A. A, Zinov'ev,

Complete (Rigorous) Induction £ Fermat's Great Theonrem.

0. In this paper, I am going to describe a non-traditional
understanding of complete (rigorous) induction. I will follow
the logical conception developed in my previous works, particu-
lary [1 + 5]. But the ideas of +this paper can be understood
independently.

Afterwards I am going to use this wunderstanding of complete
induction for the logical analysis of the problem associated
with Fermat's Great Theorem.

Here is a list of the symbols used, in the order of their mutual

precedence, when appearing on one line:

(a) € — for inclusion of individuals into classes (sets).

(b) ® — for inclusion of terms according to value;

(e) T — for the (unary) predicate of logical truth (prova-
bility);

(d) ~ , &,V , = (or =>) — for the operators of negation,

conjunction, disjunction and implication in order of pre-

cedence;
(e) 3.0t , ¥...: — for the existential and universal quan-
tifiers;
(f) t —— for the (binary) predicate of logical inference.
The expression " a = b " is to be read as " Any object desig-

naied by a is designated by b, " s The expression

” "

z | y " reads as " y follows (can be inferred from) x ".

The expression " T x " reads as " x is logically true " or " z

is provable ".

') Example: dog * mammal.
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1. I consider the Theory of Complete Induction as a part of
Proof Theory. The latter represents a branch of logic in whiceh
properties of the predicate provable in combinations with other
expressions are being established. From my point of view, there
is only one source for the provability of sentences: definitions
of linguistic expressions and their consequences. Special cases
of those are implicit definitions of the form Foe

Below I shall formulate some additions to my Deduction Theory as

a basic fragment of my Proof Theory.

1.1. Additions 2o the definition of sentential formufas:
(1) if « is a sentential formula, then so is T .

(z) if # and y are sentential formulas, then so is z Foow.

1.2. Additional axdioms (on axdiom schemata):
A(1) T x

Af2) T «x

A(3) ~ T x
Ald) (= | y) T (x Loyl
A(s) ~ (=x F yJ) T~ (z by

ale) (z | y)

T T T T T T
=
4
-
5

B(1) T (x V¥V ~ x)
B(a) Ttz & Ty o7 o(x & y)

Bl3) Tz VTy Rk T {xVy

c(1) (=x F yJ F T (x = y)
cre) (x &=z L y) &~ (3 F oyl dTtz o1 (z=y)
c(3) T~ (x> y) F ~ (z F y)
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c(4) ~ 71 (x =+ y) F T~ (x> y)
C(s§) T ~ (2 =+ y) Eo~ 71 (x> y)
D(1) 3 Q: |T x > Q(sz) &

3 A: Q(84) & Q(8~B) | T ~ (A * B)
D(2) 3 Q: |7 x> Q(sz) &

3 A: Q(s84) & ~ Q(4B) | T ~ (A -~ B)
where expressions of the form " (4x) " are to be read as " The

sentence z ".

E(1) (W& T2z | Ty
W& Ty b T
- - F TV
where v is obtained from 2 by replacing one or more occurrences

£ in 2 by y.

1.3. From my point of view the Deduction Theory must contain
negative rules of the form ~ (x F y) and the Proof Theory must
contain negative rules of the form ~ T . I suggest the follo-

wing basic negative rules:

(1) if a variable a occurs in y and does not occur in &, then:
~{x b oy)
(2) if a variable g occurs freely in x and the statement

" 3 a: ~x " is true then: ~ T x;
if wvariables al,...,an (n 2 2) ocecur freely in =z and
" 1 n "o
Ja“ieea s ~ 2 is true, then: ~ T z.
(3) if ~ T x, then: (~ T z & y)
(4) if ~ (x L y), then: ~ (=z F oy & z)
(5) if ~ 7 (A > B) and at least one variable occuring freely

in A and in B does not occur in C, then ~ 7 (4 & C =+ B),
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2. In the Theory of Complete Induction, the properties of the

universal quantifier in association with the provability predi-

cate for ordered sets of terms must be established. I make the

following preliminary assumptions :

(1) A term variable is a term.

