FREE TOPOLOGICAL LOGIC

James W, GArsoN

0. Iniroduction

Topological logics are systems which contain an indexed
operator T, with the reading 'A is the case at (or ‘as of') x'
for 'TxA’'. So far, such systems have been propositional, in
the sense that while quantification is introduced over the in-
dices, they have lacked predicate letters, and individual terms.
It turns out that full-fledged systems of topological predicate
calculus with identity and descriptions may be constructed, and
shown sound and complete. The semantics for these systems
which is most faithful to ordinary usage, is axiomitized by ex-
tending free description theory [10].

1. Syniax

The syntax for such systems is easily defined. We simply
add 'T' to the usual notation for predicate logic with identity
and descriptions, and define the set Wff of formulas to be the
smallest set which has the formulas of the predicate calculus
with identity and descriptions as a subset, and satisfies the
condition that if A= WiIif and n is a term, then TnA e WIf

‘We might consider developping a 2-sorted system, one sort
for individuals, and the other for indices. But this is not essen-
tial for expressive adequacy, and so we will begin by discus-
sing single sorted systems, leaving a few remarks about 2-
sorted systems to the final section.

We also want to add the symbol '=' for quasi-(or inten-
sional) identity, as we reserve ‘="' for strict identity; so we
will count formulas having the form n=n’ as members of Wi
as well.
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2. Classical Semantics: TQ=—Satisfiability

We will now define a simple semantics for such a system.
We let a TQ=—model U be a pair <D, u>>, where D is a non-
empty set, which we may imagine to be the union of the set of
individuals with the set of contexts (times, places, possible
worlds or the like or sequences of these), and where u is an
interpretation function, which assigns to each term n, a func-
tion u(n) from D into D, assigns to each j-ary predicate letter
Pl a function u(P!) from D into the power set of D;, and assigns
to each formula of Wff a function u(A) from D into the set
{T, L} of truth values, and satisfies the following conditions for
all deD:

. un=n')(d) is T iff u(n) is u(n’)

. u(n=n’)(d) is T iff u(n)(d) is u(n’)(d)

i u(Ping...m;)(d) is T iff <u(ny)(d), ..., u(ny)(d)>> < u(Pi)(d)
. u{~A)(d) is T iff u(A)(d) isnot T

.- UW(ADB))(d) is T iff u(A)(d) is not T or u(B)(d) is T
u(TnA)(d) is T iff u(A)(un)(d)) is T

u(dx@x)(d) is T iff there is a variable y such that
u(@yjd) is T

L

-

HHAu

In 4., @x is any formula, and @y is the result of replacing all
bound occurrences of x in @x by the first variable not in @x,
and replacing every free occurrence of x in the result with vy.
In the above conditions we have assumed a system with the
symbols =, =, ~, o, T and H as primitives, and take the
other logical symbols to be defined. A set of formulas I' is
is TQ=—satisfiable just in case there is a syntax with 'S Wif
and a TQ=-model U=<D, u> such that u(A)(d) for some
deD foral A eI (Y.

We assume that our language contains both definite terms
(«rigid designators», such as ‘1969’ and ‘R. M. Nixon’), and in-
definite terms («non-rigid designators», such as ‘four years ago’
and ‘the president of the U.S.A.") (!). The latter are taken to refer

() An indefinite term is one whose denotation is a function of the con-
text of its use. A definite term is a term which is not indefinite.
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to functions from D into D, so that ‘four years ago' may refer
to the function Axx-4, on times, and 'the president of the U.S.A.’
to the function f such that f(d) is the individual who is presi-
dent of the U.S.A. at time d (). The definite terms may be
taken to refer to constant functions so that ‘1969’ refers to the
constant function with 1969 as value, and ‘R. M. Nixon' to the
function which has Richard Nixon as value. This is the standard
strategy for handling non-rigid designators in modal logics,
but it is particularly appropriate in topological logics. The
treatment of formulas and predicate letters continues this basic
strategy (*.

The condition =. reflects an intensional treatment of iden-
tity. For the truth of n=n' at d we do not require that u(n) be
u(n’), but only that they agree at the argument d. This corres-
ponds to the intuition that a sentence such as ‘R. M. Nixon is
the president of the US.A." is true in spite of the fact that ‘R. M.
Nixon' and ‘the president of the U.S.A.' do not refer to the
same functions. In clause T., we give the truth conditions for a
formula of the form TnA, saying that "TnA’ is true in context d
just in case "A’ is true in the context which results from ap-
plying the function referred to by 'n’ to the context d. So we
say 'A is the case (as of) four years ago’ is true in 1973 just in -
case ‘A’ is true in the year which reasults from applying the
function Axx-4 to 1973 (i.e. in 1969). In 4., we adopt the substi-
tution interpretation of the quantifiers. This is mostly for sim-
plicitly. A standard interpretation of the quantifiers may be
given which is equivalent to this (4.

() We have chosen examples where our contexts are times, but of
course our systems have much wider interpretations.

() In [1] and [4] we defined u as a binary function which assigns a sub-
set of Dj to each pair <d, Pj>, and similarly for formulas. The present
definition is a trivial reformulation of that one.

