ON LUKASIEWICZIAN LOGICS
WITH SEVERAL DESIGNATED VALUES

Michael Byrp

A commonly held view about the many-valued logics of
fukasiewicz is that the non-classical character of these sys-
tems depends on the choice of designated values. For example,
some writers have claimed that if 1 and !/2 (T and I) are taken as
designated in Eukasiewicz's 3-valued logic, then the system
that results is the same as classical logic. (see [1], p. 3) How-
ever, in Many Valued Logic, Rescher reports a counterexample
to this claim (due to Turquette); the sentence — (p>—p) V
—(—p D p) is a classical tautology, but assumes the value
0 in k3 if p has the value /2.

In view of this counterexample, it is important to try to
obtain a more precise picture of the non-classical core of the
Lukasiewiczian logics. This paper describes the results of my
investigation of this problem. Speaking generally, my results
bear out the idea that the truly «non-classical» component is the
Eukasiewiczian tables for the conditional and the biconditional.
In Section 1, T examine fragments of Lukasiewiczian logics
which do not contain the conditional or the biconditional. I
show that these fragments can be rendered classical by suitable
choices of designated values. In Section 2, I investigate frag-
ments containing the conditional, The strongly non-classical
nature of this connective is evidenced by the fact that no
choice of designated values can render fragments containing
the conditional classical. In Section 3, I examine several frag-
ments containing the biconditional. The situation here appears
to be a hybrid between the cases previously examined The
pure biconditional fragment of any Eukasiewiczian logic and
the negation-biconditional fragment of even-valued systems
can be rendered classical by suitable choices of designated
values. On the other hand, the negation-biconditional fragment
of odd-valued systems and the disjunction-biconditional frag-
ment of any system is strongly non-classical in the sense that
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there is no choice of designated values which will render this
fragment classical.

Before proceeding, it is advisable to fix the form of repre-
senting kukasiewiczian logics. Throughout the discussion, I
confine my attention to logics with a finite number of values.
For the n-valued logic L, let us suppose that the values are
1, n—2/n—1,..., 1/n—1, 0. The basic Eukasiewiczian connec-
tives are evaluated according to the following rules:

1. v(—p) = 1—v(p);
2. v(p & q) = min (v(p), v(q));
3. v(p V @) = max (V(p)rSV(q)):

- _ J1 ifv(p) = v(q);
4vp>q = {1 —v(p) + v(q), otherwise;
5. v(p=q) = 1—|v(p)—v(q)l.

A wiff B is said to be valid in L, relative to the set D of desig-
nated values iff for every valuation v on &, v(B) is in D.

1. Fragments not containing > or =

In some sense, the Lukasiewiczian tables for negation, con-
junction, and disjunction are more classical and natural than
the tables for the conditional and the biconditional. This idea
manifests itself in several ways. For example, it is possible to
give a straightforward semantic account, based on 2-valued
logic, for the —, &, and V tables for ; whereas no such ac-
count seems available for the > and = tables.

The classical character of Lukasiewiczian —, &, and V also
manifests itself in the matter of designated values. For, as I
shall show, fragments of ¥, containing only —, &, and V are
classical for certain natural choices of designated values. I
shall discuss only the —&V-fragment of L, but the claims
made also hold for more limited fragments. The basic theorem
here is:

THEOREM 1. The —&V-fragment of L, is classical relative to
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the set D of designated values iff (1) there is a value u of
L, that is not in D and (2) for every value u of t,, max(u,
1—u)isinD.

(=) If condition (1) isn't satisfied, everything is valid. If con-
dition (2) isn't satisfied, there is a value u in k£, such that max
(u, 1 —u) is not in D. But then pV —p receives an undesignated
value when v(p) = u.

(&) Suppose that conditions (1) and (2) are satisfied. Then two
claims must be proved:

a. If A is not a classical tautology, then A is not valid in
L, relative to D.

b. If A is a classical tautology, then A is valid in L, rela-
tive to D.

I consider (a) first. By condition (1) there is a value u of E
which is not in D. By condition (2), u << 1—u. Consequently, if
we restrict attention to the sub-tables for —, &, and V in-
volving only u and 1—u, the result is the following:

p&q pVq
P —p 1—1 u 1—u u
1—ua u i—1 1—u u — 1—u 1—u
u 1—u u u u u 1—u u

These tables are isomorphic to the classical truth-tables with
1—u for T and u for F.

