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1. Systems of natural deduction are often prized for the simi-
larity they bear to intuitive, informal reasoning. This is
particularly true of those using Fitch's method of subordinate
proofs which allows for the perspicuous construction of what
may be thought of as arguments for the sake of the argument,
with representation of different types of arguments made pos-
sible by different types of subordinate proofs [1, 2]. For exam-
ple, the concept of a general subordinate proof provides an
extremely intuitive way of representing informal reasoning in
which a term, such as «John Doe» or «x», that ordinarily has
no referent (or even purported referent) stands in for terms
that do.

In [3]) Karel Lambert and Bas van Fraassen develop a system
of Fitch-style natural deduction rules for a language whose
statements contain the universal quantifier and the identity
sign among others, but no free individual variables or indi-
vidual constants. Quasistatements in which a variable x oc-
curs free are restricted to subordinate proofs general () with
respect to x; and vacuous quantifier elimination is allowed
only within such general subordinate proofs. In case an assump-
tion that the domain is non-empty is made, a special rule VQE,
permitting unrestricted vacuous quantifier elimination, is
provided; but the main rules are valid for the empty domain as
well as non-empty ones. The system is later extended by simply
adding individual constants to the intended language and mo-
difying the rules for identity in an obvious way: a universally
free logic results (). The system, both before and after its

(*) I am indebted to Professor Frederic B.Fitch for many helpful com-
ments on an earlier draft of this paper.

(1) Instead of using Fitch's «a subordinate proof general with respect to
x,» Lambert and van Fraassen use the terminology «a subordinate deriva-
tion general in x,» but there is no difference in meaning between the two.

(3 Following Karel Lambert, by a free logic, we mean a system of logic
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extension, however, lacks the intuitive simplicity typical of
those using Fitch's method. For instance, it is not clear: why
the rules for quantifiers, although valid for the empty domain,
are explained intuitively as if the domain were non-empty; or
why for the empty domain vacuous quantifier elimination is
allowed within general subordinate proofs; or why, once in-
dividual constants are added, general subordinate proofs are
not formulated in their terms and the awkward use of quasi-
statements — evident particularly in the formulation of the
identity rules — thereby eliminated altogether.

In this paper, a system of Fitch-style rules for free logic is
also proposed, but one which differs from Lambert and van
Fraassen's in a number of ways. The language is richer, con-
taining as singular terms both free individual variables and
individual constants; but, as the syntactical notation used has
the effect of treating both exactly alike, without rewriting the
rules, either could be omitted in favor of the other. The func-
tion of general subordinate proofs is explained in a novel way
and closely related to an understanding of the rules. And, in
another departure from Lambert and van Fraassen, an inter-
pretation of the quantifiers, which assumes neither that sin-
gular terms denote nor that the domain is non-empty, is used
in addition to account for the rules. A system of rules for a
logic valid for only nonempty domains with singular terms
that are assumed to denote is proposed first. A free logic valid
for only non-empty domains is then formed from these rules
by simply placing a restriction on two rules, the rules of uni-
versal quantifier elimination and existential quantifier intro-
duction. A universally free logic is formed by placing a some-
what stronger restriction on those same two rules.

2. The rules to be presented are intended for a language having
the following characteristics. The primitive signs are: predi-
cates; individual variables; individual constants; the usual

in which not all singular terms are assumed to denote; by a universally
free logic, a logic which is both free and valid for empty as well as non-
empty domains.
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sentential connectives ‘~' and 'D'; the quantifier letter '3';
the sign "‘="; and the two parentheses '(' and ‘)'. As syntactical
notation, the letters ‘x,” ‘y," and ‘z' are used to stand for arbi-
trary individual variables; ‘a,’ 'b," and ‘¢’ for arbitrary indivi-
dual constants; 't ‘t;," ‘ts," ..., and 't,’ for arbitrary individual
constants and variables alike. The letters ‘A,’ ‘B, and ‘C’ are
used to stand for what we shall call sentences. The sentences
are: Fiy, fy, ..., t,, where F is an n-place predicate; {; = t5; ~ A;
(A D B); (x)A; and (Ix)A. An occurrence of an individual
variable x in A is bound in A if it occurs in a part (I x)B or
(x)C of A; if an occurrence of an individual variable is not
bound in A, it is free. All occurrences of individual constants
are free, Notation like (;/ts)A is used to refer to a sentence
exactly like A except that in it # occurs free wherever t
occurs free in A, although there may be occurrences of t; at
places where #; does not occur free in A. Notation like A(t;/ts)
is used to refer to a sentence exactly like A except that in it
t; occurs free in just the places (and no others) that t; occurs
free in A (*). Much simpler quantifier and identity rules may
be formulated using this notation.