() When we adopt the standard interpretation of the quantifiers, then a
TQ-model is a triple <D, u ®>, where D is not empty, © is a subset of
the set of functions from D into D, and u(n), u(Pi) and u(p), are as before,
for atomic formulas p. The truth value of a formula A at d (u(A)(d)) is the
defined recursively by clauses =., =., Pi, ~,, D., T, and fd.: u(dx0x)(d)
is T iff ul/x(@x)(d) is T for some f&®, where uf/x is the function which
agrees with u save that u(x)=f. For a free semantics with the standard
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Our semantics has one ackward consequence. We do not dis-
tinguish between contexts and individuals at the start, as D
contains both. So it might turn out that a term 'n’ appearing in
a formula of the form '‘TnA’ refers to a function which ran-
ges over a set of individuals. This would force us to assign a
truth value to sentence A at the value u(n)(d), which requires
that u(A) be defined for arguments which turn out to be in-
dividuals. This is a notion which has promise in other uses
(for instance when A is an open sentence, and TnA, the result
of replacing some variable in A with n), but it is merely puzz-
ling here. Further difficulties arise when there are more than
one type of context. Of course one way out of this is to intro-
duce sorts in our syntax, but I think it is important to the flexi-
bility of these systems that syntactic complications be kept to
a minimum. If that is our aim we may point to one of several
good reasons for using free logic as a foundation for topologi-
cal logic, For in semantics for free logic, the extension of a term
is a partial function, and we may extend this idea to the exten-
sion of a predicate letter and sentence. So we may count the
value of u(four years ago) at Richard Nixon as undefined, and
we may do the same for a formula.

But there is another way out, if we are willing to change the
definition of a model a bit. We define a C-model to be a pair
<D, u>, where D is not empty and where u assigns to terms,
predicate letters, and formulas, functions of the appropriate
kind which are defined on a non-empty subset C of D. We then
require that u satisfy conditions for an interpretation function
for members d=C, and require that whenever a term n appears
in the context TnA, then u(n)(d)=C for all d=C.

interpretation, we need not introduce ©, since we may take the definition
of a TF-model, let u be defined for terms, predicate letters, and atomic
formulas (including formulas of the form Pinl...nj. but not including those
of the forms n=n' and n=n'), and define the truth value of a formula A

at d on u by clauses =., F=., F~,, FD. FT,, Fd.: u(dxA)(d) is T iff uu®/
x(A)(d) is T for some y such that u(y) is defined at d., and FI, If e is the
only member of D such that for some y, u(y)(d) is e and uu(¥)/x(A) is T,
then u(IxA)(d) is e. Otherwise u(IxA) is not defined at d. It is easy to see
that the semantics just given is a simple reformulation of TF-sematics.
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Actually, this repair is not necessary in a formal sense, for
it is not difficult to show that notions of TQ=satisfiability and
C-satisfiability are equivalent (%).

3. The system TQ==.

The system TQ==, which captures the concept of TQ=satis-
fiability is a simple extension of the system TQ [1] consisting
of the principles of quantificational logic with identity plus
the following rule and axiom schemata:

(R) If +~ A, then - TnA (%)

(A~) (~TnADTn~A)

(~A) (Tn~A>D ~TnA)

(AD) (Tn(A>B)>(TnAD>TnB))
(AQ) (Tn3yA> IyTnA), for y=#n.

To finish our description of TQ=, we provide axioms for inten-
sional identity. We want

(A=) n=n’,

but we do not want an axiom of unrestricted substitution for
=, for substitution behind a T-operator is not licit generally.
So we add the axiom schemata

(AS) (n=n'>(P(n)>P(n’)), where P(n) has one of the forms
Pin;...nj, n;=n; and P(n') results from replacing n’
for one or more occurrences of n in P(n) ().

() We prove that I' is TQ==x-satisfiable iff I' is C-satisfiable. Suppose I"
is TQ==-satisfiable. It follows trivially that I"' is C-satisfiable, since a
TQ==model is a species of C-model with C=D. Now suppose I' is C-satis-
fiable. It is a simple matter to show that if I" is C-satisfiable then I' is
TQ=-consistent, by the usual methods for soundness proofs. By the com-
pleteness proof of section 8, I' is TQ = -consistent entails that I" is TQ==-
satisfiable, so I" is TQ = -satisfiable.

(%) '+~ A’ means there is a proof of A in the system under discussion.

() Notice that (AS) does not have as an instance n=n'>(n=n>n=n’');
nor should it, since this formula is not valid.
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and

(AT) (n=n'>(TnA>Tn'A)).

We also need a rule to govern the relationship between ‘=’
and '='

(R=) If - (ADTyn=n’), and vy is foreign to A, n, and n’,
then— (Ao>n=n).

TQ== is TQ plus (A=), (AS), (AT), and (R=). We prove it com-
plete in section 8. The soundness is a simple exercise left to
the reader.

4 Contextual Quantifiers

In the semantic given so far, we have not tried to capture
an important idea of quantified modal logic: that the domain
of quantification might shift from context to context (possible
world to possible world). This idea is easily motivated when
we take our contexts to be times, and wish to give the seman-

tics for a present tense quantifier H, read 'there is now an x

such that'. For example, we might count the sentence ‘d x
taught Aristotle.’ false, on the grounds that while Plato taught
Aristotle, he does not exist now, nor does anyone else who
taught Aristotle. On this interpretation 'Plato taught Aristotle’

is counted true, and so it is'clear that  does not obey the
usual rule of existential generalization. In fact, as we will see,
the logical structure of this quantifier may be given by
strenghtening a system of free logic [10].

