A RESEARCH IN MODAL LOGICS

Jean PorTE

1. The basic idea — This paper is the development of Porte
1958, which was only an abstract.

The idea underlying this work is that «necessity» is in some
way a stronger thing than simple «acceptability» ('). It could
be interesting to carry out this idea by using {wo formal sys-
tems, a stronger one which expresses «necessity», and a weaker
one which expresses «acceptability». But tradition — and per-
haps conveniency as well — leads us to use only one formal
system, in which «necessity», and the dual notion of «pos-
sibility», are represented by unary connectives (see for instan-
ce Lewis-Langford 1932, Goédel 1933, Feys-Dopp 1965). This
traditional method will be used in the present work.

In Porte 1958, the basic idea was carried out in an algebraic
way. Considering a matrix, the algebra of it is boolean, the
«acceptable» elements form a filter (or «sum-ideal»), known as
the set of designated elements, £, while the «necessarv» ele-
ments form another filter, 2’ such as 2’ ¢ &, and the «neces-
sity» is represented by a unary function which maps 2’ into
2,

The relationship between connective systems and matrices
being by no means simple (see, for instances, Church 1953,
Harrop 1958, Los$-Suszko 1958 or Porte 1965), an exclusively
algebraic point of view leads often to obscurity... Here, the
point of view is chiefly logistic, algebraic considerations being
relegated to the last paragraph (§ 11).

The same basic idea is carried out in a quite different form
in the so-called «k-system» (see Lukasiewicz 1953 or Porte
1979). That system will not be studied here.

(}) It is customary, in mathematical logic, to use the word «truth» only
with a semantical meaning.
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The present work begins by defining very weak modal
logics, and goes on using certain «natural» means to strengthen
the systems, Twelve different modal systems are generated in
this way, and are eventually compared to the classical sys-
tems (Lewis’ and related systems).

2. The weakiest system — I begin by defining a weak modal
system, S,, the theses of which consist of the tautologies, the
formulas of the form Nt, where t is a tautology, and as few
other formulas that it is possible for a logistic system which
keeps the detachment rule (or «modus ponens»).

More precisely, the system S, is defined as follows:

— Alphabet: An infinite denumerable set of atoms (or

«propositional variables»), p;, ps, ...; three connectives: =
(«implication» — binary), — («negation» — unary), Neces-
sity» — unary); the usual parentheses.

— Formulas: constructed as usual in connective (or «pro-
positional») systems.

— Theses: from the following set of postulates (axiom
schemas and rules). The letters «x, y, z» denote arbitrary for-
mulas. The conventional names of the postulates are on the
left (the meaning of the letter v will be explained later: see

§ 5).

| FX=(y=Xx)

Pe: FE=2F=22)=2Ex=27)=x=2)

Ps: F(x=s>—y)=2(y=2%

D: X X=2VFY (detachment rule)
SaqvP1: = N(x= (y=x)

VP: FN((mxss—yv)=2((T=3x)=x=2))

vP3: FN((—x=2y)=(Yy=X)

vD: Nx,N(x=y)r Ny

W: NxEx (weakening rule)

The other propositional connectives and the possibility (P)
will be defined in the usual way:

xVy=xx=2y7)=y
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xAy = —(—mxV-—y)
xey = x=279A(Y=3
Px = m N—x

It is clear that every tautology (*) is provable from Py, P,, Py,
D, and that every formula of the form Nt, where t is a tautology
is provable from vP;, vP;, vPy, vD. In addition a few theses, such
as +~ p; = N(P; = p;) are obtained from the preceding ones by
rule D.

It is obvious that P;, Py, Py are redundant, and can be sup-
pressed. In what follows, it will be assumed that this suppres-
sion has been made.

But we might simplify the preceding set of postulates by
keeping P;, P, and P, and suppressing W. It can be proved that
the resulting system would have the same theses as S,, but a
weaker deductibility: For instance, in S,, we have Np; ~ p;, and
this would not be true if W was suppressed. It is for this
reason that rule W will be kept in S,. The «basic idea» (§ 1) is
in a certain way «imbedded» into W. — Indeed the motivation
to keep W in order to carry out the basic idea can be explained
better by semantical considerations (see § 11).

A few further results can be proved about S,.

Theorem 2.1 — If

X1y, ... Xy + ¥ in the propositional calculus (PC) then Nxy, ...
Nx, + Ny in S5,

Proof: just use vP;, vPs, vPs, vD in order to imitate a deduc-
tion in PC (by Py, Py, Py, D).

Theorem 2.2 — S, is consistent.

Proof: let t be a translation of S, into PC defined by suppres-
sing every occurrence of N. Then the axioms of S, are trans-

(%) It is clear that the set of theses is invariant by substitution in S,—as
well as in the other systems defined in this paper. By a «tautology» is
meant every formula resulting from a thesis of the classical propositional
calculus by substituting formulas of S, for the atoms — for instance
Np; = (py = Np,) is a tautology.
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lated into theses of PC, and each rule of S, is translated as a

derived rule of PC. Thus: if ~ x, then ~ t(x). It follows that
S, PC

(for instance} — (p; =» p;) is not a thesis of S,, because it is

invariant by 1, and it is not a thesis of PC — This proof will be

used later ( §8) to prove the consistency of other systems.

