2. read downwards, as semantic tableaux rules in the sense of Beth,
interpreting the signed formulas rather than the sequents, the
interpretation of T A being: A holds at world w, and of F A : A does
not hold at world w. Rule KF[, for instance, now says: if O A
does not hold at world w, then there is a world w’, accessible from
w, at which A does not hold; only if 0 B holds at w, B will hold at
w'; so in general we are not allowed to copy S below which is

stressed by drawing a horizontal line between the upper and the

lower sequent. In this reading A is provable if the supposition FA

(A does not hold at w) turns out to be impossible.

Remarks. Note that rule CF is a consequence of rule CT [J and that
rule C4F [ is a consequence of rule C4TO. Rule CTO, rule C4TO
and rule KX TO can only be applied if the T formula to which the
rule is applied, is accompanied by some F[ formula. Rule C F[J and
rule C4 FO can only be applied if the FO formula to which the rule is
applied, is accompanied by some TO formula. In rules CMTO,
KXTO and K X FO there is no horizontal line between the upper
and lower sequent, indicating that in applying these rules no formulas
get lost.

Definition 1.1: Let A be a formula and let L be any of the systems
described above (L = C, K, CM, ...}). A derivation of A in L is by
definition a finite tree of sequents such that 1. the upper sequent is
{FA}, 2. each of the lowest sequents contains TB and FB for some
formula B or, in case L is a K-system, contains FT, 3. each sequent,
except the upper sequent, is the result of applying one of the rules for
L to a sequent above it.

k- A iff there is a derivation of A in L.

Theorem 1.2.: HOT, but not k2 LT

1. For L = C or K, I—LD(P & Q—-0P & OQ and iIDP &
O0Q—-0(P&Q)

2. ForL =CorK, ifn;:landFLB-l& ... & B,— C, then
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HOB, & ... &0B,~»0OC. Hence C and K are closed under
INT.

3. If = A, then O A.

4, ForL=CorkK, &, DOP-sP.

5. ForL=CorK, -, OP-0O0P.

6. ForL=CorK,t, OP>Pandty, OP-0O0OP.

1. QT

8 &, P-0OP

9. L P3P

10. = OP—»Pand &=  POCOP.

11. 5 OP->P, 5, 0P-00P, £, P->0OCPand 5, OP-0OCP.

Proof FFDTT is a derivation of O T in K, but not in C.

1 FOMP&Q—-OP&OQ FOP&OQ—-O(P&Q)

TOMP&Q), FOP&OQ TOP&OQ, FO(P&Q)

TOP&Q), FOP| TO((P&Q), FOQ TOP, TOQ, FO(P&Q)
TP&Q, FP TP&Q, FQ TP, TQ, FP&Q
TP, TQ, FP TP, TQ, FQ TP, TQ, FP|| TP, TQ, FQ

2. Suppose L = C or K and suppose i B, & ... & B, — C. Then there

is a derivation of B; & ... & B,— Cin L. Such a derivation has the
form

FB,& ... & B,—C
TB, & ... & B,, FC

TB,, ..., TB,., FC FOB,& ... &0B,—-0OC
TOB, & ... &0OB,, FOC
TOB,, ..., TOB,, FOC
Now the following is a derivation of T B 5 TByy FC

OB, & ...&0B,—»0CinL:
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The proof of 3 is analogous to the proof of 2. The proofs of 4, 5,6, 7
and 8 are straightforward.

9. FP—-0O O 7P
TP, FO 10 1P The proofs of 10 and 11 are
T 1O071P,F 10 1P analogous to proofs already given

FO 1P, F 10 7IP
FO 1P, TO 1P
FTIP, T 1P
TP, T 1P
TP, FP

Theorem 1.3 (Soundness):

If iz A, then iz A. If iz_ A, then F5_ A.
If iz A, then = A. If _ A, then 1=K_ A.

Proof: 1. Suppose tz A, i.e. there is a derivation of A in C. Because
{F A} is the upper sequent in the given derivation of A in C, it suffices
to show by induction on the length of the given derivation that for
each sequent {TB,, ... , TB,, FC,, ... , FC,} in the given derivation
of A in C it holds that B, & ... & B,—»C, V... VC, is true in all
normal frames.