For the moment, however, we will use more conventional
methods to define the present tense (or more generally, con-
textual) quantifier. We simply introduce a one-place predicate
constant 'E', which is read ‘——exists’. We needn't consider
that the introduction of this letter commits us to the position
that 'existence is a predicate’, for it is not existence per se
(whatever that might be), but existence-in-a-context which we
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mean to capture. When our contexts are times, 'E' is read in
the present tense, when they are positions in space, it takes
on the reading ' exists here’ or ' is present’. Now it is
quite standard to count an objects position in space, as re-
presentable by a predicate, so there shouldn't be any difficulty
when our contexts are spatial, or spatio-temporal points. If
they are times, we can support our use of 'E' by pointing out
that for persons, and artifacts, at least, the notion captured by
‘E' may be defined in terms of perfectly standard predicates
such as ° is born’, is dead’, is manufactured’,
‘——destroyed’' and the like,.

With ‘E' safely in hand, we may provide the obvious defini-
tion of the contextual quantifier:

Def . dxA =a Hx(Ex&A).
d

Since ‘A’ is defined, we need only provide semantics for ‘E’ to
give a semantics for this system. To do so we expand the defi-
nition of a TQ=-model. An ETQ=-model U is a triple <D, u,
©>, where D is as before, and where © (since it is to be the
extension of a unary predicate letter 'E’) is a function from D
into the power set of D. The definition of u is the same as be-
fore, save that we require that u(E) is ©.

It is a simple matter to show that no new axioms are neces-
sary to completely axiomitize this semantics. The completeness
proof is given in section 8.

5. Free Topological Logic

In this section, we formulate semantics and axiomatics for
a system which takes the contextual quantifier as primitive,

We assume that we have —', 'o', 'd’, ‘=", ‘=", and ‘T’ in our

morphology but not ‘2’ and not 'E'. Then we define a semantics

for the system by letting a dT-model U be a triple <D, u, 6>
where D, u, and O are as described before, save that u is de-
fined so that
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ed. u ('élx@x) (d) = T iff there is a variable y such that
u(y) (d)E@(d) and u(@y)(d) = T.

This condition is simply the result of copying the truth condi-
tion for 'Hx(Ex&@y)’, on the semantics of the previous section.

It turns out that we may capture this semantics with a sys-
tem of free topolegical logic (TF=) which is described below.
The completeness and soundness of TF=, which we prove in
section 8, allows us to characterize the theorems of TF= in a
new way. Let us assume that TQ= is built on a morphology

with the symbols '—', '>’, 'T', '=', ‘=" 'o", ‘E', ‘4" and "él', and
and that ‘H' is defined by Def,.. Then the set of theorems of

TF= is the set of theorems of TQ= which are written in the
morphology of TF= (5.

We turn now to an alternative semantics for the contextual
quantifier that retains more of the spirit of free logic, in that
it offers a Strawsonian account of the denotation of a term. Up
until now, we have assumed that the function to which a term
refers is defined in every context. We have already seen a
reason to think that this should not be so. Consider ‘the
president of the U.S.A.". Now there are times in the past and
(presumably) times in the future when this expression fails to
denote. So we will want to be able to leave ‘the president of
the U.S.A." undefined except for those times when the presi-
dent of the U.S.A. exists.

So far we have treated the description operator as defined in
the usual way. Of course this has the drawback that descrip-
tions are not completely «termlike», in that universal instantia-
tion to a description is not licit unless uniqueness conditions
are met. This problem is simply dealt with in mathematics by
requiring of the syntax that no description be introduced unless
the uniqueness condition has been proven. But that makes the

(%) Proof. Suppose | gpA. Then clearly l_TQ A, Suppose |- A,

and A fails to contain ‘H’ or 'E'. Then by ETQ-soundness of TQ=, A is
ETQ-valid. But then A must be HT-valid, and by the completeness of TF,
F qp A
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syntax depend on the proof theory of a system, and it is a
remedy which doesn't apply to ordinary language where the
underlying theory is not specified.

But now that we have adopted a free semantics of the partial
function sort, a natural treatment of descriptions may be
developed without fiddling with the syntax. Descriptions are
just terms, an so refer to partial functions from D into D, and
they are defined at context d just in case their uniqueness con-
dition is satisfied at d. But what uniqueness condition ought to
be satisfied ? We have at least two choices. The first is that
Ix@x denotes at d just in case there is exactly one member in
the extension of & at d, and the other that it is defined just in
case there is exactly one member in the domain of quantifica-
tion @(d) for d in the extension of @ at d. But it is not clear to
me either of these choices is completely satisfactory.