Theorem 2.3 —  Nx if and only if ~ x.
Sa PC

Proof: it follows from Theorem 2.1 that if ~ x then ~ Nx —
Now let us suppose that there is a formula xpsgxch as |—S‘f\1x and
not — + x. Then there would be a formula, x’, deriflgng from
x by aPsCubstitution, such as - — x’, whence ~ — x'. By the
same substitution, we wouldI;gwe - Nx’ whenlgae, by W, - x’
and S, would be inconsistent, contrasx?y to Theorem 2.2. %

Theorem 2.4 — (decision procedure for S,) — The theses of
S, are the consequences by PC of the formulas Nt where t is
a tautology.

Proof: By Theorem 2.3 every thesis of S, is provable from
Plr PZI P3| D.l VP11 VPZ: VP3 vD — without W.
Let us construct the theses of S, as follows:

(1) Start with vP;, vPy, vP3 and use vD.
(2) Add Py, Py, P; and apply D.

(3) Apply vD to the preceding theses.
(4) Apply D to the preceding theses.
(5) Apply vD, etc...

Then, step (1) gives the formulas Nt where t is a tautology.
Step (2) gives the consequences of these formulas — Now, step
(3) does not give any new thesis, for the rule vD can only be
applied to premisses of the form Nx; but, after Theorem 2.3,
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the theses of this form had already been obtained in step (1).
Then the construction stops at step (2). Whence Theorem 2.4.
It follows as a corollary that no thesis of S, can have the

forms — Nx; specially, for every formula x, not— - Px.
Sa
Nothing is «possible» in this modal logic! S, is not a «good»

modal system — but experience shows that it is a good starting
point to build interesting systems by certain natural ways of
strengthening, which will be defined in §§ 3, 4 and 5.

3. Compatibility — A way to strenthen S, consists in adding
to it a rule of «compatibility».

Thus the system S, is defined by the postulates of S, plus the
rule of weak compatibility:

WC: N(xevy) - Nxe& Ny

The system S, is defined by the postulates of S, plus the rule
of strong compatibility:

C: N(x&y) +~ N(NxeNy)

It is clear that S, is at least as strong as S,, and S, is at least
as strong as S.. It will be proved later (§9) that Sy is strictly
stronger than S., and S. strictly stronger than Sy (there are
theses of S, which are not theses of S;, and theses of S, which
are not theses of S,).

These rules — as well as the word «compatibility» — will be
better justified by semantical considerations (§ 11).

On the syntactical plan, C is the key to the so-called «re-
placement of strict equivalents».

Let us write

xeqy ifandonlyif +~ N(x&vy)

In S. (and in every stronger system) eq is an equivalence
relation.
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Theorem 3.1 — In S,, if the formula v differs from u by the
replacement of an occurrence of the sub-formula x by y, and if
xeqythenueqv.

Proof. We have

XSV - Xy in PC
then Nxevy) - N(xey) in Sa and S,
Similarly N(xevy) - N(x=2z)& (v =12)

Nixevy) - Nz=23x)ezZ=Y)
and Nxevy) - N(NxeNy) is C

It follows, by construction of the formulas u and v
Nx<+y) + Nuev)
Particularly, if -~ N(x«<vy) then  N(u< v) which is Theo-
rem 3.1.

Remark. It is more usual to define the «strict equivalents»
by

xeq'y ifandonlyif ~ N@Ex=y) A N(y=1x)

But, let @, b be arbitrary formulas, then we have

alAb + a in PC
whence N(a A b) + Na in Sa
similarly N(a A b) ~ Nb in Sa
But Na, Nb ~ Na A Nb in PC, then in S,

whence N(a A b) +~ Na A Nb in Sa

On the other hand

ab r+ aAb in PC
whence Na, Nb ~ N(a A b) in Sa
But Na A Nb - Na in PC, then in Sa
similarly Na A Nb - Nb in PC, then in S,

whence Na ANb ~ N@Ab) inS.
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It follows

NExey) - Nx=y) A Ny=x)
and Nx=vy) A Ny=%x) - Nxevy)

in S. and every stronger system.
Then eq’ could replace eq in Theorem 3.1.

4. Reinforcement — The operation called here «reintorce-
ment» is a particular way of strengthening a modal system.

In S, the so-called «deduction theorem» does not hold: for
instance we have

N(p1=ps), Npy - Np:  byvD
Npi+=p1  byW

but, after Theorem 2.4, neither N(p; = p:;) = (Np; = Nps) nor
Np; = p; are theses of Sa. In Sy and S, the deduction theorem
does not hold either, as will be proved later ().

Definition 4.1 — The reinforcement of a logistic system S,
S, is the weakiest of the systems that are stronger than S and
admit the deduction theorem.

For the modal systems S (at least as strong as S.), the exis-
tence of ¢S will be proved by Theorem 4.1.

Definition 4.2 — The reinforcement of a rule

R: X4, X3 ... X0 — V
is the axiom schema
oR: Fx1=2=2...x.=2V7)..)
Theorem 4.1 — For a system S at least as strong as S., defined
by axiom schemas and rules, one of these being D, a logistic

system for pS consists of:

(*) This will follow from S, # oSy, (= @S,) and S, # ¢S, (§ 9).
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1° The axiom schemas of S;
2° The reinforcements of the rules of S other than D;
3° Rule D. :

Proof — This system is stronger than S, since R results from
oR and D- Every system stronger than S and admitting the
deduction theorem must have gR as a thesis if S has R as a
rule. The new system admits the deduction theorem, since D is
its sole rule and P; and P, are among its theses.