The method of subordinate proofs used is essentially Fitch's
as are the rule of reiteration and the rules of introduction and
elimination for each sentential connective in the language
(see Appendix). The introduction and elimination rules for
identity are the following:

Rule of identity introduction («id int»): t = ¢ may be entered
as an item in any proof.

Rule of identity elimination («id elim»): A is a d.c. (direct)
consequence) of {; = t; and (,/ts) A. (Note: in (ti/fz) A there may
be occurrences of f; at places {; does not occur free in A; thus,
all free occurrences of f; in (t1/t;) A need no be replaced by oc-
currences of {3 to get A.)

We understand that 4 = 1; is true if and only if ¢, and &, are

(* In other words, (#;/t5)A is the result of replacing all free occurrences
of tp by t;, where #; does not become bound anywhere in (1;/t;)A that t,
is free in A. A(l/ty) is (t;/t5)A, where t; does not occur free in (t/tg)A
anywhere that i3 does not occur free in A.
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the same term or have either the same referent or the same
purported referent.

3. There is also an introduction and elimination rule for each
of the quantifiers. These rules are closely related to the fol-
lowing interpretation of universal and existential sentences:
(x)A is understood to be true if and only if

(1) for every singular term t that denotes, (#/x)A is true;
and (3 x)A is understood to be true if and only if

(2) there is a singular term ¢ that denotes such that (t/x)A
is true.

This interpretation assumes that everything in the domain has
a name, but not that the domain is non-empty, nor that every
singular term denotes (). In an empty domain, of course, no
singular term denotes; and thus, by our interpretation, all
universally quantified sentences are true and all existentially
quantified ones false,

General subordinate proofs are important in formulation of
the rules for quantifiers. A subproof general with respect to t
may be either hypothetical or categorical, and a sentence A
may be reiterated into it from the proof to which it is directly
subordinate so long as t is not free in A. The restriction on
reiterates insures that any sentence outside of the subproof in
which ¢ is used has no bearing on t inside the subproof. Much
like «John Doe» or «x» in informal reasoning, ¢ in a subproof
general with respect to { has no referent or even purported
referent, yet because it stands in for any term that does, it is
treated as if it does denote. The line of reasoning is then valid
for any term that does. Thus, a categorical subproof general
with respect to ¢ which has A as an item holds if and only if
for every singular term t; that denotes, ({;/{)A is derivable in
the proof to which the subproof is directly subordinate. And

() Subjunctive conditionals, it seems, are needed to provide an inter-
pretation which does not make the assumption that everything in the
domain has a name. :
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a subproof general with respect to t which has A(f/x) as an
hypothesis and B as an item, where t does not occur free in
B, holds if and only if a subproof which has (#,/t)A(#/x) as an
hypothesis and B as an item holds for every singular term #
that denotes.

The rules of universal quantifier introduction and existential
quantifier elimination both make use of general subordinate
proofs.

Rule of universal quantifier introduction («u q int»): (x)A
(x/t) is a d.c. of a categorical subproof general with respect to
t that has A as an item.

Rule of existential quantifier elimination («e q elim»): B is
a d.c. of (Ix)A and a subproof general with respect to t with
A(t/x) as its only hypothesis and B as an item, where ¢ is not
free in B.

The rule of universal quantifier introduction says, in effect,
that (x)A(x/t) may be entered as an item of a proof if it is
shown previously that for every singular term 4 that denotes,
(h/t)A is derivable in that proof. The rule is clearly valid, as
(x)A(x/t) is true if and only if for every singular term t; that
denotes, (ti/x)A(x/t) is true and (I,/t)A is the same as (4;/x)A
(x/t). The rule of existential quantifier elimination says, in ef-
fect, that B, where t is not free in B, may be entered as an item
of a proof in which (Ix)A is a previous item if another pre-
vious item is a subproof which has (f;/t)A(t/x) as an hypothesis
and B as an item and holds for every singular term t; that de-
notes. The rule is clearly valid, as (3 x)A is true if and only if
there is a term ¢ that denotes such that (f;/x)A is true and
(t/t) A is the same as (f;/x)A(x/t).

4. The deduction rules presented so far are valid whether or not
the domain is assumed non-empty and whether or not singular
terms are assumed to denote; moreover, they could not be
strengthened on either assumption. The situation is different for
the rules of universal quanifier elimination and existential
quantifier introduction.