It is often pointed out that 'The cat is on the mat.’ is resistant
to the usual treatment of descriptions because it does not imply
that there is exactly one cat, any more than that there is exact-
ly one mat. In fact the vast majority of sentences of ordinary
language which contain descriptive phrazes fail to entail their
corresponding uniqueness conditions. We might find a way
to categorize descriptive phrazes into syntactic categories de-
pending on what «uniqueness» condition is relevent to each.
But apart from the complication of the syntax involved, it is
doubtful that such a classification could be carried out with
any degree of accuracy. The reason is, I believe, that the kind
of condition which is relevent to fixing the reference of a
descriptive phraze depends on the context of the use of that
expression. For instance in one use of 'the cat’, the speaker
understands what I am referring to because I own exactly one
cat, and in another, because we are both in the presence of a
cat, and in another because we were just talking about his cat
etc... In none of these cases do we require that there be only
one cat in the context of our utterence (at least when spatio-
temporal contexts are at issue). Perhaps the second sort of
uniqueness condition then is more relevent here, for we might
maintain that in all these examples that the domain of quanti-
fication, or domain of our discussion for the context of our
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utterence included exactly one cat. If we must make a choice

between the two treatments of descriptions, then, the second

is more faithful to ordinary language. Description theory of

both kinds are discussed in [7], and the second is developed

in [9] for modal languages. We will develop a theory of the

second kind for topological languages below, but hesitantly.
Consider the sentence

(1) In 1942, the cat wasn't even born yet.
This we count true just in case
(2) 'The cat wasn't even born yet.’ is true in 1942;

but we do not fix the reference of 'the cat’ in (1) by the unique-
ness condition

(3) There is exactly one cat in the domain of quantifica-
tion of 1942,

for when (3) is satisfied, the unique cat in the domain of quan-
tification of 1942 is exactly not the cat we meant to refer to
since the one we wanted to refer to wasn't even born yet.

So if we want to do justice to the way ordinary language
works, we need to allow the possibility that some descriptions
behave even more like terms than we thought, in that their re-
ference is not fixed by the satisfaction of a uniqueness condi-
tion. Of course we will still expect the referent of 'the cat’ to
be a cat, and so we will want Hxx=Ix0x > @(IxDx); it is just
that we do not want xx=Ix@x D HI'Q’, or even Hxx=Ix@x

>HI'ox.

Actually there is another way to solve the problem just
presented by (1). If we extended our formation rules so that
the T-operator formed a new predicate Tn[P] from a predicate
P, then we might represent (1) in the form: The cat T1942
[wasn't even born yet]. Then we can no longer claim that (1) iff
(2) but rather that (1) iff the referent of ‘the cat’ falls into the
extension of the predicate T1942[wasn't even born yet]. Then
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our domain of quantification, not the one for 1942, could help
fix the reference of ‘the cat'. This modification has considerable
promise, and we develop it further in [3], but given the present
more usual symbolic resources, a weak description theory
seems indicated (*).

6. Free Semantics: TF-Satisfiability

We present a free semantics where descriptions have their
reference fixed by a context dependent domain of quantifica-
tion. A TF-model is a pair <D, u>, where D is a non-empty
set, and u is a partial interpretation, which assigns to each term,
a partial function from D into D, to each j-ary predicate letter,
a partial function from D into the power set of D, and to each
formula, a partial function from D into {T, L }, and satisfies the
following conditions:

L. If e is the only member of D such that for some v,
u(y)(d) is e and u(@y)(d) is T, then u(Ix@x)(d) is e.
Otherwise u(Ix@x) is not defined at d.

- um=n’)(d) is T, if u(n) is u(n'). Otherwise u(n=n’")
(d)is L.

F=. u(n=n") is defined at d iff u(n) or u(n') is defined at

d- When defined, u(n=n')(d) is T iff u(n)(d) is u(n’)
(d).

FPi, If u(ny), ..., u(n;), u(P), are all defined at d, then
u(Piny...n;) is defined at d, and u(Pin;...n;)(d) is T iff
<<u(ny)(d), ..., u(n;)(d)> = u(Pi)(d).

F~. u(~A) is defined at d iff u(A) is, and when u(A) is
defined u(~A)(d) is T iff u(A)(d) is L.

R

(® A system for this weakest sort of description theory is given by
deleting (Il) and (II) from TF (See section 6. and adding Hxx=Iy@y >
J(lydy). The semantics for this system results from replacing clause I. in
the definition of a partial interpretation by:If u(Ix@x) is defined at d, then
u(@(IxPx))(d) is T, and replacing wl. in the definition of a fiu. by
u(Ix@x)(d) is T for all deD. The completeness of this system is easily
proven using the strategy of section 8 and simple revisions for clauses in-
volving descriptions,
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F>. u((A>B)) is defined at d iff u(A) and u(B) are defined
at d, and when u((A>B)) is defined u((A>B))(d) is
T iff u(A)(d) is L or u(B)(d) is T.

FT. u(TnA) is defined at d iff u(n) is defined at d and
u(A) is defined at u(n)(d), and when u(TnA) is de-
fined, u(TnA)(d) is u(A)(u(n(d)).

Fd., u{éxﬁx) is defined at d iff u(@y) is defined at d for

some variable y, and when u(.Hx!Zix) is defined,
u(dx@x)(d) is T iff there is a variable y such that u(y)
is defined at d, and u(@y) is T ()

In FP., we do not require that u(Pin;...n;) be undefined if one
of u(ny), ..., u(n;) is undefined, because we make true and false
statements about entities which do not exist. (Example: Pe-
gasus is mythical.) But in F=., we have required that u(n=n’)
be undefined if one of u(n), u(n’) is undefined, for otherwise
n=n ceases to be valid. This definition has the advantage of
causing n=n to be valid without resorting to the ad hoc con-
ditions placed on identity used in [10].

