TOWARDS A LOGIC OF RELATIVE IDENTITY

Richard RoutrLEy and Nicholas GriFFIN

§1. Introduction

Identity statements in natural language come in two syntactic
varieties. Some are of the form ‘a is the same as b’ or ‘a is
identical with b' and may be symbolized, after the manner of
classical identity theory, as ‘a = b'. These will be called ab-
solute identity statements. Others have the form ‘a is the same
© as b’ where '®’ is some general noun. Statements of this form
will be called relative identity statements and will be formal-
ized (following Wiggins [1], p.2) as ‘a 5 b'. In such statements

‘D’ is called the covering concept of the identity statement.

In seeking a logical analysis of natural language identity
statements a number of policies are open. The most Draconian
is that proposed by the early Wittgenstein (Tractatus, 5.53-
5.534) which would eliminate identity statements altogether
from the canonical language in favour of special constraints
on the singular terms of the language, so that no more than
one singular term is assigned to each item. This unworkable
policy is not to be considered here. There are two alternative
reductionist policies: the classical theory (see Perry [1], [2];
Nelson [1]) which reduces all natural language identity state-
ments to absolute identity statements (usually glossed by
Leibniz' Law) (*); or the relativist policy which reduces them all
to relative identity statements (see Geach [1], [2]). The fourth
policy, which we shall term mixed, is the non-reductionist
policy which maintains both absolute and relative identity
statements in the canonical language (see Odegard [1]).

() For this paper Leibniz' Law is read definitionally:
(LL) x =y = p (YO} = B(y)

As usual the class of predicates ® admits is subject to some constraints
(e.g., to exclude at least those involving quotation).



66 RICHARD ROUTLEY and NICHOLAS GRIFFIN

Two theses are of central concern in considering relative
identity. The first is the claim (R) that two items may be th2
same with respect to one general noun but distinct with respect
to another; the second is the claim (D) that absolute identity
statements are semantically incomplete. It is difficult to be
clear about the precise import of (D) since its advocates agree
neither on the nature of the semantic incompleteness absolute
identity statements suffer from — whether it is some kind of
ambiguity (between a range of background relative identity
statements), or an indeterminancy of truth-value, or a lack of
clear sense — nor on the source of the incompleteness. To add
to the difficulty, the cases presented for the incompleteness are
wanting. Arguments that (R) entails that absolute identity state-
ments are ambiguous are invalid; and claims that absolute
identity statements lack clear sense or have indeterminate
truth-conditions depend upon the verification principle (3.
Every combination of these two theses, (D) and (R), has been
held by someone: Geach [1], [2], [3] accepts (R) and (D); Ode-
gard [1] accepts (R) but rejects (D); Stevenson [1], [2] accepts
(D) but rejects (R) (*); Feldman [1], Perry [2] and Nelson [1], [2]
reject them both. Of these four positions we shall be concerned
here only with theories which, like those of Geach and Ode-
gard, adopt (R). The Nelson-Perry-Feldman theory is the ortho-
dox absolute identity theory of the logic books. The third theory
which includes (D) but not (R) is in many ways obscure. Despite
(D)'s claim that absolute identity statements are semantically
incomplete, current formalizations (see Stevenson [2]) of this
type of relative identity theory easily collapse into the classical
absolute theory once a two-place identity predicate is added by
the definition: (%)

(®) The issues are discussed at length in Griffin [1] Chapters 6 and 7.

(®) This has generally been taken to be Wiggins' position. However, the
second edition of Identity and Spatio-Temporal Continuity makes it clear
that he rejects (D) as stated above. To our knowledge this misinterpretation
has been universal and we are grateful to Professor Wiggins for pointing
out his true position in a personal communication.