Now, suppose that there is a classical valuation v such that
v(A) = F. Let py, ..., p. be the propositional variables in A. Let
v* be a valuation on k, such that if v(p;) is T, then v*(p;) is 1—u
and if v(p;) is F, then v*(p;) is u. By the isomorphism just men-
tioned, v*(A) is u. So, A isn't valid relative to D.

Claim (b) remains to be established. To prove this, I em-
ploy conjunctive normal forms in a crucial way. So, an inter-
mediate lemma is needed.
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LEMMA 1. If A is a wif in the —&V-fragment of %, then
there is a wif B in the — &V -fragment such that B is in
conjunctive normal form (CNF) and B has the same E,
truth-table as A,

Note first that a wff A containing only —, &, and V can be
transformed into CNF using just (i) double negation, (ii) De-
Morgan’s Laws, and (iii) the &V distribution laws. To prove
Lemma 1, it therefore suffices to show that operations (i)-(iii)
have the property of transforming a wff C into a wff D which
has the same E, truth-table as C.

case (i). For any v, v(p) = 1—(1—v(p)) = v(— —p).
case (ii). I show that for any v, v(p & @) = v(— (—p V —q)).

Other cases are similar. Suppose first that v(p) = min(v(p),
v(q)). Then 1—v(p) is max(l—v(p), 1—v(q)). So, v(p) = 1—
max(1—v(p), 1—v(q)), as required. If v(q) = min(v(p), v(q)), the
argument is parallel.

case (iii). I show, by the following table, that for any v, v(p&
(qvr)) = v((p&q) V (p&r)): (here I use +(p*, q* for max(v(p),
v(q)) and —(p* q*) for min(v(p), v(g)).)

- (P*r q‘) - (P*l I"‘) - (q*r I*) - (p*r .3 (qt- 1‘*)) * [_ [P*. q*), - (p*l I"')]

p p q p p
p p T p p
q p q p p
q T a r r
P T r p p
q r r q q

Since the last two columns are identical, the claim is proved.
Proof of the other distribution law is similar.

Given Lemma 1, we proceed to prove claim (b). Suppose that
A is a classical tautology. Then the CNF B proved to exist in
Lemma 1 is classically equivalent to A. Thus, B is a classical
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tautology. Since B is in CNF, every conjunct of B is a disjunc-
tion which contains some sentence letter and its negation. Let
E be a conjunct in B. Suppose that p, is such that both p, and
—p, occur in E Let v be a valuation on E,, and suppose v(p,)
is u. Then v(E)= max(u, 1—u). But this implies that v(E) is a
designated value. For if v(E) is not in D, then it follows by con-
dition (1) of the theorem that 1—v(E) > v(E) = max(u, 1—u),
which is impossible. Consequently each disjunct of B has a
designated value on every valuation in E,. Since the value of
B is the least of these values, B receives a designated value in
every case. By Lemma 1, A has the same %, truth table as B.
So, A is valid in L, relative to D ().

Several comments about the theorem are in order. For L, the
only D which meets the conditions of the theorem is the set
{1}. For %4, the only stasfactory D is the set {1, !/2}. For n > 3,
there will be several sets of values which determine classical
logic. Among them, there is a minimal set D* which contains
only max(u, 1—u) for each u. Any superset of D* which is not

(') One consequence of Theorem 1 is that if D meets conditions (1) and
(2) and both — A \/ B and A are valid relative to D, then B is valid relative
to D. That is, the set of wifs valid relative to D is closed under a modus
ponens principle formulated in terms of negation and disjunction.

In [2], Page 70, Rescher attempts to argue for this closure principle
directly. Noting that he uses /p — q/, where I use v(—py q9), his argument
is this, for the case of Ly:

...for assume that p and /p —q/ are both tautologies, but that g is not.
Now this can only be when for some assignment of values in p and g
it results that /p/ =1 and /p—» ¢/ =1 and /q/ =F. But then under the
modified assignment obtained by replacing each I in the initial one by
T, we shall have it that: /g/ =F, and either /p/ =F or /p—q/ =F,
contrary to assumption.

