COMPLETENESS OF SOME QUANTIFIED MODAL LOGICS

James W. GarsoN

0. Introduction

We give here simple completeness proofs for a wide range
of quantified modal logics. The systems in question have the
axioms and rules of some standard system of propositional
modal logic, axioms for intensional identity, and quantifica-
tional principles drawn from free logic. The semantics we give
is more general than usual, and perhaps that explains the sim-
plicity of the completeness results.

Usually a semantics for quantified modal logic involves
the introduction of a function D which assigns to each possible
world d the set D(d) of individuals which «exist» in that world.
We may think of D as the intension of a corresponding exist-
ence predicate 'E' in the object language.

In our semantics, we introduce a function ¥, which assigns
to each possible world d a set ¥(d) of individual concepts, or
world lines (i.e., functions from the set of possible worlds to
the set of individuals). In this way we agree with Montague's
[5] and Bressan's [1] more general treatment of the intension of
a predicate in our description of the intension of 'E'. (*) As a
result, the term position in 'E' becomes opaque, and not sub-
ject to substitution of identites. (%)

() This treatment is motivated by Montague [5] on p. 247 and following,
and by Bressan [1] on p. 24 and following.

(*) It is possible to add other predicates which are given the more general
semantical treatment of 'E' to the systems of this paper. The only changes
required involve restriction of the substitution of identities to term -places
of predicates which are not given the more general interpretation.
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1. Formal Motivation

Why should we want to generalize the treatment of the in-
tension of 'E’ in this way ? The first set of reasons are formal.
When D is used, there are several ways of introducing the truth
definition for the quantifiers, and it is not easy to decide
which is best. (*) At least one of these results in a definition
of validity which is not axiomitizable (system Q2). On another
definition (system Q3) the completeness results are highly
sensitive tfo the strength of the modal operator. Strategies
which work (say) to show the completeness of S4 strength
quantified modal logics (for example those used to show com-
pleteness of Q3-54) are not applicable to the weaker systems
such as Q3-M or Q3-K. That difficulty does not arise with the
more general interpretation of the quantifiers we give here.
One simple strategy serves to provide results for any quantified
modal logic whose modal fragment is determined by some non-
empty class of Kripke frames, and for which a standard Hen-
kin style completeness proof is available. In short, the methods
of this paper yield simple completeness proofs for quantified
versions of the vast majority of studied systems of modal
logic.

2. Informal Motivation

Are there any reasons other than formal for accepting the
approach of this paper ? I believe there are philosophical in-
tuitions which recommend it, particularly when the quantified
modal logics at issue are tense logics. It is generally felt that
it is not part of the province of logic to determine which of the
competing ontological theories is correct. It follows that se-
mantics for quantified modal logics should not rule out any
reasonable ontological theory.

(*) Thomason discusses these options in [6] pp. 134-140, and Garson [2]
discusses similar matters for another intensional logic.
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There is a venerable and pervasive ontology, which we might
call ordinary onotology, or Aristotelian ontology, which seems
to require the approach we have taken to the intension of the
existence predicate. It is basic to this position that there are
objects, and that objects change. So the formal counterpart of
an object in a tense logic semantics must be a timé-worm or
individual concept, and not a slice of a time worm, since it
makes no sense to say of the latter that it changes. In a tense
logic then, an object should be treated as a function from
times into temporal slices of objects (or point-events), and
hence objects are the intensions, not the extensions of the
terms.

Now what does this have to do with whether the intension of
'E' should yield at time t a set of individuals or a set of indi-
vidual concepts ? We know that there are many predicats P
which are extensional, which means that the calculation of the
truth-value of 'Pn’' (say at t) depends soley on whether the
time slice (individual) refered to by 'n' at t fails in the exten-
sion of 'P' (at t}, and does not otherwise involve the intension
of 'n’. Couldn't it turn out that 'E’' is one of these extensional
predicates ? I think there are stong intuitions which rule against
this and which show that at least one rather "basic treatment
of existence in temporal situations requires the intensional
approach.

To see this, imagine what we would say (at t) if a temporal
slice (of finite, but small duration, if you like) of an object
(say a slice of Gerald Ford) were to be present at t, in a con-
text where the preceding and subsequent temporal slices of
Gerald Ford were absent. Now it is true that we might be in-
clined to say that something existed at t, namely a temporal
slice of Gerald Ford, or a fleeting «apparition» of Gerald Ford.
It would be strange, however, to claim that Gerald Ford exist-
ed at t under these circumstances, for part of what makes us
want to say that Gerald Ford exists at t, is the existence of
previous and subsequent stages of Gerald Ford arranged in a
certain coherent fashion.

This result should not be surprizing. The ordinary ontology
takes objects as basic, so questions about existence and non-
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existence of objects should be questions about objects and not
about certain of their temporal parts. So it follows that if
objects are to be treated as functions from times to times slices,
then the referent of 'E' at a time t should be a set of these
sorts of functions, and not a set of time slices.

3. The predicate 'E’

The predicate 'E’ is included as a primitive of our systems.
Its primitive inclusion is important to the generality of the
results. In free logc, and in modal logics where the domain of
quantification shifts from possible world to possible world, the
usual axiom of universal instantiation is invalid, since it is
possible for VxA to be true at world d, and for An/x to
be false when 'n' denotes something outside the domain of
quantification for d. If we conditionalize the consequent of this
axiom, a valid formula results, when the right condition is
chosen. The condition we want is a formula which expresses
that 'n’ refers to some «object» in the domain of quantification
for d. In free logic 'Ixx=n' serves that purpose. However,
this formula will not work in an intensional logic which gives
‘=" the intensional or weak interpretation of identitiy, and
which includes our approach to existence. That is because we
now need a condition which says that the function refered to
by 'n’ falls into the domain W(d) of functions for the world d.
But 'Ixx=n' says something weaker, namely that there is a
function g such that g(d) is the extension of n at d. It does not
improve matters to replace 'Ixx=n' with ' IxOx=n’', unless
the underlying modal system is as strong as S4. () For
"dx0Ox=n’ says only that there is a function g € ¥(d) which
agrees with the intension of n at those arguments in the range
of the Kripke relation R at d.