Basic step: The lowest sequent(s) in the given derivation contains
(contain) TB and FB for some B and hence has (have) the form
{T'B; TBy; .«: » TB;, FB; FCys ey FCx)

AndB& B, & ... & B,— B VC, V...V C, is true in all normal frames.
I discuss here only the induction steps for T and FOJ.

The other induction steps are straightforward.

Induction step for TO: §, FOC,, ..., FOC,, TOA (n=1)
S5, FC,,TA (1<k=<n)

Let S = {TB,, TOB,, FC}. Then S, = {TB,} and

Sq, FC,, TA={TB,, FC,, T A}. The induction hypothesis says that
FF B, & A Gy, i.e. B, & A—C is true in all normal frames.
We want to show that = B, & 0B, & 0A—-CVOC, v...vOCG,. So
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let [ ] be an interpretation based on a normal frame <I, R, N>
and suppose i=B;, & OB, & OA. Then ieN and
Viel[iRj—-j=B,& Al.

Hence, by the induction hypothesis i eN and Vj €l[iRj—j=C,],
i.e.i=0C.

Induction step for FO:S, TO B, FOA
Sg. TB, FA

Let S = {TBy, FC,, FOC,}. Then S; = ¢ and S;, TB, FA =
{TB, FA}. The induction hypothesis says that /= B— A. We want to
show that Iz B, & O0B— C, VO C, VOO A. So suppose i = B, &0 B.
Then i eN and Vjel[iRj— j=B]. Hence, by the induction hypo-
thesis,ieN and Vjel[iRj—jEA], ie. i =E0OA.

2. The other proofs are similar to the proof in 1.
Let us check for example the induction steps for TO and
FO in the case of S5(= KM4B = KME).

TO: S, TOA Let S = {TB,, TB,, FC,, FC,)
S, TA

The induction hypothesis says that FBs Bi & B, & A>C,VC,,
ie. Bj&B,A—-C,VC, is true in all frames with a reflexive,
transitive and symmetric relation R. we want to show that
RsB1& B, &0O0A—C, VC,. Sosupposei = B, & B, & O A. Then,
because R is reflexive, i = B, & B, & A. Hence, by the induction
hypothesis, i=C, vV C,.
FO: S, FOA

S USUS,US,,FA

Let S = {TB,, TOB,, T "10B,, FC}. Then Sy, US, . US, US, =

{TOB,, T 1OB,, T 10 71B,, T 10 71OB,, T 10 717 10B,,
T 7OC).

The induction hypothesis says that

k.,0B, & T1OB, & 1071B,& 10 1OB, & 100B; &
“10C— A.

We want to show that 5 B, & OB, & "10B;—>CVOA.
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So suppose that i=B, & OB, & 0B, andi= "1C.

Because i =0 B, and R is transitive, Vj el[iRj— j=0 B,] (a).
Because i= 100 B;, R is symmetric and transitive,
VjelliRj—j= 10B;] (b). Because i =B, and R is symmetric,
VielliRj—jE= 10 1B4] (c). Similarly,

YielliRj—jF= 10 10B,] (d)

and Vjel[iRj—j&= 100B;] (e). Because i= 1C and R is

symmetric,
Vjel[iRj—jE= "10C] (f). By the induction hypothesis,

(@, ..., (), VjelliRj—j=A],ie iEOA.

Let L be any of the logics described above (C,K,CM etc.). If
tr A, then by theorem 1.3 A is true in all frames <I,R,N> with R
and N appropriately chosen. And it is well known (see e.g. [2] and
[4]) that this implies that A L.

In theorem 1.2 we have shown that the axioms of L are derivable
in the appropriate Gentzen-type system, mentioned above. Since it
is not at all trivial to prove that Modus Ponens is a derived rule in
our Gentzen-type systems (i.e. if — A and — A— B, then — B), we
cannot conclude from this that if A eL, then it A.

However, the completeness results of this paper (corollary 2.14)
and the completeness results of for instance [2] and [4], together,
yield that our Gentzen-type system for L is equivalent with the
axiomatic characterization of L (i A iff A €L). As a result, Modus
Ponens is a derived rule in our Gentzen-type systems.

