FORAYS INTO THE META-THEORY OF FUZZY SET THEORY

I. GraTTAN-GUINNESS

1. Introduction

In a recent paper [2] I suggested a generalisation of the
basic definitions and concepts of fuzzy set theory in which the
values of fuzzy membership are mapped onto intervals within
[0,1] rather than onto numbers between 0 and 1. The advan-
tages obtained were partly conceptual and partly technical:
the necessity of specifying an exact number-value to fuzzy
membership, surely contrary to the purpose of the theory, is
mitigated by assigning an interval value instead, which is
less specific (though of course not fuzzy); and there is a struc-
ture-similarity between fuzzy sets and their interval values,
absent from number-valued membership, in that both are sus-
ceptible to the same kinds of set-theoretic combination. These
include not only the usual means of combination but also the
arithmetical combinations of sets used in interval analysis [7].
I also further generalised the approach to make use of Young's
theory of many-valued quantities [8], where the value of fuzzy
membership is a sub-set of [0,1].

The modified theory is much richer in forms of combination
than is its number-value-based predecessor, even though I
deliberately restricted in [2] the number of order-relations that
may apply between intervals. The range of such relations can
be gauged from the interesting papers of Jahn (see especially
[3] and [4]). His studies are independent of mine and are main-
ly confined to interval analysis itself, although he has noticed
its possible bearing on fuzzy set theory. The purpose of this
paper is not to develop further fuzzy set theory, but to ex-
plore the structure of its metatheory.

After recalling in section 2 the outline of the system defined
in [2], I formulate in section 3 the ideas of derivation, validity
and consistency that apply in this theory. Some special pro-
blems arise in connection with the definition of negation, and
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section 4 is devoted to them. Section 5 contains perhaps
the most interesting and individual results, in dealing with
the fuzziness of a certain part of the meta-theory. The meta-
theory as a whole is elaborate, and so I have confined myself
to principal definitions and properties, and have dealt only
with interval-valued membership.

In the terminology of current studies in fuzzy logic, my sys-
tem is a ‘basic logic'. Some work, notably that of Bellman and
Zadeh in [9], extends the notion of fuzziness to define such
concepts as ‘rather true'. I am not convinced of the validity of
such concepts, and I have not introduced their analogues here.

2. Resumé of the system

I refer to [2] for the details of the definitions and proofs
which I developed there, but I must recapitulate here the prin-
cipal features.

2.1, Brackets. Peano dots are used to reduce the need for
round brackets. Other types of brackets are used as follows:

[x, vl closed interval with end-points x and vy.

{x,v,...} unordered set of x, v, ....

(X, v, ...) ordered set of x, y, ....

[ ] indication of derivations: the references placed
within refer to the definitions and/or theorems used
to obtain the preceding definition or theorem.

2.2. Logic and set theory. Standard notations are used, save
that ‘A’ denotes a propositional function, ‘A’, ‘B, ... denote
fuzzy sets and '{A,} a class of them, ‘R’ and 'S’ fuzzy relations,
and T, 'J', ... {I,} closed intervals within [0, 1].

2.3. Properties on real numbers.

Glb: Ax, = df glb{x,} (2.3.1)
L

Lub: Vx, = df lub {x,} (2.3.2)
o
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Subtraction: x ~y = df x—vy.V.0. (2.3.2)

2.4. Interval arithmetic, The interval I is expressed in terms of
its end-points by

I = [ i]; (2.4.1)

1’ refers to either end-point. We also define

Width: wid (A) = i, —i,. (2.4.2)

The interval-valued membership of x to A is symbolized by
‘wa(x)'. ‘A’ is an operator symbol ranging over the means of
combining intervals (or other kinds of set). ‘0’ similarly ranges
over order-relations between intervals.