The reason for not postulating gD is that oD is - x= ((x =
y) = v), which would be redundant as a tautology, already
provable from the axiom schemas of S and D.

Remark — The reinforcement of a rule
R=x,X%Xr+Yy (for instance)
could be

R - X1 = (=)
or
eR: = X2= (x4 =)

This is unimportant, since pR; & ¢R; is a tautology. The choice
between them is a matter of convenience.

Definition 4.3. — A canonical system is a system admitting
D as a rule (postulated or derived) and the deduction theorem.

Definition 4.4 — We write «S © §'» if §' is at least as strong
as S, i.e. if every statement of deducibility, xy, ... x, ~ y, which
holds in S, holds as well in S’ — It follows that every thesis
of S is a thesis of §'.

The following result is trivial, but will be used extensively
in what follows.

Theorem 4.2. — For all systems, S and S':
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1° S c 0S;

2° ifSc S’ then oS c oS;

3° oS = 0S;

4° oS = S if and only if S is canonical.

Remark 1 — In Theorem 4.2, 3° and 4°, the equality sign
between, for instance, oS and S, means that these systems have
the same deducibility. Thus, two logistic systems with dif-
ferent postulate systems but the same deductibility are not con-
sidered different. It could happen, for instance, that a system S
be canonical while its postulate set contains a rule other than

D (this rule being redundant if D is postulated and not de-
rived).

Remark 2 — When it is spoken of a «derived rule» (as in
Definition 4.3, or in Remark 1), it is intended as a «deductively
acceptable» rule (), i-e. a rule the addition of which does not
change the deducibility — not a «thetically acceptable» rule (¥,
i.e. a rule the addition of which does not change the set of
theses. The deductively acceptable rules are also thetically
acceptable, but the converse is false. For instance, in the sys-
tem vpvS. defined later (§ 8) the rule

RN: x ~ Nx

is thetically acceptable but not deductively acceptable: we
have:

if ~x then  Nx
but not p; ~ Np; (for instance)

Such a rule is not considered here as a «derived rule».

5. Normalization — After McKinsey-Tarski 1948 we put:

(*) In PorTE 1965, deductively acceptable rules are called «D-acceptable»,
thetically acceptable rules are called «T-acceptablex.
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Definition 5.1 — A modal system is normal when:
if +~x then  Nx
Sa is not normal: after Theorem 2.4 we have ~N(p; = py)

and not —  NN(p; = py). It will be proved that S, and S, are
not normal either (%).

«Normalization» will be an operation which transforms a
modal system into a normal one.

Indeed there are an infinity of such operations. We could
simply add the rule

RN: x - Nx
But an ulterior reinforcement would give
oRN: +— x = Nx
while we have, in pS. and every stronger system
oW: - Nx=x

whence

- X< Nx
(for whatever formula x)

— a thesis that most logicians prefer not to get...

The normalization described below seems to be the simplest
operation that achieves the desired result without postulating
the preceding rule RN — This operation can however be better
motivated by semantical considerations (see § 11).

Definition 5.2,

1° The normalization of an axiom schema

() This will follow from Sy # ¥S, = ¥S, and S, # vS, )(§ 9).
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A - x
is the schema
vA: - Nx
2° The normalization of a rule

R: xq, ... Xp Y
is the rule
vR: Nxj, ... Nx, ~ Ny

Remark — Definition 5.2 explains the notations vP;, vPs, vPy,
vD used in the definition of S, (§ 2).

Definition 5.3 — The normalization of a logistic system S,
defined by axiom schemas A;, Ay, ... An and rules R;, ... Ry
will be the system vS defined by

axiom schemas: Ay, ... Ay; vAy, ... vA, rules: Ry, ... R, vRy,
... Ry, and I: Nx ~ NNx (iteration rule) ()

Remark 1 — If the system S is at least as strong as S,, so that
W is one of its rules (postulated or derived), the postulates of
vS can be simplified in the following way:

1° if vA is a set of theses (axiom schema or deduced theses)
in S, vvA would be a redundant axiom schema in vS (use I);

2° if vR is a rule (postulated or derived of S, vR is redundant
in vS (by I and W).

This remark will be important when applied to S., which has
the postulates vP;, vP;, vP; and the rule vD-

Remark 2 — In the same cases (system S at least as strong
as S.), the axiom schemas A;, ... An are redundant in vS (use

(%) Iteration rule was called «régle de normalisation» in Porte 1958.
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VA ... vA, and W). — But this remark does not apply to
axiom schema oW: we must keep it in vS in order that W be a
derived rule.

The following result is parallel to Theorem 4.2.

Theorem 5.1

1° S cvS;

2° if S < S’ then vS c vS’

3° w8 = S

4° if vS = S then S is normal (")

6. Generating seven systems — Let us start with a modal
system S, at least as strong as S,, the set of its axiom schemas
being # and the set of its rules (other than W, D, and vD) being
Z. We will call «v¥» the set {vA; A € #} — and similarly for
vZ, oZ, etc.