Another, more direct, way to prove the equivalence of the three
notions i A, A €L, E A L being any of the logics described
above, is to show the following ;
1. If £ A, then A eL. The proof actually is similar to the proof of

Theorem 1.3 (if i , A, then k£ A), replacing = A everywhere by

Ael.

2. If A €L, then £ A (soundness). The proof of this is straightfor-
ward.
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3. If 5 A, then i A. This is our completeness result (see corollary
2.14).

Theorem 1.5: Let A, B and 3x[0 A (x)] be sentences and let E be a
formula of classical propositional calculus.
1. ForL = K, KM, K4 and KM4 (= S4):
a) Disjunction Property: if (0 A VOB, then ; O A or kOB,
b) Explicit Definability: if + Ix[[(J A(x)], then KO A (v) and
hence i Vx[O A (x)].
¢) If not - "1E classically and i EOA VOB, then it JA or
H O B.
2. a), b) and ¢) do not hold for L = KB, KMB and KM4B (= S5).
3. ForL = C,CM, C4 and CM4, not iy dA, not H O A VOB, not
£ 3Ix[OA(x)] and not y E-0OA VOB.

Proof: 1. Suppose L = K, KM, K4 or KM4 and HOAVOB, i.e.
there is a derivation of JA VOB in L. Such a derivation starts
with
FOAVOB
FOA,FOB
and then proceeds either with FA or with FB. Hence, either A or
B is derivable in L. The proofs of b) and c) are similar.
2. For L = KB, KMB and KM4B, k OPVO 100P, but not
mOPand not s O T 100OP.
3. Follows immediately from the structure of the Gentzen-type
systems for C, CM, C4 and CM4.

P.S. The rules for the quantifiers are as follows:

S, TVXA (X) S, FYxA (x)
v: Y «ad»
T s TA @ F S, FA (a) e
S, T3IxA (x) S, FIxA (x)
El: «d» E':
T S. TA (a) e k S, FA (a)
If we replace rule F ¥ by the following one
Y
FV M («a» new), then one obtains a system for
St. FA (a)

intuitionistic predicate calculus.
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§ 2. Effective Procedure for searching a derivation of a given for-
mula, which in a finite number of steps gives either a derivation
of the formula or a countermodel for the formula.

The properties of the procedure mentioned above yield us the
completeness of the Gentzen-type systems considered with respect to
the corresponding semantics and in addition yield us a practical
decision procedure for the systems considered.

The procedures for searching derivations in the different systems
and the completeness proofs of this section are adaptations of the
author’s procedure and methods for intuitionistic logic in [5].

Definition 2.1: Let I be a set of signed formulas.
I is a Hintikka element iff

if TB&Cel', then TBel'and TC €T,

if TBVCell, then TBel'or TC €T,

if TB>Cel, then FBelor TC €T,

if T"1Bel', then FBel,

if FB&Cel', then FB el or FCeT,

if FBVCel', then FBel and FCerl,

it FB—=CerI', then TB el and FCel', and
if F 1Bell, then TBerl.

00" =3 N (b o () o

Let L be any of the logics, considered in section 1 (C, K, C M., etc.)

Definition 2.2: We define a systematic procedure for searching a
derivation of a formula E in L as follows:

Step 0: Consider {FE}. Apply all rules of L, which have no
horizontal line, as many times as possible, without loosing any
formulas in applying a rule, if not necessary.

Having finished step 0 of our procedure we have one (if TV, F&
and T— have nowhere been applied) or more Hintikka elements T,.
Each I, is finite,

Motivation for step 1: Each I'y may contain several TO or FO
expressions. In each application of a TO or FOJ rule some formulas
may get lost (that is why we have put a horizontal line in those rules),
hence for each I’y there may be several ways to go on. Each way may
eventually give a sequent which contains TB and FB for some
formula B or FT in the case of K-logics, so for each I, we have to
consider all possibilities to go on.
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Step 1: For L = C.
Forany FO C, TO A combination in I, say the mth, we form a
@) { successor I'm-1 of Ty as follows.

Consider (T'y);, FC, TA. Apply all rules of L (= C) which have
no horizontal line, as many times as possible to (I'y);, FC,
TA.