(*) Differently, by using (LL) as a definition of absolute identity and
adopting
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(1) x=y=p. (IY)x = Y)

In this case the relative identity theory becomes a mere nota-
tional embellishment of the classical theory. Alternatively,
Perry [2] has argued (successfully we believe) that the grounds
which are adduced in favour of (D) can equally well be used
to support the classical theory. The upshot of these criticisms
is that this type of relative identity theory is not so much a
theory of relativized identity as a theory of absolute identities
restricted in their fields to given categories of items (see Griffin
(1], pp.123-9, for further comment). The theories to be con-
sidered here do not succumb in this way to the temptations of
absolutism,

In this paper we propose (roughly in order of increasing
plausibility) a variety of logics for relative identity theories of
the first and second types, that is, theories with both (D) and
(R) and theories with (R) but not (D). In doing this we refute
two claims about relative identity which have gained currency:
firstly, the claim made by Nelson [1] and Ayers [1] that identity
theories in which (R) is satisfiable are incoherent; secondly,
the claim, implied by Wiggins [1], p. 27, that (R) entails (D). In
the case of each theory proposed, the satisfiability of (R) can
be demonstrated by adding to the theory appropriate constants
which can be used to form an example of (R). Although we do
not consider here the questions of whether such examples oc-
cur in natural languages and, if so, how they may best be
analysed, we believe that natural language is replete with
examples (e.g., the one noted by Heraclitus or the frequently
cited case of two distinct word-tokens being the same word-
type) and that a theory of relative identity supplies a plausible
and consistent analysis together with a resolution of their as-
sociated ‘paradoxes’ (e.g., the ship of Theseus problem) (). It

(DLL) X =¢ y O. (VI)(¥(x) = ¥(y)

as an identity axiom.

(*) For a contrary view see Wiggins [1], Part I; and Griffin [1], Chapter
10, for a reply.



68 RICHARD ROUTLEY and NICHOLAS GRIFFIN

is this fact which gives relative identity theories their interest.

The theories proposed satisfy (D) rather more tenuously sin-
ce the two-place absolute identity predicate is left undefined
in them. In each case, however, the classical Leibnizian defini-
tion could be added, giving a natural extension of the theory
in which (D) would fail (°). This is not unduly worrying since
arguments for (D) are scarce and the most frequently used one
(that (D) is entailed by (R)) is, as we show, invalid. Those who
believe that (D) is true could presumably use whatever argu-
ments they have in its favour to reject the (LL) definition of
absolute identity and thus prevent the extension which falsifies
(D). However, we do not believe that they have any good
reasons for pursuing this policy.

A standard presentation of absolute identity is gained by
adding (LL) to classical second-order logic. The remaining
formal properties of absolute identity (viz. reflexivity, sym-
metry, transitivity and substitutivity) follow by well-known
proofs. It is desirable to approach relative identity theories in
a similar way, both because it enables similarly easy proofs for
appropriately formulated formal principles of relative identity
— and, in fact, our theories of relative identity will turn out
to be structurally similar to the theory of absolute identity —
and further because we will clearly need some substitutivity
principle for relative identity statements to validate certain
inferences of the form: a = q?b, Y(a) = y(b). The principle

(DLL) x =y 2. (VY = ¥(y))

is not the principle we want, firstly because, together with a

(9 There is one exception to this. In an extension of Theory S, within
the second-order sigmificance logic 2Qp we can state and prove as a
theorem the claim that 'x = y' is always non-significant, given (LL).
However, this does not prove as much as the (D)—theorist might have
hoped since it is plainly inappropriate to define ‘=" by means of a two-
valued connective in a three-valued logic and a more suitable definition
is easily provided.
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relative identity principle we would want to accept, it is in-
compatible with (R) (see Wiggins [1], pp.3-4) and secondly,
because it obviously validates too much. If a is the same ® as
b it doesn't follow for any property v that y(b) provided v(a).
A natural proposal, and one which we follow here, is to limit
the range of the second-order quantifier in (DLL), the idea being
that each relative identity relation ‘= @' carries a commitment

to indiscernibility among a range of properties determined by
the covering concept of the identity relation in question. Thus
for each relative identity relation, '=q)', there will be a set of

properties, Aq), such that @-identity implies indiscernibility
with respect to the properties in A(D, or Am-indiscernibility. The
complete specification of A(I) for given @ is fairly difficult (as

is the specification of the precise range of the quantifier in
(LL) if the well-known paradoxes of referential opacity are to
be avoided; see Hintikka [1], pp. 132-6). However we can give
at least a partial specification (see Griffin [1], pp. 140-1) since
A(15 contains ® and is closed under negation, conjunction, and

implication. The A sets will play a central role in the construc-
tion of our theories.