We will generate new modal systems by applying alter-
natively reinforcement and normalization to S. Taking into
account the results of §§4 and 5 (particularly the remarks
which follow Definition 5.3) we can write the postulates of the
new systems as in table 1 (the names of the rules are under-
lined).

Table 1

S: %, Z W,vD,D
0S: ¥, 0%, oW, oD, D
vS: v@/,._ﬁ'_, vZ, W,vD,

ovS : ¥, oZ, ovZ, oW, ovD, oI, D

voS : V¥, voZ, voW, oW, vovD, I, D
ovoS : v¥, voZ, voW, oW, vovD, oI, ] D

vovS : v, voZ, vovZ, voW, oW, vovD, VQI,I, D
voveS : v, voZ, voW, oW, vovD, vol, L D

(") But the converse is false. This seems to contradict «Prop. 10» in PorTE
1958; but in that text «une espéce normale» was defined in such a way that
it was a set of matrices where I is strongly valid (see § 11).
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But in vpvS and vovpS the rule I is redundant: we have W from
eW and D, oI from vpl and W, and I from oI and D. When we
have suppressed I from the postulates of voveS and vovS, there
remains only one rule, namely D. Then, these systems are
canonical (by Theorem 4.2, for reinforcement gives the same
systems of postulates); they are normal as well (Theorem 5.1);
and the generating process stops here.

Now in table 1 every postulate of vovgS is a postulate of vovS;
whence vpvpS C vovS. But vovS < vovpS from Theorems 4.2 and
5.1 Then vovS = vpvgS.

Eventually we have produced seven systems, which can be
represented in figure 1.

Figure 1

vS ovS

vovS
(= veveS)

eS veS

The arrows represent relative strength (for instance S c vS).
Every arrow is provable by Theorems 4.2 and 5.1 — except
eveS C vov S, which is apparent in list 1: every postulate of gvgS
is deducible from the postulates of vpvS.

These seven systems are not distinct for every S (see the case
of Sc in § 7). But they are distinct if S = Sa (see §9).

7. The case of St and S — If we apply the generating pro-
cess to Sy and to S, several reductions appear.

Theorem 7.1 — oSy = ¢Sa

Proof: we have successively in @Sa:
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(1) Nx=vy) + Nx=Ny by ovD, D

(2) Ny=x) - Ny=Nx similar to (1)
B)xey - x=y by PC

4) Nxev) - Nx=vy) by (3) in Sa
(B) N(xevy) - Ny=x similar to (2)
(6) N(x&<vy) - Nx=Ny by (4), (1)

(7)) Nx<vy) - Ny=Nx by (5), (2)

(8) Nx =Ny, Ny =Nx - Nx& Ny by PC

) N(xevy) - Nxe Ny by (6), (7), (8)

and (9) is WC.
Theorem 7.2 — vSp = vS.

Proof: we have in vSp

(1) Nxey) - Nxe Ny wC

(2) NN(x<vy) + N(Nx e Ny) vyWC

B) Nxev) - NNxey) I

(4) N(x&vy) ~ N(Nx& Ny) by (2} and (3)

and (4) is C. But now WC is deducible from C and W, and is
redundant. In vS, vC and vWC can also be proved from C, I
and W; so the postulates of vS. reduce to: vP;, vPy, vP;, W
vD, I, D, C.

Thus Sy does not generate new systems, except those gene-
rated by S. or S..

Theorem 7.3 — When C holds, rule I holds if and only if
+ NNt where ¢ is tautology-

(i) Let us suppose we have rule I, then

(1) ~t by PC
(2) ~ Nt by (1), Sa
(3) ~ NNt by (2),1

(ii) Let us suppose we have C and - NNi, then
) Frxexel by PC
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(2) - Nxexetl) by (1), Sa
(3) F N(NxeNxet) by (2),C
4) - NxeNxet) by (3), W
(5) Nx - Nxet) by (4), PC
(6) Nx - N(Nx & Ni) by (5), C
() Nx ~ N(NNx & NNi) by (6), C
(8) Nx ~ NNx & NNt by (7)., W
(9) NNt, NNx & NNt ~ NNx by PC
(10) ~ NNt hypothesis
(11) NNx & NNt - NNx by (9), (10)
(12) Nx - NNx by (8), (11)

The impact of Theorem 7.3 is that in any system at least as
strong as S., the rule I can be replaced by an axiom schema
such as ~ NN(x & x).

Returning to table 1, we see that if we replace I by an axiom
schema in the list of postulates of vgS., the only remaining rule
is D. So vpS. is canonical. But it is normal too (Theorem 5.1).
Since I holds in vgSe, oI and gvI hold as well. But we see in
table 1 that the only difference between the postulates of voSe,
oveSe, vovS. is that there is I in the first, oI in the second, and
vol in third. Then:

Theorem 7.4 — vgSe = vpSe = vovS:
Then, in the case of S = S, figure 1 reduces to figure 2.

Figure 2

vS.

S¢ VQSc.-
ovSe (= ovoS. = vpvS)

eS.
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Theorem 7.5 — Rule C holds in vgS.