To complete the definition of satisfability, we define a full
interpretation for u (f.i.u.). A function w is a fi.u. iff w assigns
to each term n a function w(n) from D into D, which agrees
with u(n), whenever u(n) is defined, to each j-ary predicate
letter Pi, a function w(P)) from D into the power set of D, which
agrees with u(P!) wherever u(Pj) is defined, and to each for-
mula A a function w(A) from D into {T}, which agrees with
u(A) whenever u(A) is defined, and satisfies the conditions
= . P, ~, D, T, plus

1

wl. If e is the only member of D such that for some v,
u(y)(d) is e and w(Qy)(d) is T, then u(Ix@x)(d) is e.

(**) Thomason [8] p. 135 complains of a vicious circularity in the defini-
tion of satisfaction when the substitution interpretation is used wiih des-
criptions. He is right if one interprets the quantifiers so that their truth
value of Hx@x depends on the truth values of the formulas of the shape
Pn, where n is any term. But by restricting the interpretation of the
quantifiers to the variables, we avoid the difficulty he mentions.
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and

wH, w(Hx@x)(d) is T iff there is a variable y such that
u(y) is defined at d and w(@vy)(d) is T.

A set of formulas I' is TF-satisfiable just in case there is a
syntax which includes the members of I, and a TF-model
U=<D, u> and a fi.u. w such that for some deD and all
Ael', w(A)(d) is T ().

7. The System TF.

TF is the system of topological logic which axiomitizes the
semantics just given. The soundness of the following prin-
ciples is easily verified. TF consists of the principles of proposi-
tional logic, axioms (A~), (~A), (AD), axioms for identity,
(A=), (AS), (AT), the rules (R), (R=), and the following prin-
ciples governing quantifiers and descriptions:

('3G) (("::[xx=n & @n) o 'F:[xﬂx)

(@=) ¥ydxx=y

(RQ) (A>tAy) is a theorem of TF, then so is (A:)t";ix@x).
(1) (xx=Iy@y > HxO!x)

() ¥x@lx>x=Iydy)

In these principles '¥x' abbreviates '~'E'lx~’, and '@!x' abbre-

viates ‘Qx&#y(ﬁyzy:‘—_x}', and ‘t' is any sequence (possibly
null) Tny... Tn; of T-operators, and y is a variable which does
not appear in A or t.

The axioms (H‘G), and {'él=) are familiar from free logic, [10],

(*Y) We mention the syntax in this definition to insure that the resulting
notion of satisfiability is compact.
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[11]: In [10] the axiom ¥x(@lx=x=Iydy) is given, but this
is not sound on our semantics. Thomason [9] gives (I!) and (1)
where ‘@lx’ abbreviates ‘¥ y(@y=y=x)'; but this formulation
is also too strong, and only works with a semantics where the
variables are rigid designators. The rule (RQ) is a strengthen-
ing of the usual rule of universal generalization, and was al-
ready developped for what I called t-formulations of topolo-
gical logic (**). It has some similarities with rules R4 and R5 of
[9]. Notice that the axiom (AQ) (see section 3) is missing from
TF. (AQ) is the topological analogue of the Barcan formula and
is not valid on our semantics because the domain of quantifi-
cation shifts from context to context (**).

8. Completeness Proofs

We prove the completeness of TF, and derive completeness
results for the other systems as corrolaries. We begin by
proving the Lindenbaum Lemma for our system, but for a some-
what modified notion of a saturated set. A set of formulas m
is a TF-model set just in case m is maximally consistent (**) and

tdx@xem if there is a variable y not in t such that t[éxx:
v&dy)em, and if ~n=n'em, then Ty~n=n'em for some
variable y.

Theorem 1. If T'" is a consistent set of formulas and there are
infinitely many wvariables foreign to I', then there is a
TF-model set A, such that 'CA.

Proof. We construct A from I" as follows. We order the set of
formulas, and then produce a sequence A, ..., A;, ... such that

(1*) So called t-formulations for topological logic appear in sections 2.3
and 3.3 of [2].

(%) See [6].

() We say T" |- A iff there is a conjunction G of members of I" such
that |~ GDA. T' is consistent iff not I'— L, where 1 is an arbitrarily
selected contradiction of propositional logic. I' is maximally consistent iff
I" is consistent and if A€T, then 'U {A} is not consistent.
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if A has the form t4x@x, then A, is t(dzz=y&@y), and if A,
has the form ~n=n’', then A;,; is Ty~n=n’, where y is a
variable which fails to appear in t or any of Ay, ..., A;. We then
define A; recursively by Ay=T, and A;=A;_; U {A;} if Aj_, U
{A;} is consistent, and A;=A;_; otherwise. Then A=U;_gA,.
It is a simple matter to show that A so constructed is a maxi-
mally consistent set. To finish the demonstration that A is a
TF-model set, we prove the following two lemmas.

Lemma 1- tdx@xeA iff there is a variable y not in t such
that t['::Ixx=y&Gy)eA.