We begin with theories in what is essentially an applied
second-order classical logic. In §3 we move on to consider
theories based on second-order significance logics which enable
us to obtain principles not available in the theories of § 2. In
what follows the universal and particular quantifiers, U and P
respectively, are interpreted non-referentially as in Goddard
and Routley [1], pp. 123-52, with individual variables ranging
over possibilia and impossibilia as well as actual objects.
Apart from the general desirability of such a wide interpreta-
tion of the quantifiers, such an interpretation has distinct ad-
vantages here since natural language identity and distinctness
claims are not restricted to actual items. Greek letters are
reserved for syntactical predicate variables (predicate con-
stants are denoted by Greek letters surmounted by a bar);
X, Y, z are syntactical individual variables (@, b, ¢ syn-
tactical individual constants) and upper case letters, A, B, are
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well-formed formulae. It is assumed that defined formulae are
also wifs.

§ 2. Theories within an Extended, Second-order Classical Logic

To form these theories we add to classical second-order logic
a new constant (relation) symbol, A, with the formation rule:
If @ and v are l-place predicates then A@ (p) is a wif.

Constant A is intended to represent a function from proper-
ties or, more simply semantically, a relation on properties. In
what follows we choose the simpler, and more general option.
Relation A provides the restriction in terms of which relative
identity is logically characterised, the basic characterisation
taking the following determinable form:

x=,Y iff, for every 1 such that A@ (¥), v(x) iff p(y).

Thus the formal theory of relative identity which we shall
develop is logically an outcome of the theory of restricted
(second-order) quantification. Different theories emerge ac-
cording to the way the restricted quantifiers and the equivalen-
ce (iff) are cashed out. Classically, restricted quantifiers are
eliminated through extensional connectives; accordingly for a
classical theory of relative identity we define:

DO: (Uy € A )A = pr. (UN)(A (W) > A).

Intuitively, A@(tp) can be read 'y is a member of the set of
properties Aq) determined by ®'.

§2.1. Theory 1
Theory 1 is obtained by adding:

DI x = VS, Uy e Aq,)(w(x} = Y(y))
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to introduce the identity relations of the theory.
D1 plays the same role in Theory 1 that (LL) plays in classical

identity theory, with its help and with DO the following are
theorem schemata:

Tl +x X (reflexivity)
Proof: From (Uy)(y(x) = y(x)) by DO, DI1.

T2 -x= ¥ 2 YT, X (symmetry)

Proof: From (Uy)(y(x)

YY) =. (U¥)(y(y) = y(x)) by DO,
D1

T3 +x ™ &y S X, 2 (transitivity)

Prootf: From (Uy)(y(x) = y(y)) & (Uy)(y(y) = ¢(2)) .
(Uy)(w(x) = (z)) by DO, D1.

T4 + x =2 ¥ & Aq)(q;) o. YP(x) = ¢(y) (substitutivity)
Proof: From (Uy A@)(mp(x) = y(y)) o. (Uw)(AQ (v) 2.
¥(x) = y(y)) by DO, D1,
Semantics. The semantics of Theory 1 and the other classically-
based theories are similarly simple. We add to Henkin's second-

order semantics (as set out in Church [1]) a two-place relation,
v(A), on properties. Then

VA, W) = tiff (v(®), v(¥)) € v(A).

The standard consistency and completeness proofs for second-
order logic can be trivially extended for Theory 1, since we
have added no new axiom schemata for identity.