Proof: in vpSa

(1) = N(N(x =y) =(Nx = Ny)) which is vovD

(2) Nx=vy) » Nx=Ny by (1), W, D
(3) - NN(x = y) = N(Ny = Ny) by (2) applied to (1)
(4) NN(x =y) +~ N(Nx = Ny) by (3), D
(5) N(x=vy) - NN(x=y) by 1
(6) N(x=y) ~ N(Nx = Ny) by (4), (5)
(7) N(y=>x) - N(Ny = Nx) similar to (6)
B)xey - x=v in PC
9 Nzev) - Nx=v) like (8) in S,
(10) Nxevy) - Niy=x) similar to (9)
lNu=v, va3u +- uev in PC

(12) Nu=v), N(v=u) +~ N(u¢ v)like (11) in S.

(13) N(Nx = Ny), N(Ny = Nx) ~ N(Nx& Ny) by (12)

(14) N(x«=vy) = N(Nx e Ny) by (9), (10), (6),
(#), (13)

and (14) is C.
Remarks

1° (6) is the so-called «Becker's rule», which holds in vgSa.

2° The preceding proofs (of C and of Becker's rule) make use
only of vovD and I in addition to Sa; voW and oW are not neces-
sary for the proof,

Theorem 7.6 — vpS: = vgvS,

Let us return to table 1 and write down the postulates for
voS: and vpvSa

vpSe: vP1, vPg, vPg, voC, voW, oW, vovD, 1, D
vovSa: vPy, vPs, vPs, veW, oW, vovD, vpl, D



A RESEARCH IN MODAL LOGICS 19

But:

1° By Theorem 7.4 vpl holds in vgS. and can replace I (I is
provable by vol, oW and D).

2° By Theorem 7.5, rule C holds in vgS,, then as well in pvpSs
and vgvS,. But vgvS, is normal and canonical (§ 6), so that voC
holds in vpvS. as being a schema of theses, and might be added
to the postulates without changing the system.

It results that the two systems have the same lists of (modi-
fied) postulates, and are therefore identical.

Theorem 7.7 — gvS: < pvoS.

Let us return to Table 1 and write down the postulates of
ovS: and gvpSa

ovSe: vPi1, vPy, vPy, ovC, oW, ovD, oI, D
oveSa: vP1, vPg, vPy, voW, oW, vovD, oI, D

But:

1° vC would be NN(x«y) - NN(Nx < Ny) which is prov-
able by C, W and I and could be replaced by C in vS¢; ovC can
therefore be replaced by oC in gvS; ().

2° Rule C holds in vgS. (Theorem 7.5), then as well in gvoS..
This last system being canonical ¢C holds in it. :

Then every postulate of the (modified) list for gvS. is prov-
able from the postulates of gvgS,.

8. The twelve systems — Starting from S., Sy and S. we have
produced twelve systems.

‘We can summarize the results of §§ 6 and 7 in table 2, table
3 and figure 3.

(]) We may alternatively derive vC from ¢C, W, and I, and conclude
that ovC is provable in the canonical system gvS, if ¢C is among its pos-
tulates — and gC holds in gvS; since C holds and the system is canonical.
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Table 2 is a list of postulates (°).

Table 2

vPi: - N(x = (y = x))
vPe: FN(x=2(y=2)=(x=(x=2)
vPs: - N((—x=—y)=(y=1X))
D:x=2y, X~y
vD: N(x =y), Nx -~ Ny
ovD: - N(x=y) = (Nx= Ny)
vovD: — N(N(x =vy) = (Nx = Ny))
WC: Nxev) - Nxe& Ny
C: Nx&vy) - N(Nx& Ny)
eC: - N(x&vy) = N(Nx< Ny)
W: Nx - x
oW: - Nx=x
voW: - N(Nx = x)
I: Nx ~ NNx
ol: - Nx= NNx
vol: +~ N(Nx = NNx)

Table 3 is the list of the postulates of each of the twelve sys-
tems — vPy;, vPy, vPs, D, common to all the systems, have not
been repeated.

Table 3

Sa: vD,'W
Sp: vD, W, WC
Sc: 'VD‘, W, C
VS&! VD, W, I
vSe(= ¥Sp): vD, W, I, C
0Sa(= 0Sp): ovD, oW
0Se: gvD, oW, oC

(°) Key to PorTE 1958 for the names of the postulates
this paper | wC C w I
PorE1958 | Cf CF A Rv
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ovSa: ovD, oW, ol
ovSe: pvD, oW, oI, oC
veSa: vovD, voW, oW, I
oveSa: vovD, voW, oW, oI
vovSa: vovD, voW, oW, vpl
(= vovgSa
= 'VQSc
= ovoS:
= yovS,)

Figure 3 summarizes the relationships between the systems
as in figures 1 or 2.

Figure 3

vSa ovS,

It will be proved (§ 9) that all these systems are different.

The independance of the postulates of Table 3 has not been
examined — but of course a few cases of independence will
result from the fact that the sysems are different: for instance
vol is independent in the postulates of vgvS,, since it is the only
postulate by which vpvS, differs from gvgSa.

All these systems are consistent (same proof as for the con-
sistence of Sa: Theorem 2.2).

It is often easy to prove an apparently complicated proposi-
tion about one of these systems using a few postulates, general
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properties of Sa, canonicity (Theorem 4.2), and normality (Theo-
rem 5.1).