Proof. Suppose that dx@xeA, Then for some value of i Ay
is tdx@x and A;_; U {A;} is consistent. So it follows that A=
Aj-1 U {A;}. Now consider A; U {A;,;}. By the construction

of the sequence this is A; U {t('é[zz=y&(25y) }, where v is a
variable chosen so that it fails to appear in t or free in any
of Ay, ..., A;. Now we prove that this last mentioned set is

consistent by reductio. Suppose A; U {t(E'Izz=y&®y}} is not
consistent. Then A; ~t(H.zz=y&Qy). By many applications

of axiom (A~), we have A; t~(ﬁzz=y&®y). Since y does
not appear in t nor free in any formula in A;, we may apply

(RQ) to show that A; t".;‘ynv('-'::[zz:y&gy). It follows then
that A; t-?-y('ézz=y3 ~@y), and so A; - (t’v"y'-é[zz=y >
t%‘y--@y}. But '?y'f'lzz=y is provable by (F=), and so, by
many applications of (R), t*'r"'::[zz=y is provable. So Aj -
t‘ﬁ;‘yn-'Qiy. and so Aj - ~td@x which contradicts the consis-
tency of A;. We conclude from the reductio that A; U {t(i;[zz:

v&@vy)} is consistent, and so t[é[zz=y&®y) e A
Now suppose that t(Hzz=y&Dy) € A for some variable y

not in t. Then by (ZG), (R), and (A ), t(Hzz=y&Dy) > tIxDx is
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provable and so it follows that tdx@x & A.

Lemma 2- If ~n=n"€ A, then Ty~n=n e A, for some
variable vy.

Proof. Suppose ~n=n'& A. ~n=n’ is A; for some j, and
Ai_1 U {A;} is consistent. A;,; is Ty~n=n’' for y foreign to
Ay, .... A;. Consider A; U {A;,1}. Suppose for reductio that this
set is not consistent. Then A; - Tyn=n' by (A~) and (R). By
(R=) it follows that A; —~ n=n', which contradicts the con-
sistency of A. We conclude that A; U {A;,;} is consistent,
hence A;,;is A; U {A;,1}, and Ty~n=n" € A,

We turn now to the second stage of the completeness proof.

Theorem 2, If A is a TF-model, there is a TF-model U,=<D,
u>>, such that A € D, and there is a f.i.u. w such that
w(A)(A) is T for all A € A.

Proof. Let us construct Us,=<D, u>> and w from A as fol-
lows. Let M be defined so that meM iff for some string t of
T-operators m is {A: tA=A}. For each term n, let s, be the
function defined on M such that s,(m) is {n' :n’ is a term and
n'=nem} for meM. Let S be {s,(m): n is a term and meM}.
Let D be MxS (). We define u and w simultaneously. Let w
be the function that assigns to each term n the function w(n)
defined so that w(n)(<m, s>) is <{A: TnAem}, s,(m)>>, for
meM Ind seS, and let u assign to each term the function
u(n) which is defined at <m, s> iff Hxx=nem, and is w(n)
when defined. Let w assign to each j-ary predicate letter P
the function w(P/) defined so that w(P})(<m, s>>) is { <dy, ...,
d;>: there are terms n,, ..., n; such that u(n)(<m, s>) is d;
for 1<i<j, and Piny...n;em}. Let u assign w(Pj) to Pi. Finally
w assigns to each formula A the function w(A) defined so
that w(A)(<m, s>) is T when Aem, and w(A)(<m, s=>) is 1

(*®} This choice of D is a bit cumbersome, but the use of ordered pairs
is necessary. If we define D to be the set of all model sets, and let u(n)(d)
be {A: TnA=d}, as we do in [1] and [4], the resulting model fails to satisfy
condition =.
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when A¢€m. We let u assign A the function u(A) which agrees
with w(A) whenever u(A) is defined, and we specify where
u(A) is defined, recursively as follows. If A has the form
Pin,...n;, then u(A) is defined everywhere on D. If A has the
form n=n’, then u(A) is defined everywhere on D. If A has the
form n=n’, then u(A) is defined at <<m, s> just in case both
u(n) and u(n’) are defined at <m, s>. If A has the form ~B,
then u(~B) is defined at d iff u(B) is defined at d. If A has
the form (B>C), then u(A) is definded at d just in case both
u(A) and u(B) are defined at d. If A has the form TnB, then
u(TnA) is defined at d just in case both u(n) is defined at d

and u(B) is defined at u(n)(d). If A has the form Hx@x, then
u(A) is defined at d iff u(@y) is defined at d, for some variable
y.

Now we must show that u and w are a partial interpreta-
tion and a f.i.u. respectively. First, we show w is a f.i-u. Clearly
w(n) is a function from D into D (for {A: tAesm}eM, and
sp(m) €S, for all meM), and it agrees with u(n) when defined.
Also w(Pj) is a function from D into the power set of Di, which
agrees with u(P)) when defined; and u(A) is a function from
D into the set {T, Ll }, which agrees with u(A) when the latter
is defined. So we need only show that w(A) satisfies the con-

ditions =., =., Pi,, ~., o., T., wl, and wH.. To do that we
need a few lemmas,

Lemma 3. If meM, then m is a TF-model set.

Proof- Suppose meM; then m is {A: tA=A} for some string
t. In [4], p. 113, we showed that {A: tA=A} is maximally con-
sistent when A is maximally consistent, so we need only

show that t'Hx@xem iff there is a variable vy not in t' such

that t'(ézz=y & Jy) € m, and if ~n=n'em, then Ty~n=n’
€ m for some variable y. Suppose t'Hx@xem; then t'Hx@x
e {A: tAeA}, and tt'HxOx € A, Since A is a TF-model, there
is a variable y not in tt' such that tt'(dzz=y & @y) A, and so
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there is a variable y not in t' such that t'(Hzz=y & @y) {A:
tAeA}. Now suppose there is a variable y not in t' such that
t'(Hzz=y & @y) € {A: tAeA}. So tt'(Hzz=y & @y) = A. But
tt'(Hzz=y & @y) O tt'Hx@x is provable in TF using (3G),
(AD), and (R). So by standard properties of a maximally con-
sistent set tt'Hx@x = A, hence t'dx0x € m.