(2) If g is a term from the value-range of variable b, then:
a=b>

(3) A group of terms is a special kind of term: if al,...,an
(n 2 2) are terms, then < al...a" > is a group of terms.

The rules for groups of terms are:

(8,) <aliia®>w<pl,,p"> L alwbla ... & " ="

(32) o' =pla .. aad"=p"  p<allid">e<pllp”>
(35) ¥<al...a" > = F v al...vad: =z

(30) ¥al..¥a': a Fv<alid" >«

(35) 3<alii.a® > = 3 al...3d% =

(36) 3al...3d"% 2 Fi3<aliiid® > =

The group of terms < al...an > is said to occur freely in z, iff
all of az,...,an occur freely in z.
The substitution of < al...arl > in place of < b1...bn > in z is

the substitution of a® (for 1 l1,...,n ) in place of b°, where-

1 .
ver b” occurs freely in z.

2.1. Degenenate Complete Inducition:
Let V be the sentence " The term @ is an individual ", I accept

the following rules for Degenerate Complete Induction:

A. V & T2 F T (¥ a:z)
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2.2, Findite Complete Induction:
Let M be a finite set. Let it be partitioned into a finite num-
ber of nonempty and pairwise disjoint subsets Ml,...,Mn (n 2 2),

I shall use the following notations:

(a) a is a variable for the terms belonging to M,
(b) ‘a is a variable for the terms belonging to M%,
(e) s is a sentence obtained from =z by substituting *a for a

wherever @ occurs freely in x, and none of the ia oceurs
in .

(d) W is the sentence " ia =28 ... &% *a, andb = a-~ (b
- ia V...Vd="3) is true for any term b ". I adopt the
following rules for Finite Complete Induction:

B(1) W& T V¥ ia: ix & ... & TV "g; "y F TVYarx

B(2) W& TtVaraz | TV Tg: 1z 6 oo, & 1 ¥ "a: "

2.3. Infinite Non-conditional Complete Induction:

Let M be a set of terms, partitioned into the non-empty, finite,
pairwise disjoint subsets Ml, Mg, Mz,...

Let these subsets be ordered in the following way:

(1) u? is the first in the ordering.

(2) M£+1 directly follows M (i.e. e surpasses M in the

ordering, and none of MI, Mg, Ms,... lies between them).

Let there be rules by which we can construct all elements of

24 ,
Mt if only all the elements of M* are given,

Assume that for all sets M£ (t = 1,2,3...) all elements of ut+l
can be constructed. This means that the sets MI, Mz, MJ,... form
an ordered series, Both the series MI, Mz, Mz,... and M itself
are infinite.

I use the following notations

(a) a is a variable for the terms of M,
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(b) x is & sentence in which a occurs freely.

(e) Y2 is & variable for the terms of M® such that

g = a, and

ia does not occur in =x.

(d) iz is & sentence obtained from z by substituting ia for
all free occurrences of aq.

(e) W is a sentence about the relations between ia and a (7 =

1 %5 Baweed

I adopt the following rules:
c(1) W &
T (Y a: z) &
T L (¥ %a: ix) - (¥ i+1a: i+1x) ]

FT(Y¥a: z)

cea) W &
T (¥ ar x2)
F T (¥ al: Ix) &

T L (¥ *a: ix) 2 (V1+1a: L+13) ]

2.4, Infinite Conditonal Complete Induction:

Let p be a term variable such +that the contents of M and its

partition into MZ, Mz, Ms...depend on the value p. Assume that

the value-range of p is the following:

(1) the first element in the ordering is given.

(2) for any value of p we can construct another value which
follows it in the ordering.

Let us construct for any value of p all elements of M, and assu-

me that we can construct all elements of M'*?