For instance, here is a proof that

FN(N(x = y) = N(Nx = Ny)) in vov§,

— i.e.in S, (see § 10)

1) x=y, x+—y by PC

(2) N(x=v), Nx Ny like (1) in Sa

(3) N(x=y) ~Nx= Ny by (2), 0S=S

(4) - Nx=vy) = (Nx=Ny) like (3)

(5) + N(Nx=vy) = (Nx= Ny)) by (4), vS=S

(6) - NN(x=v) = N(Nx= Ny) by (3), (5)

() NN(x=y) ~ N(Nx= Ny) by (6), D

8) N(x=vy) - NNx=1Y) by I

9) N(x=7y) - N(Nx= Ny) by (7), (8)
(10) + N(x =v) = N(Nx = Ny) by (7), 0S=S
(11) - N(Nx=vYy) = N(Nx = Ny)) by (10), vS=S

If we examine the proof in details, we see that all the pro-
positions until (4) hold in pS. (i.e. in S0.5, see § 10), until (9)
they hold in vpS. (i.e- in T, see § 10), and until (10) they hold in
ovoSa.

9. Comparing the systems — It will now be proved that the
12 systems are different of each other. Moreover there is no
case of comparable strength other than those which are re-
presented by arrows in figure 3 or those which follow by transi-
tivity — for instance, we have neither voS. € gvS: nor gvS. ©
vpSa.

This can be proved from the following propositions: for all
systems S and S', we have

(1) oS = oS
(2) wS =8
(3) Sc oS

(4) Sc S
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(5) if Sc S then oS c oS
(6) if Sc S then «S cvS
(7) oSy = pSa
(8) vSp = vSe
(9) vovSas = gvpvSa
(10) vovSa. = vpvpSa
(11) vpSc = vgvS,
(12) vpSe = pvgSe
(13) voSc = vovSa
(14) transitivity of inclusion
(15) vpSe & pvpSa
(16) pveSa & pvSe
(17) 0Sc & ovSa

The proofs are long and tedious, but trivial. For instance let
us suppose

veSa C ovS:
it would follow gvpS. C ggvS. by (5)
ovpS. C pvS. by (1)

which would contradict (15); let us suppose now

ovSe C vpSa
it would follow vovS: C vgSa by (6)
voSe C voSa by (11)

which would contradict (15) and (16) taking into account that
veSa C pvpSa C vpSe
(see fig. 3); and so on.

Propositions (1) to (13) have already been proved; (15), (16),
and (17) will now be proved by means of three matrices.
These matrices have all certain common features, namely:
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— the basic set is the set of all subset of a particular finite
set such as {a, b, c};

— the representatives of — and = are the usual set-theore-
tic functions, namely complement (C) and (a ) > C a U f.

It will then be sufficient to give the tables of the represen-
tative functions of N, and the sets of the designated elements
(D).

In order to spare room a set like {a, b} will be denoted simply
by «ab».

Here are the matrices:

Mi a|l@ b C be a ac ab abc
Ne | @ @ @ @ @ ¢ b abc
2 = {a, ac, ab, abc}

It is a model of gvgSa, but vol is not valid; whence (15).

M2 o ' ¥ b ¢ bc a ac ab abc
Na | O O O @ a ac ac abc
2 = {ab, abc}

It is a model of gvS,, but voW is not valid; whence (16).

M3 o |0 b cd bc bd cd bcd a ab ac ad abc abd acd abecd
Na ,0 PP P O O @ a ad ac acd abc ad acd abed
2 = {ab, abd, abc, abcd}

It is a model of gvSa, but ¢C is not valid; whence (17).

Now S ¢ S’ means that there are cases of deducibility in S
which do not hold in S'. But if S is not canonical, it might
happen that every thesis of S be a thesis of S'.

To complete the proof that when S ¢ S, we have also (theses
of S) & (theses of §') it is sufficient to prove:

(18) veSa & ovSe in that stronger sense
(19) vSe loal @Sc "

(20) Sc & ovSa

(21) Sp & vSa
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All these propositions are proved by means of matrices. (18)
has already been proved, since M2 is a model of vgS. in which
voW is not valid. We need three new matrices. Here they are:
M4 a lQi a b ab

Ne |0 @ @ a

2 = {a, ab}

is a model of S¢ in which the formula NN(x < x) (a thesis of
Se) is not valid; whence (19). Indeed it is «group I» of Lewis-
Langford 1932, i.e- a model of S3 not of S4; it proves as well
ovoSa & S3 and veSa & S3.

For the last two matrices it will be necessary to consider a
homomorphic counter-image of a boolean algebra rather than
a proper boolean algebra. This aim will be achieved by «split-
ting» each member of the set E = {@, a, b, ab} in two, — the
counter-images of @, by instance, being @ and @', and so on.
The tables for the representatives of — and = will be obtained
by ignoring the difference between «dashed» and «non-dashed»
elements in the usual set-theoretic functions in E. So:

«a|@ @ b b a a ab (ab)
—|a|ab ab a a b b g O

and similarly =>. It will then be sufficient to give the tables for
N and the sets of designated elements in order to define the
matrices.
M5 a'@ @ b b a a ab (ab)
Nae|@ @ @ b © O ab (ab)
2 = {a, @, ab, (ab)’'}

It is a model of gvSa in which the formula N(Nx & N—— x), a
a thesis of S, is not valid. Whence (20).