The definitions of interval combination follow as far as
possible the schema

IAJ = df {iAj|iel, jed}, IAJCS[01]: (2.4.3)

Addition: T+ J = df[iy + ji. A .1, i +jo. AL 1], (2.4.4)
Subtraction: I =J = df [ij = j, i; = ji], (24.5)
Multiplication: I X J = df [iy X ju ir X jil, (2.4.6)
Division: I+ J = df [l = jr. A .1, L= ji. A . 1], (2.4.7)
Complementation: I—J = df {x|xeI.A.x ¢J}, (2.4.8)
Minimisation: TA J = df [i, A ju ir A jd, (2.4.9)
Maximization: IV J = df[i; V j, i; V j]. (2.4.10)

The ordering relations on intervals are based on these three:

Inferiority: ISJ = df i < j.A.i; < j, (2.4.11)
Improper inclusion: IS J = df i} = j; A.i, < j, (2.4.12)
Equality: I=J = df iy = j;. A .1, = ju; (2.4.13)

It is obvious how to define further relations, such as ‘=" and
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‘c’. Jahn's work has included defining such relations: for
example, in [4], 116 he distinguishes for '<' between inferiority
with partial overlap and with disjointness — that is, for I < J
between the cases i, = j, and i, <j, [(2.4.1)].

2.5. Interval-valued fuzzy membership. As with (2.4.3), I fol-
low as far as possible the definition schema

Wasg (X) = df wa(x) A ws(x). (2.5.1)

When A is +, =, x, +, U and N, (2.5.1) applies as it stands.
In addition, I define

Conjunction: waag(x) = df wa(x) A ws(x), (2.5.2)
Disjunction: wavp(x) = df wa(x) V ws(x), (2.5.3)
Complementation: w,'(x) = df J = wy(x). [(2.4.5)] (2.5.4)

I have argued for (2.5.2) and (2.5.3), with their associations of
conjunction with minimisation, and of disjunction with maxi-
misation, in [2], 153, (2.5.4) differs from the definition given
there, where [0,1] rather than J was used; the reasons will
emerge in section 4.

2.6. First-order mathematical logic. Since the underlying logic
is non-classical, I indicate each fuzzy connective by attaching
an asterisk to the corresponding classical symbol. The valua-
tion given in my [2], 157-158 is as follows (with a modification
of negation to J, this time from [1, 1]), where ® and ¥ are
general well-formed formulae:

Negation: V(TI*®) = df J - V(®), (2.6.1)
Disjunction: V(® v*¥) = df V(@) V V(¥), (2.6.2)
Conjunction: V(® A* W) = df V(®) A V(¥) (2.6.3)

Implication: V(® —*¥) = df V(TI* ®) + V(¥), [(2.4.4)]
(2.6.4)
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Equivalence: V(®<* W) = df V(D >* W, A* W * ),

(2.6.5)
Universal quantification:"
V((Vx)x)) = df AV@Ax) = Awa(x), (2.6.6)
Existential quantification:
V((Ix)(Ax)) = df VV@Ax) = Vwu(x). (2.6.9)

3. Derivation, validity and consistency

3.1. Forms of definition. Lee and Chang [6] have produced
some straightforward definitions of validity and inconsistency
in the ordinary form of fuzzy set theory, and these can be
generalised as follows. Derivation is perhaps the most im-
portant idea, and it can be defined in various forms relative
to a given valuation. Here are some:

¥ is I-derivable from ® under the valuation V, symbolically

*
‘D~ ¥, if
Ly
I< V(@) < V(¥). [(2.4.11)] (3.1.1)
*
Y is derivable from ® under V, ® - ¥, if there is an interval
v
I for which it is I-derivable, so that
V(®) < V(¥). (3.1.2)

W is classically derivable from ® under V,® W, if it is I-
derivable from ® under V for all I. Y

W is categorically I-derivable from ®, ® : ¥, if it is I-deri-
vable for all V. I

*
¥ is categorically derivable from ®, ® ~ ¥, if it is categorical-
ly derivable from @ for all I.
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To be more strict, categorical derivability should be defined
only relative to some mutually consistent set of valuations;

for otherwise it is unsatisfiable by any formula. Relative to
this point, a number of theorems easily follow, such as:

* *
L, €L and® -~ W then @ — W,
L,V IV

*
® ¥ ifandonlyif ® - W.
[1,1],V

‘We can define similar properties for the validity of @. I give
the formal definition of one:

*
® is I-valid under V, i;v ®, if
1< V(D). (3.1.3)

Similarly we can have the properties:

*
Valid under V, - ®;
v

Classically valid under V, +~ ®;
v
%k
Categorically I-valid, +~ ®;
I

%
Categorically valid,  ®.