M* are given. The relation between MI, Mz, Ms,... is similar to

if all elements of

the previous one. Let W*  be the sentence about the relations

between p, a and ta.
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I take the following rules of Infinite Conditional Complete
Induction:

D(1) V¥ &

T (¥ p, Ja: 12

TL (¥p, “a: *z) » (v p, “Tla: Mg 5

F 1 (¥p, a: =)

D(2) W&
T (¥ p, a: z)
F T (¥p, 2ot 123 &

T[ (¥ p, Yar Yz) + (¥ p 1'Ma: i+1z) ]

Consequences of D:

D(3) WE &
L ~71 (¥ p, Ia: Ix) v

~ T (¥ p, Ya: Fz) + (¥ Ds t+1a: 1'”a:]

- ~ T (¥ p, a: =)

D(4) W&

T (¥ p, a: x)

o~ T (¥ p, Ta: 1z) v

~ T [ (¥p, Ya: *x) » (¥ p, *t1g: Ty 3

2.5. Infinite Complete Induction with Limitation:
Let D be a sentence such that:
(D F z2 e M) & (2 e M F D)

where 2 is a subject variable.

Let bl,...,bm be all terms included in Mt+1, and BI,...,BM sen-
tences containing bJ,...,bm respectively, such that the follo-

wing statement [R] is true:

TL 31 & ... & B™ =+ (¥ 1+1a: 1:Ha:) &
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(v ¥, 1) L gl g .. 8 8" ) [R]
Let S be the statement:

TL (¥ ia: ix) -8l & ... & B¥ ] [5]
where 1 < k < m. Let Dk+1,...,Dm be all sentences obtained from
D by replacing all free occurrences of z in D by bk+1,...,bm
respectively. Let T be the statement:

v v tar Tz o» BRIy ¢ (Rt L gt

& .., &
N AT " vor ("~ 8™ [7]

I adopt the following rules:

E(1) W ar&T (Wla:lzm)asar | Vara

E(2) W &R& T (¥ Ta: Tz) 4 5% 1 (Va2 For

F(1) W aRat(Wp, lar le)asar | ¥p, ar =
F(z) W 8R&T (¥Wp, ‘a: lz) a 581 (¥p, a: z) LT
Consequences of E:

F(3) WarR&T (Wla:lze)asa~1 b ~ (Va2

F(4) WaraT (vialz) as8~ (Vara) | ~7

3. I now consider:

> number as terms;

> signs of arithmetic operations as term-generating operators;

> the signs < , > , = as the predicates indicating respectively
the relations of preceding, following or being equal to, in
the given ordering. Properties of these predicates are esta-
blished in logical relations. It would be sufficient here to
accept axioms (1} + (6) below (where the letters stand for
subject variables). We use the expression " a < b " as an
equivalent of " ~ b > g " and the expression " @ = b " as an

abbreviation of " ~ g > b & b > g ",



COMPLETE INDUCTION & FERMAT'S GREAT THEOREM 251

zZ9

(1) T~a>a
(2) a>b
(3) ~a>b

— T T T T
a
v
)

(4) a>b &50b > ¢
(5) a=b&b>e a> e
(6) a>b &b =c a> e

I consider the following fragment of formal arithmetic, which is
sufficient for examining the problem of Fermat's Great Theorem.

I shall call it MFA (Minimal Formal Arithmetie).

3.1, Alphabet of MFA:

(1) 1 ! the constant number one;

(2) + 4 % 4, + : the operators of addition, multiplication,
exponentiation, in reverse order of precedence., I may

write a.b for axb, and ab for atb.

3.2. Defindition of a number in MFA:

(1) 1 is a number in MFA;

(2) if Tyseees®, (n 2 2) are numbers in MFA, so are Tt bz
and 21"&.-"2”-

(3) if z and y are numbers in MFA, then so is zty.

(4) something can be a number in MFA only by virtue of

(1) + (3).