‘What this argument fails to provide is a reason for believing that /q/ = F,
on the modified assignment. That /q/ = F on this assignment must depend
somehow on the fact that /A — B/ =1 when /A/ = /B/ = 1. For if /A -, B/
were T in this case, then Rescher's claim could be falsified. What is ap-
parently needed here is some sort of inductive argument on the structure of
q. But without something like Lemma 1 of the paper, it is unclear how such
an argument could proceed.
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identical with the set of all values will also determine classical
logic. For example, in kg the set {1, %/5, %/5, /5, 0} determine
classical logic,

2. Fragments containing the Conditional

In contrast to the tables for negation, conjunction, and dis-
junction, the kukasiewiczian table for the conditional seems
distinctly unnatural. For example, it has proved to be very
difficult to find any plausible account of the choice of values
for the conditional in k3. The unusual character of the Euka-
siewiczian conditional also manifests itself in the matter of
designated values, as the following theorem shows:

THEOREM 2. If ¥’ is a fragment of E, containing the con-
ditional, then there is no set D of values in £, such that ¥’
is classical relative to D.

If D is the set of all values, then everything is valid, If D is not
universal, then there is a value u such that u is not in D. If u is
1, nothing is valid. To complete the proof, it suffices to show
that for every u in ¥, such that u = 1, there is a classical tauto-
logy A and a valuation v on £, for which v(A) = u.

To construct the required formulas, let M be the sentence
((p>q)>p) op. Define J;, for i <n, inductively, as follows:

J= M>q),
Jes1 = (M D Jy).

Now, let N; be J; o q.

Observe first that for every i, N; is a classical tautology. Sup-
pose that v is a valuation on ¥, such that v(q) = F. It must be
shown that v(J;) = F. But M is a classical tautology, and hence
is uniformly T. So, clearly, v(J;) = F. But if, by induction,
v(Jx) = F, then, by the same argument, v(Jy.;) = F, as required.

I complete the proof by showing that if v(p) = n—2/n—1 and
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v(q) = O, then v(Ny) = n—1—k/n—1. To establish this, first
prove that for every i<<nm, v(J;) = i/n—1. Now, computation
shows that v(M) is n—2/n—1. So, v(M > q) is 1 —n—2/n—1,
which is 1/n—1, as required. Suppose then that v(J) is k/n—1.
If k + 1 is defined, k < n—2. If k = n—2, then v(M > J}) is 1,
as required; if k <n—2, then vM o> J) =1 — n—2/n—1 +
k/n—1. By computation, this equals k+1/n—1, as required
Now, observe that v(Ny) =1 — k/n—1 = n—1—k/n—1.

3. Fragmentis containing the Biconditional

As mentioned at the outset, the fukasiewiczian biconditional
seems to occupy a position intermediate between the «classicals
connectives — —, &, and V — and the strongly «non-classical»
conditional connective. This intermediate position is evidenced
by the fact that, whereas the pure = -fragment of £, can be ren-
dered classical by a suitable choice of designated values, there
is no choice of designated values which will render the V=
-fragment classical. The — = -fragment is a mixed case, being
like the pure = -case if n is even and like the V = -case if n
is odd.

I begin my discussion of biconditional fragments by con-
sidering the pure = -fragment. Before the main theorem can be
stated, a bit of terminology must be introduced. Let us say that
a value u in L, is positive iff u has the form:

n—1—2s/n—1, for some s such that 0<s<q,

where q is n—1/2 or n—2/2 depending on whether n is odd or
even. A value u in }, is negative iff u is not positive. So, for
example, in k3, 1 and 0 are positive values and /2 is negative.
In kg, all of 1, 3/5, and /5 are positive, whereas /5, 2/5, and 0 are
negative. With this distinction in mind, the main theorem about
the = -fragment can now be stated.

THEOREM 3. The = -fragment of L, is classical relative to D
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iff (1) there is a value u such that u is not in D and (2) D
contains all positive values.

(=) 1f D is the set of all values, then everything is valid. Sup-
pose then that there is a positive value u such that u is not in
D. If uis 1, then nothing is valid. To complete the proof, it will
suffice to show that for every positive value u (# 1), there is a
classical tautology C and a valuation v on E, such that
v(C) = u.

Consider then the sentence (p=(gq=r)) = ((p=q)=1). This is
a classical tautology, of course. I show that this sentence can
receive any positive value. Suppose u is a positive value of
the form n—1—2s/n—1, where 1<s<q, with ¢ =n—1/2 or
q = n—2/2 depending on whether n is odd or even, Let v be
the wvaluation on L, such that v(p) = n—I1—s/n—1, v(q) =
s/n—1, and v(r) = 0. Then, by computation, v(q)=r1) = n—1—s/
n—1, and so, v(p=(q=r1))=1. On the other hand, v(p=q) =
1 —((b—1—s/n—1)—(s/n—1)). So, v(((p=q)=1) = 1 — v(p=q),
which is n—1—2s/n—1. Consequently, v assigns the sentence
(p=(q=1))=((p=q)=1) the value n—1—2s/n—1.