The inconsistency of ® can be treated in the same way, start-
ing off from:

%*
& is I-inconsistent under V, —®, if
LY

1= V(@) (3.1.4)
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Theorems similar to those for derivability can be proved; in
particular, classical validity of ® corresponds to its classical
theoremhood. We can also make use of this theorem in fuzzy
set theory ([2], 154):

Theorem 31.1. If F(A,) is a combination of fuzzy sets under
the operations +, X, A and V, and A, < B, for all u, then
F(A,) < F(B,).

The valuation (2.6.1)-(2.6.5) shows that we have the following
structurally similar meta-theorem:

\ *
Theorem 3.1.2. If &, W, for all u, and F(®,) is a logical com-
LY

bination of the {®,} which involves no negations, then
*
F(®,) ~ F(W,). (3.1.5)
‘ Lv

3.2. The deduction theorem and axiomatisation. The deduction
theorem takes the following form in this system:

* *
Theorem 3.2.1. If ® W, then - ® >* W,
LY LY

Proof. The premises show that

i < px < Y. [(3.1.1)] (32.1)
Now
V@->*Y) = [[i~q) +W. AL Ge=q@) + 9. A L]
[(2.6.4)]
Z [y ¥l [(3.2.1)]
= L [(3.2.1)] Q.E.D.

This theorem is usually considered in connection with axiom-
atic systems, so that it is appropriate to mention here the
possibility of axiomatising fuzzy set theory. Lake has proposed
[5] that it can be done by means of a function-theoretic form of
von Neumann's set theory; and while this should also be pos-
sible in my version, it may be laborious to derive useful
theorems from the axioms, so that the freer approach adopted
here may be more convenient.
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4. J-negation and I-validity

In this section I examine some consequences of the defini-

tion (2.6.1) of negation, which uses J, in the context of I-validity
discussed in the last section.
4.1. Forms of the modus ponens. In this system derivation is
defined by (3.1.1) and its variants rather than by modus ponens
and such rules; so it is interesting to explore the status of that
rule. There has been discussion of the philosophical difference
between its disjunctive and conditional forms (see [1], for
example); and it is borne out here, for the disjunctive form con-
tains more stringent conditions than does the conditional form,
and so requires less additional assistance for its demonstration.
The underlying reason is:

Theorem 4.1.1, If »::V (1*®v*Y), then ;v (®>* ),
Proof. V(—I*(D \'% ‘I’] = [jléq’r-iv <Y ]r"_q?lv 'wl]l
[(2.6.1), (2.6.2)]
V@->*¥) = (=) T 9. AL Ge=q) + 9. A LD
SVTPFOV*Y) < V(O>*Y). [(2.6.4)]
The theorem now follows from (3.1.1) and (3.1.3). Q.E.D.

Here are a couple of theorems on the validity of the forms of
the rule; the conditions have been chosen to show easily that
those on the disjunctive form are weaker:

Theorem 4.1.2, If

PSqti, (4.1.1)

* * *
then if - ® and Tv (1*® v*W), then - V. (4.1.2)
LV :

LY

Proof. The premises of (4.1.2) yield
v, >1, (4.13)

=@ V.gy je=o. Vopd 2 [y i, (4.1.4)
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Considering first the left hand end-point,
=@ 21 or ¢ =i (4.1.5)

But j, =~ ¢, < j: +~ ¢ < i) by (4.1.1), so that (4.1.5); is ruled out;
while (4.1.5); is the required result. Similarly, the right hand
end-point gives

=@ =i or Y, 2 iy (4.1.6)

and the first case is impossible by (4.1.2) while the second is
the condition sought. Q.ED.