Some Interesting Non-Theorems. Since every valid wif of
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Theory 1 is a theorem we can exhibit some non-theorems by

showing interpretations under which they fail. The interest of

these non-theorems lies in the fact that they exhibit the dif-

ferences between Theory 1 and the classical theory of identity.
Our first rejection:

@ Hx=_y 2. ¥x) =y(y)

demonstrates the failure of the unrestricted substitutivity of
identity in Theory 1. Various counter-models are available but

the following is good as any. Let © be a property such that, for

given individuals a and b, ©(a) and ~®(b), let a and b agree
as to all other properties, i.e., for every v in AE’ where AK is the

set of all properties with the exception of ©. The wif a = ~b&

~(®(a = ©(b)) is then satisfiable.

Similarly
() = (2(a) &y(b) &a=-b) > (Px)(®(x) &y(x)

fails. Suppose we have three properties ©, ¢, and % and two
items a and b such that (Ux)(0(x) = ~¢(x)) and Ax(ap) for all v

except © and g, and such that ®(a) (so~c(a)) and g(b) (so
~©(b)). Then (O(a)&c(b)&a= =b) & ~(Px) (Ox) &c(x)) is
valid in the interpretation. By contrast two relativized versions

of (3) are provable in Theory 1:
T5 & (20 &Y(y) &x =) 2. A-(@) > (P2)(D(2) &(2)
T6 = (2(x) &y(y) &x = 2y) 2. A-() > (P2)(D(2) & (2))

More importantly, (R) is satisfiable in Theory 1 since
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4) —4x=¢y :).x=¢y

fails. Let there be five constants a, b, ©, ¥, ¢ subject to the fol-
lowing conditions:

(i) ©(a), ~O(b), A;{@). ~A;(€n
(ii) %(a), %(b), A;GE)
(iti) c(a), s(b), A;(E)
From (i) we get A;(@] & ~(B(a) = BO(b)), and so ~(a = ;b);

(i) and (iii) ensure @ = —b. We can thus construct an example
%

of (R) in Theory 1, which was our original intention.

A mixed Extension of Theory 1. Theory 1 satisfies (D) in the
weak sense that the two-place absolute identity predicate ‘=’
is so far undefined in it: there are no theorems involving ‘=’
in Theory 1 because there are no wifs containing ‘=" in the
theory. This can be remedied by adding to Theory 1 the clas-
sical definition of absolute identity:

(LL) x =y = p. (U)W = v(y)

This gives:
T? = i =
FX=YV D.X § y

Proof: From + (Uy)(y(x) = ¢(y)) o. (Uy Aq,)(w(x) = Y(y))
But not, of course, its converse:

%) —4x=@y D.X=Y

which fails if (Pxp)‘---(A(15 (y)). The consistency of this extension
of Theory 1 is sufficient to demonstrate that (R) does not entail
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(D). The attraction of this type of extension is that it enables
us to combine the advantages of relative identity with those
of the classical theory. Absolute identity appears at one end

of a spectrum of identity relations of differing degrees of
strictness.

Defects of Theory 1 (and its Mixed Extension) Theory 1 is about
the simplest identity theory we can frame which satisfies (R).
However, it does not capture all our intuitions about relative
identity. One such intuition is that if ¢ and b are the same @
they must both be ®'s. Yet in Theory 1

6 d4x =¥ > O(x) v D(y)

fails. Let ® be a property such that (Uy € AQW(@) = y(b)

and ~0O(a) and ~O(b) (which is consistent with A;(@)). We

then have a =6 b& ~(0(a) v ©(b)). Reflection along these

lines shows a similar defect with the form of reflexivity given
by Theory 1 since we should not expect a =q) a to hold in

those cases in which ®(a) fails. These defects are fatal for
Theory 1, and carry over into its mixed extension; but their
source is easy to diagnose since we did not include ®(x) and
®(y) as necessary conditions for x =q) y. An obvious correc-

tion, still within classical extended second-order logic, gives
Theory 2.

§ 2.2 Theory 2.
In Theory 2 we have D1 of Theory 1 by

DI+ x =¥ = o (UVI2(x) & D(y) &A (W) 2. v(x) = y(y)],
le,x= vy = ¢x) & Q) &(Uy €A JW(x) = ().