Suppose ~n=n'&m. Then for some conjunction D of mem-
bers of m, - Do~n=n". By (R=), - DoTyn=n' for any
variable y foreign to D, n, and n'. By (R) and (AD), ~ tDD
tTy~n=n'. Since m is maximal DEm; hence tD=A. But then
A-tTy~n=n', so tTy=n' € A, and Ty~n=n' € m.

Lemma 4. n=n’' € A if n=n'&m, for all terms n, n' and any
meM

Proof. By (AS), ~n=n'Sn=n". By (R) and (AD) ~Tn"'n=n'>
Tn"n=n’ for any term n".- Using (R=), we conclude that
Tn"n=n'Sn=n'". Given (R) and (AD), it is a simple matter to
show by induction that for - tn=n'Sn=n’ for any string t.
As a result, if n=n'e{A:tAeA}, then n=n'&A for any string
t, hence if n=n'em, then n=n'€A for meM.

Lemma 5. w(n)(<m, s>) is w(n')(<m, s>) iff n=n'em, for
all seS.

Proof. We know that w(n)(<m, s>>) is <{A: TnA € m}, {n":
n"=nem}>, and similarly for n’, so w(n)(<m, s>)is w(n)
(<m, s>) iff {A:TnAem} is{A: Tn'Ae€m} and {n":n"=nem}
is{n"n"=n'em} iff

(4) TnAem iff Tn'Aem and n"=nem iff n"=n'em for
all formulas A and terms n".

Now suppose n=n'&m. Then by (AS) and (AT), (4). Now sup-
pose that (4). We have as a special case that n=nem iff
n=n'em, so by (A=), n=n'€m.

Now we will show that w(A) satisfies the conditions men-
tioned.
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=, Suppose w(n=n')(<m, s>>) is T. Then n=n'€m and
n=n'€A, by Lemma 4. But + n=n' O tn=n’' for any string t,
by axioms for identity, so tn=n'€A, for any t. It follows that
n=n'€m for all meM. By Lemma 5, w(n) is w(n'). Suppose
w(n=n')(<m, s>) is L. Then n=n'ém. So ~n=n'eém by
Lemma 3. But then Ty~n=n'em for some variable y, and
~n=n'€{A:TyAem}. But m'={A:TyAe€m} is a member of
M. By Lemma 5, w(n) (<m', s>>) is not w(n')(<m', s=>) for any
s, and so u(n) is not u(n’).

Pi, <w(ny)(<m, s>), ..., wn)(<m, s>>)> € w(P)(<m,
s>>) iff

(5) There are terms n, .. nj such that w(n)(<m, s>)
is w(n)(<m, s>) for 1<i<j, and Pin;...n; € m.

To complete this cause, we show that (5) iff Pin;...n; € m, for
w(Piny...n;)(<m, s>) is T iff Pin;...nj € m. Suppose Pini...n;
€ m. Then trivially, (5). Now suppose (5). By many applica-
tions of (AS) ny=n &...&n,-sn]f ) (Pin; n; D Pin;...n;). By

Lemma 5, n;=n’ & m for 1<n<j; so Pin;...n; € m.

=, Trivial, by Lemma 5 and (n=n')(<m, s>>) is T iff
n=n'em,

~. Trivial by Lemma 3 and properties of a maximally
consistent set.

D. Trivial by Lemma 3 and properties of a maximally
consistent set.

T. w(TnB)(<m, s>) is T iff TnBEm iff B€{A:TnB&m}
iff w(B)(<{A:TnBem}, s,(m)>) is T iff w(B)(w(n) (<m, s>>))
isT.

wl. Suppose that e is the only member of D such that
for some variable y, u(y)(<m, s>) is e, and w(@y) (<m, s=>)

is T. Let z be any variable and suppose that dxx=z € m.
It follows that u(z) is defined at <m, s>, so let c be u(z)(<m,
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s=>). Now if @z € m, it follows that there is a member of ¢ of D
such that u(z)(<m, s>) is ¢ and w(@z)(<m, s>>) is T. Since d
is the only member of D that satisfies that condition, d is ¢. So
u(z)(<m, s>) is u(y)(<m, s>>) and by Lemma 5, z=y € m. We

have just shown that for any variable z, if Hxx=z € m and
@z € m, then z=y & m. By standard properties of a maximally

consistent set Hxx=z o (@z>z=vy) € m, for any z. Since m is

a TF-model set J{?‘x{@x:)xsy} € m. We remember that @ysm,
so Plyem. Since u(y)(<m, s>) is e, u(y) is defined at <m,

s>, and 'E'ixx=yem. By (E.[G] and (!I}, we may prove élxx:y -
(Blyoy=Ix@x), so y=Ix@x € m. By Lemma 5, u(y)(<m, s>>)
is u(Ix@x)(<m, s=>), and so the latter is e,

wi, w(@x@x)(<m, s>>) is T iff IxOxem iff there is a
variable y such that ['é[zz=y & @y) € m iff both 'é[zz=y and Oy
are in m., But '-'::lzz=yem iff u(y) is defined at <<m, s>, and

¥yE€ m iff w(@y)(<m, s>) is T. So w(Hx@x)(<m, s>>) is T iff
there is a variable y such that u(y) is defined at <m, s> and
w(@y)(<m, s>>) is T.