Theorem 4.1.3. If

ir < qu (4.1.7)

* * *
thenif ~ ® and ~ ® —* ¥, then ~ W. (4.1.8)
Ly LY LV

Proof. The premises of (4.1.8) yield
gk = i, 4.1.9)

(i) Ty AL Ge=@) F 9. AL 2 [y i
(4.1.10)

Considering first the left hand end-point, (4.1.7) shows a fortiori
that j; < ¢, so that ¢y = i, as needed. For the right hand end-
point, (4.1.10) reduces via (4.1.7) to ¢, = i,. Q.ED.

The conditions (4.1.1) and (4.1.7) on these theorems are rather

E 3
strong, or both pass by the premise - ® of the modus ponens
L

rule. Consideration of alternative conditions involves the rela-
tion between I an J. For example, if I = J, then theorem 4.1.3
can be proved without the use of (4.1.1), for then (4.1.4) becomes
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[i[ — Q. V. Y, ir; Pr - V. wr] = Iil ir]r (4'1°11)
which leads to
Y 2 i; and i, =+ q 2 i; or Y, = i, (4.1.12)
But (4.1.12), is impossible, and the other two parts yield the
*
required + W,
LY
4.2. Comparison with various components of classical systems.
In order to aid the comparison with classical logic I list a few
representative theorems which correspond in a classical system

either to an axiom, or an important result, or the definition of
a connective. I omit the proofs, which are straightforward.

*
-0 v* VY,
v
*
OA*Y @,
v
*
TOV*Y -0 >*Y [Theorem 4.1.1]
Vv

*

If 1>, then 4 T1*®.  [(3.1.4)]
LY

If ¢ > j, then V (@ —*d) = V(d).

*
If - ® then ~ (®—>*d).
v IV
*
If1>J and |-vtD. then
I,
*
V(@ v*T1*®) = V(®) (so that nl—-v{(l) V*TI* D).

* *
If I<J and - ®, then I—‘-’l (@ v*7T1*d).
LY )
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* %
If [>J and — O, then 1 (@ A* J* ).
LV LY

* ‘ *
If I<J and - ®, then (& A*71*d) - @
LV

(so that tv' (@ A*TT* D).

I

%k
If @.;_"vw, then T*¥ n “I* @

LV

Ax - (IyAy.  [(266)]
LY
(Vx) Ux .va Ay.  [2.6.7)]

There are many such theorems, many involving special con-
ditions for their validity. A detailed inventory is not needed
here, since the method of analysing the relevant inequalities
is clear. But I mention that the conversion into conjunctive and
disjunctive normal forms is very appropriate, since under the
valuation used here the valuations have respectively a
maximin and minimax form, and these are well-known in inter-
val analysis.

5. The possession of a membership grade: fuzzy meta-theory

5.1, Basic definitions. In [2], 160 I mentioned that the definition
of complementation ((2.5.4) here, although in [2], 153 I used
[0.1] rather than J) gave grounds for thinking that a fuzzy set
is defined not only by its membership function but also by
its range of significance; for the edges of this range are not
easy to specify. (In other words, the universe(s) of discourse
are themselves fuzzy.) Developing the example given in [2],
160, while it is clear that granite does not have a membership
grade to the property of laziness and that Olympic sprinters
do (a very low one in that capacity !), there can be objects for
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which it is not clear whether membership is or is not possessed
(daffodils or snails, say). Thus ‘the range of significance of a
fuzzy set is itself a fuzzy set' ([2], 160), so that the property of
having a membership grade to a fuzzy set is itself a fuzzy meta-
property.