Theory 2 has the same semantics as Theory 1. Theory 2 gives
us a more acceptable form of reflexivity:
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Ti* - ®(x) D. x =0 X (reflexivity)
Proof: Since (Uy Aq,)hp(x) = 1(x)) we have ®(x) >. ?(x)
& (Up €A )W) = y(x)

Symmetry, transitivity and substitutivity are unchanged:

T2* - x =¢ Y D ¥ =‘p b4 (symmetry)
T3* - x =¥ &y S22 XS, 2 (transitivity)
T4d* - x =g Y &Aq) W 2. v = () (substitutivity)

as are TS5 and T6 of Theory 1. The ill-fated (6) of Theory 1 be-
comes

T# - x = ¥ > ®(x) & B(y).

Moreover, T1* gives us another desirable theorem schema
which was not available in Theory 1:

T8 - ®(x) o (Py)(y =¢x).

(2) and (3) remain non-theorems in Theory 2, and

(A —|x=¢x

becomes one. Theory 2 is consistent with (R) since (4) remains
a nontheorem. Suppose we have two items a, b and three

properties y, ©, ¢. Let ¥ be such that

(l) X(a]l X(b)l A;(X)l "‘A;C'(@)r NA;(g)

Thus (Uy € A—)fy(a) & x(b) & (p(a) = (b))], and so a = —b.
% %

Let ¢ and © be such that:
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(ii) ©(a), ~O(b), A;(@)

so that ~ (@ = — b). Moreover, suppose ¢(a) and ¢(b). In this case
s
we not only reject (4) as a theorem schema but also

@) H0(x) & 2(y) &y(x) &p(y) 2. x =y > x .
This is significant since it is mainly these cases of (R) which
are controversial, as many absolutists (e.g., Wiggins [1], p. 6)
are prepared to accept cases of (R) in whicha=-b & ~(a =-

x g

b) & ~(g(a) & g(b)). Theory 2 thus permits the strongest and
most controversial cases of (R). Moreover, we can form a mixed
extension of Theory 2 by adding (LL) to it and thus preserve
the advantages of the absolute theory ().

Defects of Theory 2, We objected to Theory 1 on the grounds
that in it

(9) Chomsky is the same physicist as Chomsky

is true even though Chomsky is not a physicist. Theory 2
surmounted that difficulty by making (9) false. However,
Theory 2 fails to distinguish between (9), which is correctly
treated as false, and

(10) Chomsky is the same number as Chomsky

which is more correctly treated as non-significant. Since
Theory 2 assigns the same value to (9) and (10) there is good
reason for considering alternatives which don't. Moreover,

() That this is possible even when ‘strong’' cases of (R) can be modelled
is worth noting, since it is only these cases which lead the absolutist to
fear a conflict between (R) and the classical theory. For an account of how
the absolutist can cope with the weaker cases of (R), see Griffin [1], pp. 187-
93.
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since the thesis (D) claims that absolute identity statements
are semantically incomplete there is a suspicion that we have
not yet done (D) justice since the (D)-theorists’ claim seems to
be that absolute identity statements are neither true nor false
but non-significant. For these reasons we turn from classical
quantification logics to second-order significance logics.

§ 3 Theories based on Second-order Significance Logic

§ 3.1 The Significance Logic 2Q;.

The logic 2Qj (studied in Goddard and Routley [1], pp. 590 ff)
is essentially the significance transcription of standard second-
order logic (as formulated, e.g., in Church [1]). The logic results
by adding standard (o — V) quantificational postulates for
second-order logic — but with the 3-valued material implica-
tion ‘—' replacing ordinary material implication ‘>’ (and the
quantifier ‘'V' replaced by 'U’) — to a functionally complete
3-valued sentential logic S; with the values ¢, f and n inter-
preted respectively as true, false and non-significant. Apart
from the classical connectives (‘'&’, V' and ‘~’) which take the
value n whenever one of their components takes the value n
and otherwise behave truth-functionally, the connectives of
2Q; (and Sg) which we shall use are characterised, matrix-wise,
as follows:—