The formulas in MFA contain only numbers in MFA, the arithmetic
predicates < , > , = ; the logical operators ~ , & , V , = and

the logical predicates T , F o

3.3. Axdiom schemata of MFA:
(1) T atl > a

(2) T (a>b = a>Db+1 Va= b+l)
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(3) T a;ta, *ouut a = b
where b differs from a1+a2 Fooot a, by any changes of operator
precedences (rearrangement of brackets).
(4) T axl = a
(5) T a *x (b+te) = (axb) + (axe)
(6) T @ xayx...xaq = b
where b differs from alx...Xan by altered operator precedences,

(7) Tatl = a

(8) T at (b+e) = ath x ate

It is obvious that for any number z in MFA, one can find a num-
ber y in MFA such that:

(a) Tx =y is a theorem in MFA;

(b) the operators x and t do not occur in y.

In this sense, MFA is sufficient for our purpose.

3.4, I wuse the substraction operator only for the sake of sim-
plicity in the presentation.

The expressions 2, 3, 4,... are abbreviations respectively for
I+1, 1+1+1, 1+1+1+1, etec...

The language of MFA contains no variable., Statements concerning
the numbers of MFA are metastatements, but the formulas of MFA
are not. The former contain letters that play the role of impli-

¢it variables.

3.5. I make the following additions to the Proof Theory for such
expressions:

A. Definition of numenic expression (num.exp.):

(1) a number in MFA is a num.ezp.;

(2) a variable for numbers in MFA is a num.ezp.;



COMPLETE INDUCTION & FERMAT'S GREAT THEOREM 253

(3) if Lia Xpaeee, X are num.exp., then Tyteeotz is a
nuUm. exp. .

B, Additionaf axiom schemata:

(1) a>b &ec>d —> ate > b+d

(2) a>b —> ate > b

(3) a>b &8 e=d —=> ate > b+d

C. Additional negative rules:
Ci. If e is a variable for numbers in MFA (or a pair, triplet,
etc...) of such variables occuring freely in e < d, and if

d e: e < d, then:

(1) =~ T (a>b —> a+tc > b+d)
(a) ~T (a>b —> =~ agte > b+d)
(3) ~T (a>b —> ate < b+d)
(4) ~T (a>b —> ~ gtc < b+d)
(5) ~T (a>b —> ate = b+d)
(6) ~7T (a>b —> ~ agtc = b+d)

C2. If a variable for the numbers in MFA occurs in ¢, then:

(1) ~T (a>b —> a > bte)

(2) ~ T (a>b => ~a > bte)

(3) ~T (a>b —> a = bte)

(¢) ~T (a>b —> =~ a = bte)

Cy. If p is a variable for the numbers in MFA (or pair, triplet,
etc... of such variables) occuring freely in a < » & ¢ > ¢, and
if 3 p: q <r & s < t, then:

(1) ~T(a>b&ec>d —> at+tq > btr & c+g > d+t)

(2) ~T (a>b &c>d —> atq < b¥r & ct+s < d+t)

(3) ~T(a>b&c>d —> atq

b+r & e+s = d+t)

Axiom schemata of MFA are axiom schemata in the extended systems

(MFA*) given above,
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4., I shall now use the above Theory of Complete Induction for
the analysis of the problem associated with Fermat's Great Theo-
rem (FGT).
FGT is formulated in the following way:
If a, b, ¢, n are integers = 0, and n 2 3, then:
~e" =a" " [FGT]
It suffices to consider the case then the statement D is true:
e>ad&c>b&a>n&b>n&cis odd &
a ig even & b 78 odd & n 2 3 [p]
It is obvious that FGT is a metastatement relative to the num-

bers in MFA,

Let a, b, ¢, n be numeric variables satisfying restriction
[D1;

Let C1a Cps Czaees be values of ¢;
aI, Qps Agpens be values of aj
bI’ ba, b3,... be values of b;

Let e; = n+3 & a; = n+2 & b1 = n+l if n is even;

e; = n+d & a, = n+l & bI = n+2 if n is odd.
Other values of e, a, b are the following:
102 8 Cgag = Gp4p B byyg = Dyt2

where 7 = 1, 2, 3, ...