We may symbolise and define this meta-property as follows:
x has a membership grade to A, symbolically ‘s(x, A)’, if

(3D. IS [01].A . wa(x) = I). (5.1.1)

Just as we gave interval values to fuzzy set membership, so
this fuzzy meta-property has interval-valued membership
also. Since fuzzy set membership of x to A was symbolised by
‘Wa(x)', then fuzzy-membership possession of x to A, a fuzzy
meta-relation, may be symbolised by ‘e(x,A)’. (The theory of
fuzzy relations is struoturally similar to that of fuzzy sets, and

is sketched out in [2], 154-155.) Its interval valution may be
written:

Vie(x, A)) = we(x,A). (5.1.2)

Corresponding to the fuzzy set A we have the fuzzy meta-set
A,

sIn this way the structure-similarity which appplies between
fuzzy sets A and their interval values w,(x) continues further
from fuzzy set theory to its fuzzy meta-theory, with the mem-
bership relation ¢(x, A) and its interval value w (x, A). Hence

our definition schema (25.1) for fuzzy membership to combina-
tions of sets applies here also:

we(x,AAB) = df we(x,A) A ws(x,B).

This schema is straightforward to execute when A is A, V, N,
U, +, =, X and =+; but again complementation causes diffi-
culties. Suppose that we are convinced that e(x, A) (so that
wa(x) = [1,1]); then we shall be equally certain that £(x, A’)
(though of course the value of the membership grade, given
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by (2.5.4), is quite different). Similarly, if we are unsure whether
or not &(x, A), then our doubts will remain in comparable
degree over &(x, A’). Thus an appropriate definition for com-
plementation is

w (x, A’) =df W {x, A). (5.1.4)

We may similarly define non-membership of x to A:

w_le(x,A) = df ws(x, A'Y, (5.1.5)

so that
wa(x,A) = w_le(x, A); (5.1.6)

that is, we are equally unsure whether £(x, A) or not. But it
does not follow that each has a membership grade of [V/z, /2],
for this part of the meta-theory is fuzzy, so that the law of
excluded middle does not apply.

5.2. Ordering meta-relations. Just as the {w,(x)} are subject to

ordering relations in fuzzy set theory, so are the meta-relations’

values {w (x,A)}; we may talk about w (x, A) being less
-3 €

wn(x,B), just as we might discuss whether or not wy(x)

< wg(x). For convenience I shall use the same notations for

the various ordering relations as I did in fuzzy set theory, and

so I denote the meta-relation just described by ‘< (x; A, B)',
€

and define it, and notate its interval valuation, as follows:
~<..s(x;A, B) = df w (x,A) <w (x,B), (5.2.1).
g €
V(-Ss(x; A,B)) = w((ws(x; A), we(x,B)). (5.2.2)

We may define similarly < (x,v;A), < (x,v;R,S) (where
€ €

we understand that both arguments satisfy each fuzzy relation);
and we could also discuss w (x, A) < w (y, B) if desired, and
E E
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so on. We can also define inferiority for the fuzzy meta-sets
As and Ba :

S (ALB) = df (V)(w (x,A) < w (xB)), (523)

V(S (A, B) = w_(A B ). (5.2.4)

The structure-similarity between theory and meta-theory
provides useful theorems. For example, theorem 3.1.1 above
suggests another meta-theoretic analogue:

Theorem 5.2.2. If Sa(x;Au,B“) for all u, and F(A,) is as
defined in theorem 3.1.1, then < (x;F(A,), F(B,)).
€

Such meta-theory may be developed for any ordering rela-
tion [0 between the {e(x, A)}. (5.2.1) and (5.2.2) become

Ela(x; A,B) = df we(x,A) O w (x, B), (5.2.5)

V(B (xiAB)) = w_(w (x,A), W (x,B)). (5.2.6)

The meta-theorem corresponding to theorem 5.2.1 is:
Theorem 522. If O (x;A, B,) for all u, and FD(A.,) is a
€

combination of fuzzy sets {A,} under some collection AEI of

the means of set combination defined in sub-section 2.4, then
De(x;FD(Au), FD(Bu)).

For example, when O is € or =, A takes all values defined in
subsection 2.4; the corresponding theorem in fuzzy set theory,
given in [2], 154, excludes complementation for A when O is
€, but the change in definition of complementation provided
by (5.1.3) extends this meta-theorem.