= t f n l S | T I - o= t f n
t t f n t f f t t f i
I t 1 t f t f t f
n t t t f f t n f r t

‘S" and 'T" may be read ‘it is significant that' and 'it is true that’,
respectively. It is evident from the matrices that detachment
holds for — with t the only designated value, and also that

(11) C—D —, A&B&C — A&D and
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(12) P—. A=B)&(D—.B=C)—=.D—.A=C

are valid. For suppose, to illustrate a shortcut method, (11) is
not valid. Then for some assignment of values to the variables

C — D must have value t and A& B& C— A & D value ? (i.e.
f or n). But by the last A & B& C must have value ¢, and so

each of A, B and C have value {, and A & D must have value 1.

Since A has value f it must be D that has {. But this is impos-
sible as both C — D and C have value i,

A final distinctive feature of 2Qj; that we shall need (the
feature that distinghuishes 2Q; from the system 2QS; of God-
dard and Routley [1]) is that an unrestricted second-order ab-
straction schema holds, i.e., given any formula schema B(x,, ...,
X») of the language there is some relation f such that for every
X1y oo Xny

£(X1, o0 Xp) = B(xy, ..., Xz).

(Equivalently, full substitution of wffs for predicate formulae
holds.) Using the abstraction schema it is straightforward to
establish the following theorems of 2Q;

(13) (Ux)(P®) ~ S®(x)
(14) (Ux)(Py) y(x)

§ 3.2 The Theory S.

Theory S is formed by adding A to 2Qj. Its formation rule is
the same as in Theories 1 and 2, and its interpretation is simply
the 3-valued analogue of that for Theories 1 and 2. DO is
amended to

DS0. (Uy € A ) A = (UY) (A, (y) = A).

D1 is replaced by the definition
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DS1. x =y = p (UY)(2(x) & (y) &. AQ (W) = p(x) = p(y):
thus x = oY = 2X) & 2(y) &(Uy € A o (W) = ¥(¥)).

The following are theorem schemata of Theory S:

TS1 - Q(x) . x = o X (reflexivity)

Proof: Since Aq)(w) = Yx) = Uy A‘p}(q;{x) = P(x)).

Note that this result would not follow had D0 been retained, as
Aq, (y) may be non-significant for some . (Of course D0 could

be retained were it postulated that SA@ (¢).) TS1 now follows

from DS1 using the theorem (A = B& C) —.C —, B— A. Thus
Theory S preserves the desirable features of reflexivity in
Theory 2.

TS2 - x "1 § N gre . (symmetry)

Proof: By the symmetry of = and & using DSI.

== = —_— ] sge_ s
TS3 +~ x q)y&y 4,2 K= E (transitivity)

Proof: By (11) and (12),
P(x) & B(y) & [Ay () = ¥(x) = y(y)] & 2(y) & (2) &

Ay () = 9() = v@)] = 2(x) & B(z) & [A_ (W) .
PYx) =y(2)].
TS3 then follows by generalising and distributing quantifier
U and applying DS1.
TS4 + x = y&AQ(w) =, P(x)=y(y) (substitutivity)

Analogues of T5 and T6 of Theory 1 are also preserved in
Theory S. T?+ of Theory 2 becomes:

TS? + x o 1 —. O(x) & B(y)
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TS8 +~ S(x o y) . S®(x) & S®(y)

Proof: From S[®(x) & ®(y) & (Up € A_)(W(x) = (y))] © 50(x)
& S®(y).

Since 2Qs contains the theorems (Ux)(P®) ~ S®(x) and (Ux)
(Py)y(x) we can prove an example of (R) in Theory S:

TS9 (P@,mp)(x=q)x&—| (x =1P x))

Proof: (P®)~S®(x) gives~SO(x) and thus by contra-position
of TS8~S(x = r x) and hence —(x = 5 x). From (PV)

P(x) we get y(x) and then, by TS1, x = ;x.
PG gives TS9.