The following are for a system intended for a language in
which all singular terms are assumed to denote.
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Rule of universal quantifier elimination («u q elim»):
(t/x)A is a d.c. of (x)A.

Rule of existential quantifier introduction («e q int»):
(Ix)A is a d.c. of (t/x)A.

The rule of universal quantifier elimination says that (t/x)A
may be entered as an item of a proof in which (x)A is an item.
Where (x)A is an item of main proof or a subproof not general
with respect to t or subordinate to a subproof that is, the rule
is justified, as (x)A is true only if (#/x)A is true, where { is a
singular term that denotes, and terms are assumed to denote.
Where (x)A is an item of a subproof that is either general with
respect to t or subordinate to a subproof that is, the rule is
also justified, as, within a subproof general with respect to ¢,
t is to be treated as if it refers. The rule of existential quantifier
introduction says that (3 x)A may be entered as an item of a
proof in which (#/x)A is an item. Where (#/x)A is an item of a
main proof or a subproof not general with respect to t or su-
bordinate to one that is, the rule is clearly justified, as (Ix)A
is true if there is a term t that denotes such that (#/x)A is true
and all singular terms are assumed to denote. It can be readily
seen that the rule is justified also where (#/x)A is an item of a
subproof general with respect to t or subordinate to one that is.

The two rules just presented are for a system intended for a
language in which singular terms are assumed to denote and
are, therefore, valid for only non-empty domains. If the assump-
tion that singular terms denote is dropped, but the condition
that the domain is non-empty retained, the rules of universal
quantifier elimination and existential quantifier introduction
are still valid in case the quantifiers are vacuous, in other
words, x is not free in A. This is not difficult to see considering
that: the domain is assumed non-empty (thus, at least one term
denotes); (t/x)A is the same as A regardless of whether t de-
notes or not; (x)A is true if and only if for every singular term
t that denotes, (t/x)A is true; and (I x)A is true if and only if
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there is a singular term ¢ that denotes such that (#/x)A is true.
Indeed, if the domain is non-empty and if x is not free in A,
than (x)A, (3x)A, and A should be derivable from each other.
In case x is free in A, however, the rules are not valid: if ¢
does not denote, (x)A may be true, yet (¢/x) A false; and (#/x)A
true, yet (3 x)A false. In a subproof that is either general with
respect to ¢ or subordinate to one that is, t is always treated as
if it denotes, so, within such a subproof, (t/x)A should be deri-
vable from (x)A and (3 x)A from (t/x)A. Thus, for a free logic
valid for only non-empty domains, the following restriction on
the rules of universal quantifier elimination and existential
quantifier introduction is needed.

Restriction I («re I»): x occurs free in A only if ({/x)A is an
item of a subproof that is either general with respect to ¢ or
subordinate to a subproof that is.

By the rule of universal quantifier elimination with restric-
tion I («u q elim re I»), only within a subproof general with
respect to t is (t/x)A a direct consequence of (x)A, where x
occurs free in A; and by the rule of existential quantifier intro-
duction with restriction I («e q int re I»), only within a subproof
general with respect to t is (Ix)A a direct consequence of
(t/x) A, where x occurs free in A.

In a universally free logic, it is not assumed either that the
domain is non-empty or that singular terms denote. Therefore,
it does not follow that at least one term denotes. If no term
denotes, even though x is not free in A (and, thus, (t/x)A is the
same as A), (x)A may be true, yet (#/x)A false; and ({/x)A true,
vet, (3 x) A false. Indeed, if the domain is empty, all universally
quantified sentence are true and all existentially quantified
ones false. But, within a subproof that is either general with
respect to { or subordinate to a subproof that is, even though
x is not free in A, (t#/x)A should be derivable from (x)A and
(Ix)A from (#/x)A, as within such a subproof the term i is
treated as if it denotes and the domain, in effect, assumed non-
empty. With this in mind, it is not difficult to see how any
sentence could be derived in a categorical subproof general
with respect to f if it is assumed that ~(3x) (x=x) (i.e., the
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domain is empty) (). Thus, for a universally free logic, a some-
what stronger restriction on the rules of universal quantifier
elimination and existential quantifier introduction is needed.

Restriction II («re II»): (#/x)A is an item of a subproof that is
either general with respect to t or subordinate to a subproof
that is.

By the rule of universal quantifier elimination with restric-
tion II («u q elim re II»), only within a subproof general with
respect to ¢ is (&/x)A a direct consequence of (x)A, even if x
does not occur free in A; and by the rule of existential quan-
tifier introduction with restriction II («e q int re II»), only
within a subproof general with respect to t is (3x)A a direct
consequence of (#/x)A, even if x does not occur free in A. In
this system of universally free logic, however, the following
may be obtained in only a few steps as derived rules.