The structure-similarity from theory to meta-theory allows
us also to extend theorems on meta-ordering to combinations
of fuzzy meta-sets. For example, corresponding to this theorem
in fuzzy set theory:
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IfA<BAC then ASB.A.ALC, (5.2.7)
we have the meta-theorem:
If Se (AG,BS AN Cs), then

<(AB).A.<(A,C). [523)] (528)

(For convenience I use the same symbol for ‘and’.) There are
very many such results, and are easy to generate when A is
V, A, U and/or N, and O is < and/or =. However, there is
no clear underlying structure to the results when A is +, =, X
and/or =, and O is € and/or 2.

5.3. Special sets for meta-theory. The applications of fuzzy set
theory often revolve around the values of fuzzy set membership
and the range of such values taken by some sub-set of the
arguments. The use of interval membership can enhance the
study of such questions, for they occur in interval analysis
anyway (see [7], ch.5 and elsewhere). We may define the fol-
lowing numbers and sub-sets of [0,1] to express various
properties of fuzzy sets:

Vagueness: vag (A) = df sup {wid wa(x) | e(x, A)}, [(2.4.2)]

(5.3.1)
Specificity: spec (A) = df inf{wid wa(x) | e(x, A)}, (5.3.2)
Spread: spr (A) = df U {wa(x) | =(x, A)}, (5.3.3)
Kernel: kern (A) = df N {wa(x) | e{x, A)}. (5.3.4)

spr(A) may be a union of intervals while kern(A) may be
empty. Ordering and other relations between these quantities
can be examined in the usual way. Similar definitions can be
given for fuzzy meta-sets, for example:

vag(AB) = df sup {wid we(x, A)lL (5.3.5)

There is a difference between (5.3.1) and (5.3.5) in that the for-
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mer incorporates the condition e(x, A). It could be omitted,
since only defined interval values can be considered in the
definition of vag(A) anyway; but alternatively we may seek
conditions to be placed on the definition of vag(A E:). This ques-

tion touches on the meta-meta-theory of fuzzy set theory, on
which I shall pass a few general remarks to conclude this
section.

5.4. Meta-meta-theory for fuzzy set theory. The structure-
similarity from theory to meta-theory can obviously be iterated
into higher types of meta-theory. We can in principle ask how
possible it is that e(x, A), and so formulate the meta-meta-
property €{g; x, A), with valuation

Vieeix, A) = w_(eix, A), (5.4.1)

fuzzy meta-meta-set A , and so on. (Strictly speaking, we
€
£

should use a symbol different from ‘s’ to denote the new kind
of membership.) The various ordering relations may be defined,
for example:

S(Six A B) = df V(S (% A) € V(S (x,B)). (522)]
(5.4.2)

I only wish to make the point that such forays into meta-
meta-... theory are possible (and are fairly easy to execute),
in contrast to such theory for most other (classical or non-
classical) logics. The question of the merit or importance of
such properties is not at issue here.

6. Some conclusions

Fuzzy set theory is properly of prime interest for its applica-
tions: my own proposal of interval membership in [2] was
made chiefly to aid certain structural and computing features
of the subject. However, the meta-theory is worth exploring,
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for it is rather different from the kinds of meta-theory to which
we have accustomed. Some of the meta-properties defined —
membership-possession, for example — are unusual, while the
structural individuality of interval analysis leads to results of
a novel kind concerning derivability and validity. Further,
traditional questions for meta-theory, such as completeness and
satisfaction, seem not to be prominent. Most striking of all is
the fact that those parts of the meta-theory which are con-
cerned with membership-possession are structurally similar to
fuzzy set theory in being themselves fuzzy. This situation is
reminiscent of Goédel's ‘arithmeticisation’ of the meta-theory of
first-order arithmetic into a system which is structurally iso-
morphic with the arithmetic itself; but in this case the similarity
can be carried over into higher types of meta-theory. A very
interesting consequence is that at no level of meta-meta-...
theory will a classical system, based on the law of excluded
middle, be obtained.

Middlesex Polytechnic at Enfield, I. GRATTAN-GUINNES
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