We have completed the demonstration that w is a f.i.u., but
we still need to show that u is a partial interpretation. But
since u matches w where defined, it is clear that u(n), u(P)) and
u(A) are partial functions of the appropriate sort. It is also clear
by the construction of u(A), and the fact that u(A), where
defined, is w(A), that u satisfies conditions =., F=., FPi,, F~.,

F>., FT., Fd., Furthermore, u(Ix@x)(d) must be e, when e is the
only member of D such that for some vy, u(y)(d) is e and u(@y)
(d) is T. So to show that u satisfies I., we need only show that
otherwise u(Ix@x) is not defined at d.

Suppose there is no unique eeD such that for some v, u(y)
(<m, s>) is e and u(@y)(<m, s>>) is T. Suppose for reductio

that u(Ix@x) is defined at <<m, s>>. Then Jzz=Ix0x < m. By
the axiom of substitution of identities and (RQ), zz=Ix@x =
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m. Since m is a TF-model set, there is some y such that @y<m,

"\;‘x(ﬁx:)xzy] € m, and 't:lx_xzyem. So u(@y)(<m, s=>) is T.
Now u(y) is defined at <<m, s>>, so let u(y)(<m, s=>) be e. Sup-
pose there is some ¢ in D such that for some variable z u(z)

(<m, s>) is ¢ and u(@z) (<m, s>) is T. Then Hxx=zem and

Pzem. Since "'fx(ﬂx:)xsy) € m, it follows by (H'G) that
z=yem, and by Lemma 5, u(z)(<m, s>>) is u(y)(<m, s=>). So ¢
is e, and hence e is the only member of D such that for some v,
u(y)(<m, s>} is e and u(@y)(<m, s>) is T. But that contradicts
our initial premise, and we conclude that u(Ix@x) is not defined
at <<m, s>

We have finished the proof of Theorem 2. From this result
and Theorem 1 it follows that any consistent set I" is TF-satis-
fiable, and so TF is complete.

Now that we have a completeness proof for TF, proofs for
TQ=, and ETQ= follow easily. Let us start with TQ=. We
may prove Theorem 1 for TQ=, without any changes, other
than deleting dots from the quantifiers. We may define U,
exactly as we did in the proof of Theorem 2. Since T= uses
standard principles of quantification, 3xx=n is provable, and
it follows that u(n) is defined everywhere on D. It follows that
Uais a TQ=model. To show that ETQ= is complete, we use
the completeness proof for TQ to generate a TQ=-model
U,=<D, u>> for each model set A, and we let Ul'A be <D, u,

Q>, where Q is u(E). U:! is clearly an ETQ=model.

9. A 2-Sorted System

We develop a 2-sorted system by distinguishing two sets
of variables V!, V2, the first for contexts, and the second for
individuals. The sets N! and N2 of terms are the smallest sets
such that VICN!, and Ix@x  N! if x € V! and @x is a formula,
and similarly for N2 Then we may let a 2-model U be a triple
<<C, I, u>>, where C and I are non-empty sets (of contexts and
individuals respectively), and where u assigns to each neN!
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a partial function from C into C, and to each term neN? a
partial function from C into I, and to each predicate letter
Pi a function from C into the power set of (CUI)}, and to each
formula a partial function from C into {T, 1}, and u satisfies
the conditions for a partial interpretation save that the condi-
tion for the quantifier reads.

When neN!, then u(3x0x) is defined at d just in case
u(dy) is defined at d for some yeN!, and when defined
u(3@x)(d) is T, just in case there is a yEN! such that u(y)
is defined at d, and u(@y)(d) is T.

The definition of 2-satisfiability mirrors the one for TF-satis-
fiability.
This semantics is axiomitized by TF, save that a minor

modification of (HG) must be made to block illicit inferences
from one range of terms to the other. The completeness proof
is obtained by trivial modifications of the proof for TF.

If we introduce a 2-sorted system, we open the possibility of
providing separate quantificational principles for the two sets
of variables, with the principles of quantificational logic and

(AQ) governing dx for x&V?, and (G), (3 =), and (RQ) gover-
ning Hx for x&V? It makes sense to say that the set of (exis-
ting) individuals changes from one context to the other, but it
seems odd to claim that the set of existing contexts changes
from context to context. At least this seems odd when our con-
texts are times, places or spatio-temporal coordinates. The
resulting system's proof theory, semantics and completeness
proof may be pieced together using the results of this paper.

However, there are some ways to make sense of the idea of
a context-relative domain of contexts. If our contexts are pos-
sible worlds, then we might identify the set ©(d) of possible
worlds, available at d to be {e:Rde}, where R is Kripke's famous
accessibility relation. In fact we may define this relation in
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the object language of topological logic by Rxy =uar

Tx'-;f{zz=y *.

The theory of special relativity provides another, perhaps
more spurious way to make sense of this idea when contexts
are spatio-temporal coordinates. We might let ©(s) be the set
of points within the light cone with apex at s, counting the
points not in ©(s) as «unavailable» on grounds that persons at
s have, in principle no knowledge of, or causal relationships
with events at these points.

James W. GarsoN
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