M6 o | g @ b b a a ab (ab)
Na ] g @ @ Jd a a’  a (ab)’
2 = {a, @, ab, (ab)’'}
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It is a model of vS, in which the formula Nx &N ——x, a
thesis of S;, is not valid. Whence (21).

10. The place of the classical systems — At once:

(i) eSe is Lemmon’s S0.5 (Lemmon 1957, p. 181), — a system
also considered by Pollock (Pollock 1967, p-362, axioms and
rules Al to R) without particular name.

(ii) voSe is Feys' T, i.e. von Wright's M — a system also used
in Gédel 1933 without particular name.

(iii) voSc = vpvSq is Lewis’ S4 (see especially the axiomatiza-
tion of S4 in Godel 1933).

The «Basic Modal Logic» (BSM) of Pollock 1967 is not of the
same nature since its formulas do not contain superpositions of
modalities- But Theorems 3 and 4 of Pollock can be summarized
in:

Theorem 10.1 — In every modal system at least as strong
0S. and a most as strong as Lewis S5, the set of theses not in-
volving superpositions of modalities is just the set of valid
formulas of the BSM.

The other classical systems, in particular Lewis' S1, S2, and
S3 may be put into relationship with the 12 construced systems
(see fig. 4), but have no simple connection with them.

Figure 4
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In addition, we have

oS3 = S3 (S3 is canonical)
vS1 = 82 = T
vS3 = S4

It is well known that S3 is not comparable to T. Matrix M4
shows that ovoS. ¢ S3. Matrix M1 shows that S3 & gvoS., for
formula N(N(x =y) = N(Nx = Ny)), a thesis of S3, is not
valid in M1,

The following matrix

o

M7 o | @ b ¢ be ac ab abc
Ne | @ @ @ @ @ © a ab
D = {ab, abc}

is a model of S2 and of S1 in which ¢C is not valid.
Whence S2 ¢ S2 and oS1 & S1

The systems that are not at least as strong as pS. seem too
weak to be considered as «good» modal systems. They are
useful to build the other systems. On the contrary, systems
0Se, 0vSa, @vSe and oveS. may be worthy of some study.

It must be pointed out that the construction starting with
Sa by means of ¢ and v was not (at least not consciously !) inten-
ded to reach T and S4, and anyway I did not know Lemmon’s
50.5 when I constructed ¢S. (the paper Porte 1958 has been
written in 1956).

S5 cannot be constructed by the means studied here, since
everything stops at the first system which is both canonical
and normal, that is S4.

The so-called E-system (see Lukasiewicz 1953 or Porte 1979)
differs in its very nature from the systems studied here.

11. On regular models — We return now to the point of
view of the paper Porte 1958 — a point of view that may be
called «algebraic» on «semantical», i.e. the study of certain
matrices.
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Let us first recall a few classical definitions, in order to state
the notations and the vocabulary.

Definition 11.1 — A matrix for a modal system is a structure
M= (B, &% —* N* D), where # is the basic set or set of

values, =* an application # X # — %, —* and N* two appli-
cations # —> % and 2 a subset of &,

2 is the set of designated elements (or designated values).
Definition 11.2 — An assignment (of values) into a matrix
for a formal system is an application t : # — # (¥ being the set
of the formulas of the system), such as
x=7y) = 1(x) =*(y)
(—x) = —*1(x)

T(Nx) = N*1(x)

for every x, y € #. It follows that an assignment is completely
defined by the values assigned to the atoms.

Definition 11.3 — A formula x is valid in a matrix 4 if t(x)
€ 2 for every assignment into ..

Definition 11.4 — A rule such as
R: fi(x,y) fox,¥) + g(xY)
is weakly valid in 4 if:
if fi(x,y) is valid and f5(x,y) is valid, then g(x,y) is valid

Definition 11.5 — A rule such as R (above) is sirongly valid
in J if:

if fi*(o, B) € 2 and £;*(a, B) € 2, then
g*(a, p) € 2 forevery o, fe #
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Definitions 11.4 and 11.5 are taken from Harrop 1958 — see
also Los-Suszko 1958 and Porte 1965 ().

A strongly valid rule is also weakly valid but the converse
proposition is false. A matrix for PC is often said «regular»
when D is strongly valid, but there are non-regular matrices
in which D is weakly valid (see for instance Church 1953).

Definition 11.6 — A matrix 4 is a model of the formal sys-
tem S, if every thesis of S is valid in .

By a natural generalization of the classical notion of a
«regular matrix», (Church 1953), we state:

Definition 11.7 — A matrix 4 is a regular model of the
logistic system S, if every postulated rule of S is strongly valid
in A,

IT would be equivalent to say that every deductively accep-
table rule (see Remark 2 after Theorem 4.2) is strongly valid
in a regular model.

In what follows we will consider only modal systems, S,
which are at least as strong as S,; rule D is postulate (or
deductively acceptable) in such an S.

Theorem 11.1 — In a regular model of a modal system, the
algebra (#, =*, —*) is boolean (").

Proof: See Church 1953, pp. 44-45.

Theorem 11.2 — In a regular model of a modal system, the
set of the designated values, &, is a filter (or «sum-ideal») of
the algebra — i.e. we have, for every o, § € #:

(1) In PorTE 1965 weakly valid rules are said «T-vaides», and strongly
valid rules are said «D-valides». In a regular model (Definition 11..7) every
D-acceptable rule is D-valid.