We shall consider the set M of triplets of numbers < ¢, a, b >.
Let us divide M into subsets MJ, Mz, Ms,...in the following way:
(11) If n is odd, then i contains just two triplets of numbers

< @1 ayg, bl >, i.e. < n+3, n+2, n+l >.
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(1a) If n is odd, then u? contains just two triplets of numbers
< Cis @y, bl > and < C1s Aps bI >, i.e. < n+d, n+l1, n+2 >
and < n+4, n+3, n+2 >,

(i) The subset Mi contains all such triplets of numbers
< Cir 8.y By > that satisfy the condition:

(¢1) if n is even, then a; s a, < a.;

(Z2) 4if n is odd, then bz < b8 < b

i
If n 2 3, then the formulas:
(n+3)" > (n+2)" + (n+1)"
(n+d)™ > (m+1)" + (me2)®
(n+d)™ > (ne3)" + (ne2)"
are provable, i.e. FGT is true for all elements of M,
Let FGT be true for all elements of wt if n =z 3. The case when
e” < @™ + b" for all elements of Mi is excluded. Two cases
remain:
(1) e” > a" + b" for all elements of Mi;
(2) e” > a" + b" for some elements of Mi and
e" < a"® + b for the remaining elements of Mi.
Thus we can formulate our assumption in the form:
* FGT is provable (possibility A) or:
* the following statements are provable (possibility B):
02 > ag + b:
0o

n n n
e. > + b,
i ] bz

where ap is a number from the value-range of a, such that:

a, s a; s oi-s;

n

4

n
[+]

L2

n n n
> (ak+2) + b & e; < (ak+2J + (b1 +2)

1 1
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eg > (ap+z.m)” + bgm & cz < faptz.m)” + (bzm+2)

n

where:

>m 2z 1;

> ak+2,...,ak+2.m are numbers from the value-range of a, such
that (ak+2.m) < e;-1;

> bl S bl are numbers from the value-range of b such that

1 m

b, < b, (possibility B).

Let us consider the sequences following from the assumption

A V B for the set ML+1. Let the possibility B be true. From 4

fellow the statements:

n n n
(e +2)7 > (e, +1)7 + (e =2)
n n n
(e +2)7 > (e ,~1)" + <
The only element of Mt+l, which is not included in the above

cases is:

+1, e, >

< .t
e; 2, ¢ i

1

Consider possibility B. From B follow the statements:

n
1

(c£+2)” > a, + (bi+2)n.

n n n
(c£+2) > a, + (bi+2J

n n n n n n
(c£+3) > rak+2J + rb11+2) & (ci+2) < {ak+4) + rb11+4)

(e +2)" > (a +2m)"+(b, +2)" & (c.+2)" < (a,+2m+2)"+(b. +4)"
i k l i k g

(e, +2)" > (e.=1)" + (b +2)" & (0.+2)" < (e .+1)" + (b +4)"
1 1 r 1 T r
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ra£+2;” > {ak+4)” + b7

n n n
(c£+2) > {ak+2.m+2) + bl
(c£+2)" > (c£+1)” + b:

The following elements of prtl

< c£+2, ak+2’ b11+4 = P e;t2, a,td, b, +2 >

by

< e t2, ak+2.m, bl +4 >, < c£+2, ak+2.m+2, bl +2 >

m m

< e 2, Ciogs br+4 >, < e;*t2, Couqs br+2 >

have no similar consequences. I designate them by E.

In case B it is obvious that

n n n
ey < (ak+2) + (bz +2)

1
n n n
e; < (ak+2) + bi
The special case is b, +2 = b,.
11 U]

It is also obvious that we have not considered the triplets of
numbers:
< c£+2, ak+4, b, +2 >

< e t2, +4, bi >

A

I introduce the notation:

(1) V : for the statement " ~ (c£+2)n = (ci+1)n + c: "5
(2) o : for the statement " c, s odd B n 2 3 & e, >n "
(3) W : for statements containing the triplets of numbers E;

(4) DB s for the statement n ey is odd & a is even § bl is
2
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odd & ... & bz is‘odd & br is odd & ak+2m < e£+2 &

m

ak+2>n&b11>n&...&‘nlm>n&br>n&n23"-

The task is now reduced to the following problem:

(1) to find out if V follows from 4 or not, and if V follows
from DA or not;

(z) to find out if all of W follow from B or not and if all of

DB follow from DB or not.