(&) Suppose that conditions (1) and (2) are satisfied. Then two
claims must be established:

a. If A is not a classical tautology, then A isn't valid in &,
relative to D.

b. If A is a classical tautology, then A is valid in L, rela-
tive to D.

I begin with (a). Let u be a value which is not designed. Ob-
serve that the part of the L, biconditional table involving only
1 and u has the form:

Y
[

o -
o -
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This is isomorphic to the classical table with 1 as T and u as
F.

Let A be a wff which isn't a classical tautology, and let v be
a classical valuation such that v(A) = F. Suppose that py,..., p.
are the propositional variables in A. Now, let v* be a valuation
in L, such that if v(p)=T, then v*(p;)=1 and if v(p;)=F, then
v*(pj) =u. By the isomorphism just mentioned, v*(A)=u.

Claim (b) remains to be established. To prove this, I intro-
duce the notion of equivalent normal form (ENF). Let A be a
pure =—wff whose propositional variables are py Pk Then

A is said to be in ENF iff it has the form:
Ar= (A= ... = (A1 = Ap)..),

where A; is a biconditional containing all the occurrences of
Px, in A The key fact connecting the logic k£, with the notion of

ENF is this:

LEMMA 2. For every pure = -wff A, there is a pure = -wff B
such that B is in ENF and the L, truth table for B has posi-
tive values at exactly the same places as the E, truth table
for A,

Observe first that a pure = -wff A can be transformed into a
wif in ENF using just (i) commutativity of the biconditional
and (ii) associativity of the biconditional. So, to prove the lem-
ma, it will be sufficient to show that the operations described
in (i) and (ii) have the property of transforming a wif C into a
wif D that has positive values in its %, truth-table at exactly
the same places as C.

case (i}. This is clear, since v(A = B) = v(B = A), on every
t., valuation.
case (ii). To prove this, note the following facts:
1. If v(p) and v(q) are both positive, so is v(p = q).
2. If v(p) and v(q) are both negative, then v(p = q) is
positive.
3. If v(p) is positive and v(q) is negative, or vice versa,
then v(p) = q) is negative.
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Proof of (1)-(3) is straightforward. Take (2), for example. Let
v(p) be n—1—(2t+1)/n—1 and let v(q) be n—1—(2u+1)/n—1.
Suppose, by symmetry, that t<u. Then, v(p=gq) = 1
—((0—1—(2t+1)/n—1) — (n—1—(2u+1)/n—1). But this equals
n—I1—2(u—t)/n—1, which is a positive value.

Given Facts (1)-(3), the following table shows that associati-
vity preserves positive and negative values.

r pP=q q=r (p=q =1 p=(q=1)

P P

Z 72 Z 2 v YN WY o
Z w o Z Z W™ a
b Z 92 9 Z

WY Z Z ZZ v

wZ Z w9 v Zz 9
W o Z 9 2Z 2
W2 v Z 2

Z

N N N
The equivalence of the last two columns proves the desired
claim and completes the proof of Lemma 2.

Given Lemma 2, I return to claim (b), Suppose then that A is
a classical tautology. Then, since the operations used in con-
structing the ENF in Lemma 2 are classically valid, it follows
that the ENF B given for A by Lemma 2 is also a classical
tautology. Consequently, every variable in B occurs an even
number of times. So, B has the form:

Al = (Ag = .= (Am-l = Am}),

where p; occurs an even number of times A;. Note now that
1

for every valuation v on L,, v(A;) is positive. This is obvious
if v(px,) is positive. If v(pki) is negative, then A; contains an
odd number of applications of the biconditional operation to a
negative value, and this will always yield a positive value.
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Since each A; is positive on every valuation, it follows that
B has a positive value on every valuation. By Lemma 2, A has
positive values exactly where B does. Therefore A is valid
relative to D in E,. This completes the proof of Theorem 3.

I now turn to the consideration of the — = -fragment of E,.
I begin by showing that the — = -fragment of odd-valued
Lukasiewiczian systems is strongly non-classical.

THEOREM 4. There is no set D of values in Lg,,; such that the
— = -fragment of Ly,,, is classical relative to D ().