Having finished step 1 for L = C we have for each FOC, TOA
combination in Ty, one (if TV, F & and T— have nowhere been
applied) or more Hintikka elements I';m-1. Each I'ym-1 is finite. If I,
contains 1 + 1 FOC, TO A combinations, step 1 yields successors 'y,
I, T4, ..., Taof Ty. So, having finished step 1 of our procedure for L
= C, we have one (if TV, F& and T— have nowhere been applied)
or more partial trees of the form

/ Iy
I, I, [y [y Iy6

where each T is a finite Hintikka element.

Step 1 for the other logics L (++ C) is similar,
For L = K replace (a) by (b): For any FLOC, TO A combination and
for any FO A expression in I, say the mth, we form a successor I';m—1
of T, as follows. If a combination FO C, TO A occurs in Ty, consider
(I'y)y, FC, TA and proceed as in (a). If FO A occurs in I, consider
(T'y)s. FA and apply all rules of L (= K) which have no horizontal
line, as many times as possible to (Iy)5, FA.
For L. = CM replace (a) by (c): For any T B, FO A combination in
Iy, say the mt, we form a successor [';m-1 of I, as follows.
Consider (I'y)5, TB, FA. Apply all rules of L. (= CM) which have no
horizontal line (including rule TJ), as many times as possible, to
(T'y)s. TB, FA,
For L = KM replace (a) by (d): For any FO A expression in I',, say
the m, we form a successor I';m-1 of T as follows. Consider (I'y),.,



278 H.C.M. DE SWART

FA. Apply all rules of L (= KM), which have no horizontal line
(including rule TO), as many times as possible, to (I'y),, FA.

For L = C4, K4, and so on, the replacement of (a) in step 1 will be in
accordance with the rules TO and FO of the particular system

considered, similar to the replacement of (a) for K, CM and KM,
considered above.

Step 2: Analogous to step 1, applied now to each I', which we have
got from step 1.

Having finished step 2 of our procedure, we have one (if TV, F&
and T — have nowhere been applied) or more partial trees of the form

Ly

7 N\~

1 I, Iy Iy
2 A T

r3 FG rlz

The other steps of our procedure are similar.
The indexing of the I'; has been taken as follows:

/0 1/0\2 !/Z\df
3/ 3/ \6 \5
/

7

1 and so on.

Remark : The systematic procedure for searching a derivation of a
formula E in L, in definition 2.2, investigates all sequences of
sequents which might be derivations of E. After finitely many steps it
will become clear whether there is a derivation of E in L or not. If so,
our procedure has constructed a derivation of E in L (theorem 2.7) ; if
not, our procedure has actually constructed a countermodel for E, as
we will show further on (theorem 2.13).

Definition 2.3: The trees we get by the procedure, described in
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definition 2.2, for searching a derivation of E in L, are called search
trees in L for E.

Note there may be many search trees in L for E, because of the
rules TV, F& and T—.

Example 2.4: 7y, (P& Q - OP&OQ ?

Step 0 of the procedure of definition 2.2 yields two Hintikka
elements I’y and T,":

FOP&Q—-»OP&OQ FOMP&Q—OP&OQ
TOMP&Q),FOP&OQ TOP&Q), FOP&OQ
TO®P&Q), FOP TOMP&Q), FOQ
Step 1 yields two (partial) search trees in KD for

OP&Q—-0OP&OQ:
FOP&Q) —-DOP&OQ FO(P&Q)—UOP&OQ
TOMP&Q), FOP&OQ TOMP& Q). FOP&OQ
TO(P&Q), FOP TOMP&Q), FOQ

TP&Q TP&Q, FP TP&Q TP&Q, FQ

TP, TQ TP, TQ, FP TP, TQ TP, TQ,FQ

Note that we have found now a derivation of O (P& Q) — OP &
0 Q in KD by taking the branch which contains TP and FP and the
branch with contains T Q and FQ, together.

Example 2.5: &, OP—-0O0OP?