(1) Strictly speaking, it is the algebra (Q, v A% —*) which is
boolean, with

(0 =%p) =>*p
—*(—ray* —*f)

ay\ *B
o /\*P
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1°if e e ? and f € 2, then a A*p € 2;
2°if a e P, then a V*B e D

3o aﬁ*ae@; ‘

£ if € D and a =*p € D, then pe D (%)

This follows from the fact that

Fx=yexAY)
FX=(YVY)
FX=X
FX=((xey)=Y)

(for every formula x, y) in PC, and rule D is strongly valid in a
regular model,

Let us define a new notion.

Definition 11.8 — The elements a of a matrix, 4, such as
N*a € 2 are the v-designated elements.

Theorem 11.3 — In a regular model of a modal system, the
set, 2’, of the v-designated elements is a filter.

Proof. Just like the proof of Theorem 11.2, but using rule vD
and the theses of S, of the form Nt where ¢ is a tautology.

We can now see the semantical motivation of the definitions
used in §§ 2, 3, 4, and 5.

Motivation of rule W. The v-designated elements represent
the idea of «necessary propositions» just as the designated
elements represent the idea of «acceptable propositions». In

order to carry out the basic idea (§ 1) we must then assume
9" c 2 that is:

if Na = 2, then o= 2

(**) Condition 4° is not a part of the definition of a filter. It is used here
as a means to be sure (in the case where the algebra is a homomorphic
counter image of a boolean algebra, rather than a true boolean algebra)
that 2 is a union of classes determined by the homomorphism equivalence.
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But this expresses the strong validity of W.
If we did not postulate the rule W in Si, we could consider
models like the following matrix

M9 al@ b a ab
N*a|©@ a b ab

9 = {a, ab}

whence 2’ = {b, ab}. All the theses of S. are valid (among
them, Py, Py, Py vP;, vPy vP3), and the rules D and vD are
strongly valid. But W is not strongly valid.

It is clear that the basic idea is not carried out in M9 — In
other models, we could have 2 ¢ 2’ and 2 #+ 2’ as in the
following matrix

M10 a|® b a ab
N*« |@ @ ab ab

2 + {ab}

— whence @' #+ {a, ab}

Compatibility — Let us define two relations on %, E and F/,
by

aEf ifand only if a =*f = 2
oE'B if and only if a &*p € 2’
(or N*((a «=*B) € 2) (*)

If we consider the filters £ and £’ as ideals of a boolean
ring (). E and E’ are respectively the congruence modulo 2

(**) In PorTE 1958 the relation E' was called E; E was not explicitely
studied.

(1) The operation of these rings are

— for @ multiplication: \/*
addition: <%
— for @' multiplication: a, f |—» N*(a \/*p)

addition: a, B |— N*(a &3* f)
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and the congruence modulo £’, and 2 and 2’ are respectively
an equivalence class of E and an equivalence class of E'.
When W is strongly valid, 2’ < 2, so that each equivalence
class of E is a union of equivalence classes of E'.
A function is compatible with an equivalence relation if it
maps each equivalence class into an equivalence class. To say
that N* is compatible with E’ is to say

if aE’'S then N*aE' N*B
or:if N*(@&* f) € @ then N*(N*qe* N*B)

— which means that the rule C is strongly valid.

To say that the rule WC is strongly valid is to state the
condition —weaker that true compatibility — that No maps
each equivalence class of E' into an equivalence class of E,
which generalizes the fact that N* maps 9’ into 2.

Normalization — The choice that has been made in § 5 to
define vS can only be justified by the neat result of §§ 6, 7 and
8. Other choices could have produced a normal system from
any modal system S. For instance let us consider the following
system (S having # as axiom schemas and & as rules — see

§ 6):
voS: W, &' vE, w®, W, I, D

where the rule I, is: NNx - NNNx
Then v¢S is normal, but the rule I is not, in general, deductively
acceptable in v,S...

From the semantical point of view, let us consider v-models,
defined by v-matrices

‘/V‘ = (g' ﬁ*F _l*lN*l @' @’)
where 2' ={oe %#; N*a € @}; @ is the set of designated

elements; v-models and regular v-models are defined as in
Definitions 11.6 and 11.7.
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Let us consider the regular v-models of S such as A7 = (&,
=* —* N* 2’ 2') is also a regular v-model of S, and let us
call them «normal regular v-models». Then vS is the formal sys-
tem whose regular v-models are exactly the normal regular
v-models of S. This process may be considered as a way of
carrying out the idea of a normal system by algebraic notions:
a regular v-model, 4", is normal if its £ (which represents the
«acceptable propositions») can be restricted to 2’ (which re-
presents the «necessary propositions») without altering the
fact that 4" is a regular v-model. But it seems somewhat arbi-
trary to keep £ unchanged in A#” (one may only remark that 2’
could not be restricted when it is a singleton, i.e., when E’ is the
identity) ().

(*%) in PorTE 1958, certain notations may be explained by the following
example:

— S4' (= vpvS,) is the set of the regular models of S4

— (S4)p, is the set of the models of S4 in which rule D is strongly valid
(«regular matrices» in the sense of CHurcH 1953, i.e. regular models of PC).

What was called «especes normales d'algébres» were the underlying
matrices of the normal regular v-models of some formal systems. Rule I was
strongly valid in them.
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