If a set D is to determine classical logic, then the value 0 must
be in D. For —(p=-—p) is a classical tautology, and
v(—(p=—p)) = 0 when v(p) = /2. (Y2 is a value in any odd-
valued system.) But if 0 is in D, then —(p = p) is valid, since
it always takes the value 0.

Theorem 3 establishes that the pure biconditional fragment
of £, can be rendered classical by suitable choices of designated
values. I now show that, for even-valued systems, this result
can be extended to the — = -fragment.

THEOREM 5. The — = -fragment of L, is classical relative to
D iff (1) the value 0 is not in D (2) D contains all positive
values.

(=) Proof is parallel to the (=) part of Theorem 3.
(&) Assume conditions (1) and (2) hold. Two claims must be
established.

a. If A isn't a classical tautology, then A isn't valid in k.,
relative to D.

b. If A is a classical tautology, then A is valid in ks, rela-
tive to D.

(* I mention in passing the following odd fact about the Lypyy —1=-
fragment. Let D be the set of all positive values. Then the set — =-wifs
valid relative to D is the union of the set of classical tautologies and the
set of classical contradictions.
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In view of the fact that 0 is not designated, claim (a) is obvious.
To prove claim (b), I introduce the notion of negation-equi-
valential normal form (NENF). Let A be a — = -wff whose
variables are Pi 1o Pk_- Then A is said to be in NENF iff (1)

all negation signs in A are confined to propositional variables
and (2) A has the form:

A= (Ay=...= (A1 =A,)..),

where A; has the form (A';L = A‘i‘). Here A*; is a biconditional

containing all the occurrences in A of py that are not preceded
by a negation sign, and A;‘ is a biconditional containing all the

occurrences of Pk, in A. If either A‘: or A“i is null, then A, is

to be identified with the other constituent. Unless specified by
the preceding definition, assume that parentheses are grouped
to the left.

The key connection between the logic £y, and the notion of
an NENF is given by the following lemma:

LEMMA 3. For every — = -wif A, there is a — = -wif B such
that B is in NENF and the kg, truth-table for B has positive
values at exactly the same places as the Ly, truth-tables for
A,

Observe first that a — = -wif can be transformed into a wif in
NENF using just these four operations: (i) double negation, (ii)
the biconditional confinement principle permitting the replace-
ment of —(F = G) by F = —G, (iii) commutativity of the bi-
conditional, and (iv) associativity of the biconditional. So, to
prove the lemma, it will be sufficient to show that operations
(i)-(iv) preserve positive and negative values. Cases (iii) and
(iv) were discussed above.

case i, v(p) = v(——p), for all valuations v.

case ii. In an even-valued Lukasiewiczian logic, the negation
of a positive value is negative value, and the negation of a
negative value is a positive value. Using this information and
Facts (1)-(3) established in connection with Lemma 2, we con-
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struct the following table to show that the confinement prin-
ciple has the desired property:

p q —q p=q —(p=q p=—gq
P P N P N N
P N P N P P
N P N N P P
N N P P N N

This completes the proof of Lemma 3.

Before attempting to prove claim (b), it is necessary to bring
out one further fact about wffs in NENF. Let B be a wif in
NENF whose variables are Pryr oo Pr_ - Let P} be the smallest

subformula of B that contains all the occurrences of Px, in B.
By the definition NENF, py * has the form (A{'= A;), where

A{ contains all the unnegated occurrences of pkiin B and A;
contains all the negated ones. Let us say that a subformula Px *

is tautologous iff Py, Occurs an even number of times in both A;
and A;. A subformula Px, * is said to be contradictory iff P,

occurs an odd number of times in both A; and A; The re-

maining about NENF's needed to complete the proof of (b) is
this:

LEMMA 4. Suppose B is a wif in NENF. Then B is a classical
tautology iff (1) all subformulas Px * in B are tautologous

or contradictory and (2) there are an even number of con-
tradictory subformulas.

This claim is proved easily.
Recall that our aim is to show that if A is a classical tauto-
logy, then A is valid in ¥, relative to D. Suppose then that A is
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a classical tautology. Since the operations used in obtaining the
NENF in Lemma 3 are classically valid, the NENF B given for
A by Lemma 3 is also a classical tautology. By Lemma 4, all
subformulas Pi, * of B are tautologous or contradictory and

there are an even number of contradictory subformula. Now,
rewrite B in the form B":

Pe*=Er=..=( _*=p¥.)=

(pa1* = {pcg* - (P. ;- p"‘r)"')'

r—

where the p:, * are all the tautologous subformulas of B and the
Pc * are the contradictory subformulas of B. Since B’ is ob-

tained from B using commutativity and associativity of the
biconditional, the kg, truth-table for B’ has positive values
at exactly the same places as the Es, truth-table for B.