By virtue of rules of MFA*, expressions of the form z@ S yn + z"

(where = is > , < or = ) reduce to such expressions as 4 S B,

where A and B contain only number variables, 1 and + .

The relations between assumptions 4 and B (on one hand) and

their consequences for Mi*l (on the other hand) are reduced to

the following:

if an assumption is x > y (or x < y) then its consequences are:
z > u (resp. z < u)

where 2 = & + @, u = y + f and @« > f (resp. a < f).

In short, all consequences of 4 and B are due to the rules:
T(a>b&e>pf => g+a>hb+§)
T(a<b&a<f —> g+a<h+8) ete...

And any other consequence of A and B is not valued,

But the statements V and W are exceptions. In case A we have:

n

n n n n
3 ey M1 (ci+2) ey < rci+1) + es )

n
- (ci-J) - (ci—z
T e, > (Gi 1)" + (ci 2) —> (ci+2) = (c1:+1) + ey ]

In case B, the statement is the following. Let us consider the

statement:
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n n n
~ (ci+2) = (ci+1) + (br+2)
The only line in B containing the letter bp is:
n n n n n n
e; > (ai-l) + br & e; < (ci—l) + (br+2)
We have:
3 e; by i (er2)” - c: < (e +1)" + (b +2)" - (e;=1)" = b7
~Tlel> (e ,~1)" + bl >~ (e +2)" = (e +1)" + (br+2)n ]
Yoou by ni (e #2)" = of < (e #1)" + (b +2)" “fe et = b ot
n n n no_ n n
~ T [ e, < (ci-IJ + {br+2) - (c£+2) = (ci+1) + (br+2J ]
3o by, ni (e +2)" - e} < (e 1)+ (b#2)" = (e -1)" - b7 &

(e;+2)" - cz > rc£+1;" + (b+2)" - (ci_l)n - (b +2)"

n n n n n n
¥ ey > (ci-l) + br & ey < (ci-l) + (br+2) -

n o _ n n
(c£+2J = (Gi+1) + (br+2) ]

. " A
We shall consider now the relations Ybetween D° and V, and that

between DB and ¥. I adopt the following rules of interpretation:

(1) if y is a letter, then ¥ is translated as Xty

(2) if a is a letter, and @ occurs in (b1+b2+...+bn) more than

once, then all its occurrences except one are striked out;

(3) after that the values 1,2,3,... are ascribed to the let-

ters;

(4) if x and y are letters, if the value a is ascribed

to

x

and the value 8 to y, then the value max(a,f) is ascribed

to x+y.
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Consider the expression:

(eg+2)" = (e +1)" + o
According to condition D, we may write it as:

(2.k+3)™ = (2.k+2)" + (2.%+1)7
According to the accepted rules, we have:

2.k + 3 +mn =2,k +2+n+ 2.k+1+mn

2.k + 3 +n =2,k + 3 +n
We can ascribe to it the value T, We can also ascribe the value
T to DA and to all theorems of logical systems independently of
the accepted rules, because number variables do not oeccur in
these theorems. So we can ascribe +the wvalue T to the expres=
sions:

L (c£+2)” = {c£+1)n + cz
And according to rule D of the Proof Theory, we have:

& {DA -+ V)
Similarly, in case B, we can ascribe the value T to the expres-
sion:

n n n
(ci+2) 3 (ak+4) + bi
where e; = b£+2. We have:

(2.k+8)" = (a,+a)" + (2.k+1)"
2,k + 5 +n =2.k+ 5 +n

So that we have:
~ T (DB =+ W)

According to rule E(3) of the Complete Induction, we obtain:
~ T V¥ e, a, by ~ e’ = g+ B

And according to rule A(3) of the Proof Theory, we have:
T~T¥e, a b: ~c" = at + p"

This means that FGI is unprovable! O
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[2]
[2]

£3]

£3]

[h]

[5]

[5]
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