Step 0 of the procedure of definition 2.2 yields one Hintikka element
Cy:

FOP-DOOP
TOP,FOOP

Step 1 yields one partial search tree in KD for O P— OO P:
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FOP—-OOP

TOP, FOOP And step 2 yields again one partial
search tree in KD for OP—- OO P:

Tp  TP,FOP FOP—OOP

TOP, FOOP

TN

TP TP, FOP
|
FP
No further steps are possible and we have found
that O P— OO P is not derivable in K D. We will see further on that
we have actually constructed a frame for KD in which O P— O OPis
not true.

Definition 2.6 : A search tree in L for E is closed iff some node in the
tree contains TB and FB for some formula B or, in case L is a
K-logic, contains FT. A search tree in L for E is open iff it is not
closed.

Theorem 2.7 : If all search trees in L for E are closed, then  E.

Proof: Suppose all search trees in L for E are closed. Then there is a
natural number N such that all search trees in L for E are closed
before level (height) N. (If we would extend our treatment to the
predicate calculus, we would need Konig's Lemma for this.) There
are only finitely many different partial search trees in L for E of height
N. Take from each partial search tree in L for E a finite branch which
causes closure. These branches together yield a derivation of E in L.

Next we want to show that an open search tree in L for E actually is
(orincase L = KB, KMB or KM 4B, yields) a countermodel for E,
i.e. a frame for L, in which E is not true.

A node j in a search tree is called an immediate successor (a
successor) of a node i, if j results from i by one (one or more) step(s) in
the systematic procedure of definition 2.2.
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Lemma 2.8: Each (open) search tree 1 in L for E has the following
property: to each node (finite sequence of natural numbers) i in T is
associated a set of signed formulas which we will also denote with i,
such that for each node i:
1. iis a finite Hintikka element
2. a) ForL=C,CM,C4and CM4:if TOB, FO A occurs in i, then
there is an immediate successor j of i such that T B, F A occurs
in j.
b) ForL =K, KM, K4, KM4, KD, KB, KMB and KM4B: if
F[J A ei, then there is an immediate successor j of i such that
F A €j.
¢) ForL = KX:if FOA €i, then FA €i.
3.a) ForL=C,K,KDand KB:if TO A €i, then for all immediate
successors j of i, TA €j.
b) ForL=CM,KMand KMB:if TOA €i, then TA i and for
all immediate successors jof i, TA €j.
c) For L = C4, K4: if TO A €i, then for all successors j of i,
TA €j.
d) ForL=CM4, KM4and KM4B:if TOA i, then TA €iand
for all successors j of i, T A €j. '
e) For L = KX: if TOA €i, then TA ei, provided for some C,
FOC €ei.
4. For L = KD: foreach i, ificontains a T or FO expression, then
there is an immediate successor j of i.

Proof: Immediate from the description of the systematic procedure
for the different logics (definition 2.2) and the rules for the different
logics.

Concerning 4, note that for example for L = K it may happen that
TO A eiand that there is no immediate successor of i because there is
no expression of the form FOC in i.

In case L is a B-logic (i.e. L = KB, KMB or KM 4B), we can and
have to modify an open search tree in L for E in order to be able to
conceive of it as a frame for L, in which E is not true.

Definition 2.9: Let L be KB, KM B or KM 4B and let T be an (open)
search tree in L for some formula E.
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(a) ForL=KBorKMB:if TOA occursinanodeioft,add TA to
the immediate predecessor of i and develop the new tree according
to the prescriptions of the systematic procedure in definition 2.2.
(b) ForL=KM4B(=S85=KME):if TOA occursinanodeiof T,
add T A to each node in t and develop the new tree according to
the prescriptions of the systematic procedure in definition 2.2.
Let t* be the result of applying (a), respectively (b) to T as many times
as necessary.

Lemma 2.10: Let Lbe KB, KM B or KM 4B and let t* result from 1
as described in definition 2.9. Then t* has the following properties:
1. (a) For L = KB: if TOA €i, then TA €j for all immediate
successors and predecessors j of i.
(b) For L = KMB: if TOA €i, then TA €i and T A <] for all
immediate successors and predecessors j of i.
(c) ForL=KM4B:if TOA €i,then T A €] for all nodes j in T*.
2. If v is an open search tree in L for some formula E, then t* is also
open (i.e. for no formula B, t* has a node which contains both T B
and F B).