TS9 embodies the principle that x is not self-identical with
respect to every property @, and naturally follows from the
principle that for every item x some property may not signi-
ficantly be asserted of x. Both are desirable principles to have
in a relative identity theory.

A Mixed Extension of Theory S: Simply adding (LL) makes (D)
provable in Theory S. Since (Ux)(P®)~S®(x) in 2Q; it follows
that ~S(x = y). However, adding a relation defined by a two-
valued connective in a three-valued logic is not a very intel-
ligent policy and one which the prudent absolutist is not likely
to accept. A more reasonable alternative is to add '=' to
Theory S by means of the definition:

DS2x =y = p. (UD)(D(x) = D(y))
With DS2 we can prove
TS10 - x=y —. (®(x) &®(y)) > x=(p Y

but not, of course, its converse.
Moreover, we can extend Theory S further by adding a
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constant property, ©, such that (U®) (Ag(tb)). This gives us: (%)
TSI - x=oy =. B(x) &B(y) & (Uy)(@(x) = &(y).

If we make the further stipulation that © applies universally,

ie, that (Ux)®(x), the first two conjuncts on the right-hand
side of TS11 drop off and we have

TS12 FX=gYy =x=Y

TS12 is important since it is reasonably claimed that in natural

language ‘item' satisfies the conditions imposed on @. The
claim that if a and b are (absolutely) identical they are one
and the same item occurs in much of the philosophical litera-
ture on absolute identity. It also explains the (D)-theorists’
reluctance to accept ‘a is the same item as b’ as a properly
relativized identity statement.

§ 4 Conclusion and a further Suggestion,

We have shown that, contrary to widespread belief, formal
theories of relative identity can be consistently formulated
even within a classical second-order logic. Moreover, such
theories can be extended to encompass absolute identity, again
contrary to widespread belief. Within classical quantification
logics Theory 2 seems to be the best we can do. However, by
considering relative identity theories within second-order signi-
ficance logics we get results much more in line with philoso-
phical thought on relative identity.

We have already mentioned the difficulties of providing a
significance logics gives rise to the hope that some adequate
complete specification of A‘p, for given ®@. The introduction of

characterization of Aq’ may be possible in terms of the signifi-
cance range of ®. Unfortunately, the most obvious attempts to

(%) Similar extensions are possible with Theories 1 and 2.
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do this result in too wide a range of properties being included
in Aq) and thus in the exclusion of plausible natural language

examples of (R). It is not easy to see what additional constraints
can justifiably be imposed on membership of A@. This is not

to suggest that there is no connection between A@ and the

significance range of @, but that the precise specification of the
connection is not a simple matter and requires further work.
As already noted, relative identity theory is not at a unique
disadvantage in this respect since restrictions of a similar na-
ture on substitutable predicates are required in the absolute
theory if the modal paradoxes are to be avoided.

(D) has not fared well in any of our theories but this is not
worrying since we know of no good arguments in its favour.
However, there is a more plausible claim which nonetheless
has certain affinities with (D). This is the claim, made by Wig-
gins (°), that in natural language certain types of general nouns
(viz., sortals, as distinct from mass nouns, and dummy sortals)
play a fundamental role in identity statements since they are
necessary to individuate items (). It is claimed, and at least
one of the authors agrees with the claim, that the concept of an
individual item is incoherent unless some sortal is available to
provide principles for individuating the item. This claim cannot
be accomodated within the theories presented in this paper,
and meeting it is almost certain to require substantial changes
within the semantics of quantification (*).

Australian National University Richard RoutLey
Victoria University of Wellington,
McMaster University Nicholas GrirrFIN

(*) It is made much more clearly in the forthcoming second edition of his
(1].

(*°) Recognition of the different types of general nouns which may be
substituted for ® also eases (though it does not solve) the difficulty of
specifying Aq) adequately. See Griffin [1], pp. 140-1.

(*) We are grateful to colleagues at the Australian National University
and Victoria University of Wellington for comments on earlier versions of
this paper.
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