DRI: (#/x)A is a consequence of (x)A and (I x) (x=1), where
tis not x (%).

DR2: (3x)A is a consequence of (t/x)A and (Ix) (x=4),
where t is not x (7).

5. The three systems of logic presented might have been con-
structed in reverse order, except for the familiarity of the first;
then, removal of a restriction could be viewed as the addition
of an assumption just as addition of VQE to Lambert and van
Fraasen's system is. A case is not made here for regarding
universally free logic as basic; but it should be noted that the
interpretation of the quantifiers, which assumes neither that
singular terms denote nor that the domain is non-empty, works
well in explaining the quantifier rules for all three systems, and
that for the rules of universal quantifier introduction and

(°) Reiterate ~(3x)(x=x) into the subproof; enter {=t as an item by id
int and apply e q int re II to get (Ix)(x=x); then apply neg elim to get
A. By u q int, (x)A is a direct consequence of the subproof; therefore,
under the assumption that the domain is empty, any universally quantified
sentence is derivable.

(*) Use reit, u q elim re II, id elim, and then e q elim.

() Use reit, id int, id elim (twice), e qu int re II, and then eq elim.
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existential quantifier elimination, which belong to all three
systems, it is all that is needed.

APPENDIX

A proof is a column of items boarded on the left by a vertical
line extending the length of the column. Each item is either a
sentence or another proof. A proof which is an item of another
proof is a subordinate proof (subproof). A subproof is subor-
dinate to any proof in which it is an item, or an item of an
item, and so on, but is directly subordinate only to the proof
in which it is itself an item. A subproof may be either a reqular
subproof or a general subproof. A general subproof has an
individual constant or variable to the immediate left of the
upper part of the vertical line associated with it, a regular sub-
proof has none.

A sentence item of a proof may be either (i) an hypothesis,
(ii) a direct consequence of preceding items of that proof, by
one of the rules of direct consequence, or (iii) in case the proof
is a subproof, a reiterate by the rule of reiteration of a sentence
(a) that precedes the subproof as an item in the proof to which
the subproof is directly subordinate and (b) in which t does
not occur free in case the subproof is general with respect to
t. The hypotheses, if any, are the first items of the column and
are separated from the others by a short horizontal line exten-
ding out to the right of the vertical line. A proof with hypo-
theses is a hypothetical proof; a proof without is categorical.
A theorem is the last item of a categorical main proof. A main
proof is a proof not subordinate to any other proof.

The rule of reiteration is simply the following:

Rule of reiteration («reit»). Each sentence is a reiterate of
itself.

Among the rules of direct consequence, one introduction and
one elimination rule is given for each sentential connective in
the language. The usual two valued interpretation of these con-
nectives is assumed. All other sentential connectives of two
valued logic are definable in terms of negation and implication
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and the rules for them are derivable from the rules for negation
and implication,

Negation introduction («neg int»). ~ A is a direct consequen-
ce (hereafter abbreviated as «d.c.») of a regular subproof that
has A as its only hypothesis and has both B and ~B among its
items.

Negation elimination («neg elim»). A is a d.c. of any pair of
sentences B and ~ B.

Implication introduction («imp int»). A > B is a d.c. of a
regular subproof with A as its only hypothesis and B among its
items.

Implication elimination («imp elim»). B is a d.c. of A and
A D B.

The rules of negation elimination and implication elimina-
tion should be obvious; in the other two rules, however, a sen-
tence is a direct consequence not just of a pair of sentences but
of a regular subproof. As suggested earlier, a subproof functions
as an auxiliary to the proof to which it is directly subordinate
as a sort of argument for the sake of the argument. By the
rule of reiteration, a regular subproof may have as its items all
of the sentences preceding it in the proof to which it is directly
subordinate. If it is hypothetical, it has, of course, its own
hypotheses as items. From this, it follows that any item of a
regular subproof could be derived in the proof to which the
subproof is directly subordinate if the hypotheses of the sub-
proof were available. Thus, the rule of negation introduction,
in effect, says: ~ A may be entered as an item of a proof if it
is shown previously that a sentence and its negate are deri-
vable from the sentence items of that proof plus A. And the rule
of implication introduction says: A > B may be entered as an
item of a proof if it is shown previously that B is derivable from
the sentence items of that proof plus A.

The University of Alabama Kathleen Jonnson Wu
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