Proof: The proof of 1. is immediate from the definition of t*, and
lemma 2.8.3. For 2, suppose L=KB, TO A ei,ianodeint*and T A
in the immediate predecessor k of i would give a closure with a
formula TB (FC) in k. Then T 7100 71B (T 1O C) and hence
FO 1B (FOC) would occur in the node i in the original search tree t
and hence one of the successors of i in the original search tree T would
contain TA and F "1B (FC) and hence TA and TB (T A and FQ).
Hence the original search tree v would be closed.
The proofs for L = KMB and KM 4B are similar.

Definition 2.11: For a search tree tin L for E, let I, be the set of all
nodes in 1, if L is not a B-logic and 1_ is the set of all nodes in t*, if L is
a B-logic: let N, be the set of all nodes in T, respectively t*, which
contain TO B for some formula B and

1. for L = C, K: iR,j iff j is an immediate successor of i,

2. forL = CM,KM: iR, jiffi =jorjis an immediate successor of i,
3. for L = C4, K4: iR j iff j is a successor of i,

4. for L = CM4, KM4: iR jiff i = j or j is a successor of i,
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5. for L = KD: iR,j iff either i does not contain any TO or FO
expression or j is an immediate ‘successor of i,

6. for L = KX: iR jiff i contains F[J C for some formula C and j = i,

7. for L = KB: iR,j iff j is an immediate successor of i or i is an
immediate successor of j,

8. for L = KMB: iR jiffi = jorjis an immediate successor of i or i
is an immediate successor of j,

9. for L = KM4B: iR jforalli,jel.

Theorem 2.12: 1. Let 1 be a search tree in C —. Then <I, R,, N > is
a normal frame for C —.
2. Let 1 be a search tree in K —. Then <I,, R > is a frame for K —.

Proof: Immediate from definition 2.11 and definition 0.5.
For KD we also need lemma 2.8.4.

Theorem 2.13: Let 1 be an open search tree in L for E. Let

<I,, R,> (<L, R,, N,>) be the corresponding (normal) frame and let
[ ], be the interpretation based on <I, R > (<, R,, N,>) defined by
[P], = {i €l,| TP ei}. Then for all i €I and for all formulas A,

1. if TA €i, theni = A

2. if FA €i, thennoti = A.

Proof: By induction on A, using lemma 2.8 and lemma 2.10.
1. A=P:if TP €i, theni = P by definition : if FP €i, then because 1

is open, TP &i (lemma 2.10.2) and hence not i = P.

2. The induction steps for V, &, —and | are straightforward.

3. A=0A"

(a) Suppose L = Cand TO A’ €i. We have toshow thati = A’, i.e.
1eN and Vj el [iR,j—jE A']. Because T A’ i, it follows trivially
that i e N_and so, by the induction hypothesis, it suffices to show that
Vj el, [iR,j— TA’ €j].

And this follows from definition 2.11.1 and lemma 2.8.3a.

Suppose L = C and FO A’ €i. We have to show that i ¢ N_ or
ij €I.[iR,j & not j = A’']. By the induction hypothesis it suffices to
show that i¢ N, or 3jel [iR,j & FA' €j]. So suppose i eN_ i.e. i
contains T O B for some B. Then if follows from lemma 2.8.2a and
definition 2.11.1 that 3j €L [iR,j & FA' €j].
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(6) The proofs for the other logics are similar.

Theorem 2.7 and theorem 2.13 together yield the following
Corollary 2.14 (Completeness): Let L be any of the logics mentioned
above. If = E, then 7 E.

Proof: Suppose k£ E. Then for all search trees v in L for E, <L, R,
N, [ >k, Eand FE eio, where i, is the first node of I.. So by
theorem 2.13, all search trees 1 in L for E must be closed. And hence
by theorem 2.7, it E.

Corollary 2.15 (Decidability): Let L be any of the logics mentioned
above. Then L is decidable.

Proof: The decision procedure is afforded by attempting to construct
a derivation of E in L according to the systematic procedure of
definition 2.2. After finitely many steps this procedure either yields a
derivation of E in L or a countermodel for Ein L, i.e. a (normal) frame
for L, in which E is not true.

Nijmegen, Princeton, June 13, 1977 H.C.M. de Swart
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