I now show that for every valuation v on ks, v(B') is posi-
tive. First, consider the left-hand constituent of B'. On every
valuation v, v(pti*) is positive For suppose that v(pti) is posi-

tive. Then the left-hand constituent A is clearly positive. The
right-hand constituent is also positive, since (1) p:, occurs an

even number of times in A?i, (2) the negation of a positive

value is a negative value, and (3) an odd number of applica-
tions of the biconditional operation to a negative value is a
positive value. The argument is parallel if v(pti) is negative.

Given that each p;, > is positive in every case, it follows that

the left-hand constituent of B' is positive in every case.
Now, consider the right-hand constituent of B'. On every
valuation v, v(p, 1*) is negative. For suppose v(pci] is positive.

Then the left-hand constituent A:1 of P * is positive. The right-
hand constituent A:i is negative, since (1) P, occurs an odd

number of times in A:{, (2) the negation of a positive value is
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negative, and (3) an even number of applications of the bicon-
ditional operation to a negative value is negative. The argu-
ment is parallel if v(pci) is negative. Given that each Pe * is

negative on every valuation and that there are, by Lemma 4,
an even number of contradictory subformulas in B, it follows
that the right-hand constituent of B’ is positive on every valua-
tion.

Since both the left and right constituents of B’ are positive on
every kg, valuation, it follows that B’ itself is always positive.
But now A has positive values at exactly the same places as
B'; so A always receives a positive value. By the condition of
the theorem, all positive values are designated. So, A is valid
in kg, relative to D, thus concluding the proof of Theorem 6.

To complete the investigation of biconditional fragments, I
shall show that the V = -fragment of any Lukasiewiczian logic
is strongly non-classical.

THEOREM 7. There is no set D of values of L, such that the
V = -fragment of L, is classical relative to D.

Clearly, the value 1 must be designated and there must be
some undesignated value. It will therefore be sufficient to show
that for every s such that 1 < s < n—1, there is a classical
tautology C and a valuation v on %, for which v(C) = n—1—s/
n—1

Let W be the sentence (p=q)V(g=1)) V (p =1). For
i<n—1, define Y; inductively by:

Y, = (W=p)
Yk+1 = (WEYk)

Now, let Z; be Y; = p".

First note that Z; is a classical tautology for every i. Since
W is a classical tautology, Y; will always receive the same
value as p’ on a classical valuation.

Let v be a valuation on %, that makes the assignment: v(p) =
1, v(q) = n—2/n—1, v(r) = n—3/n—1, v(p’) = 0. Such values
exist, because n = 3. I show that for any s such that 1 <s <
n—1, v(Z,) = n—1—s/n—1. To prove this, first establish that
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for any s such that 1 <s < n—1, v(Y,) = s/n—1. By computa-
tion, v(W) = n—2/n—1. So, v(Y;) = 1/n—1. For the inductive
case, suppose that v(Yy) = k/n—1. If k + 1 is defined, k<n—2.
If k =n—2, then v(Yy) is 1, as required. If k <n—2, then
v(Yx,1) = 1 — ((n—2/n—1)—(k/n—1)) = k+1/n—1.
Since v(Y,) = s/n—1, v(Z,) = n—1—s/n—1, as promised.

In conclusion, let me indicate briefly how the results ob-
tained system LN whose values are all the rationals in the in-

terval [0,1]. As might be expected, Theorems 1 and 2 carry over
to L“. Interestingly, however, the biconditional fragment of

LN is strongly non-classical.

THEOREM 8. There is no set of values D in £ such that the
N

pure = -fragment is classical relative to D.

The first point to note is that the biconditional table for %, oc-
curs as a sub-table of the biconditional table for £ . From the
N

proof of Theorem 3, we know that there is a classical tautology
which can assume every value that is positive in L,. To prove
the theorem, it will suffice to show that every rational in [0,1]
is positive in some L,. But this is evident. For if u is negative
in E,, then u has the form n—1—(2s+1)/n—1. In that case, u
is also equal to 2(n—1)—2(2s+1)/2(n—1), which is a positive
value in Eg,_;. Thus, the biconditional emerges as strongly non-
classical when the limitation to finitely many values is re-
moved.

University of Wisconsin Michael Byrp
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