(*) When the modal logic is as sirong as S4, Vx[JFx > (IxOJx =
n>D []Fn) becomes valid on our semantics, in spite of the fact that

Ix[x = n does not express that the function refered to by ‘n’ at d falls
in ¥(d).
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4. Rigidity of variables

One of the major simplifying assumptions made in Q3,
Thomason's [6] approach to quantified modal logic, is to as-
sume that the intensions of the variables are constant func-
tions, that is to say, that their extensions do not change from
possible world to possible world. On the other hand, he allows
the terms to be non-rigid. This leads to formal and philoso-
phical akwardness.

The formal akwardness is that the domain of quantification
becomes the set of constant functions, or as Thomason believes
he should call them, the substances. This invalidates the usual
axiom for universal generalization. By adding an instantiation
condition ' Ix0Ox=n’, a valid axiom

A4 VxA>o(IxOx=n>Anx)

results, but only when the underlying modal logic is S4 or
stronger. In logics of weaker modality, A4' is invalid, and it
is difficult 1o specify the instantiation condition that is needed
for a sound and complete system. Hintikka [4] describes this
matter in detail and gives the complicated axioms which must
be used. Thomason's refusal to consider weaker modalities
saves him from considerable complications, and even so, the
rules for his system Q3 are elaborate.

Insisting on the rigidity of variables leads to formal compli-
cations, but I doubt that it is acceptable on philosophical
grounds either. Thomason motivates his decision to «rigidify»
the variables by claiming that this allows us to incorporate a
concept of substance into modal logic. In choosing our varia-
bles to be rigid designators, we are supposed to get the effect
of quantifying just over the substances. But why should we
conclude that the substances are exactly the intensions of
rigid designators. It is at the very least inconvenijent to do so.

First, the insistence that a term for a substance refers to the
same individual in each possible world immediately poses the
problem of providing identity conditions for individuals across
possible worlds. Is it sensible to assume that Plato (which I
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take to be a substance for the present discussion) in this world
is exactly identical to the Plato of some other possible world ?
Well, not unless Plato's identity does not depen don his acci-
dental properties. But if trans-world identification is to depend
only on essential properties, how can we be sure that there
aren't possible worlds where two substances (say Aristotle
and Plato) have exactly the some essence, and so are identical
in that world, with the result that they must be ruled identical
in all worlds ?

The inconvenience becomes more apparent when we give
modal logics a tense interpretation. We would like to quantify
over Gerald Ford as a member of our ontology, yet the exten-
sion of 'Gerald Ford' is not constant across times, since each
time slice of his has its own peculiar properties. Insistence on
the myth that 'Gerald Ford' is after all a rigid designator pro-
vokes a fruitless search for «something» which remains con-
stant in all these time slices.

The difference between substances and other «things» is
undoubtedly too subtle to be captured via the simple notion
of the rigidity of designators. In fact, in order to be fair to
any system of ontology, the best thing to do would be to
make no assumptions at all about the semantical properties of
the terms that happen to refer to substances.

We now find another reason for choosing the general appro-
ach of this paper. Our existence predicate E has a set of in-
dividual concepts as its extension, and this set can serve ad-
mirably as the boundary between substances and non-substan-
ces for those ontologies which bother to make the distinction.
Since there are no conditions on this set in our definition of a
model, any sort of ontology of substances may be accomodated.
Since the substances so identified are not necessarily constant
functions, the problem of trans-world identification does not
need to bother us unless the ontology in question requires
such a concept. In this way we leave the problem to the onto-
logist, not the logician.

Special logics designed to capture assumptions about sub-
stance or any other interesting sorts for quantification can be
constructed by putting appropriate conditions on the seman-
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tical behavior of E in our definition of a model. So Thomason's
approach can be reconstructed within ours. If we want a logic
which does not close ontological issues, however, we should
choose the generality of the approach of this paper.

4. Axiomatic Features of MQ

We will demonstrate the completeness of a system MQ,
written in a morphology L for quantified modal logic with
identity, which includes the primative predicate constant 'E’
for 'exists’. MQ contains the principles of some propositonal
modal logic M for which a standard Henkin-style completeness
proof is available. (By standard, we mean to include that the
definition of the Kripke relation R in the canonical model is
given in the standard way: Rdc iff {A:0Aed}<c.) It includes
as well axioms for intensional identity:

(A=) ~ t=t
(AS) + (s=t o (F(s) o F(t)), where F(s) is atomic and F(t) is
the result of replacing t for some occurrence of s in F(s).

A formula is atomic just in case it contains no logical constants.
We consider 'E' to be a logical constant, so substitution gua-
ranteed by (AS) does not apply to 'E'. MQ also contains the
following quantificational principles drawn from free logic:

(VG) + (A > (Ex>B)

~ (AD VxB)
(V1) ~ (VxAD(EtoAt/x)).

At/x is the result of replacing any term t properly for x
wherever x appears in A.

When I' is a set of formulas, T+~ A’ means that either A is
provable in MQ, or there is some conjunction G of members
of I' such that +yo(GDA). We use 'L’ for some preselected
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contradiction of propositional logic.

Let T be any set of terms of L, and let F(T) be the set of
formulas of the morphology like L save that it has its only
terms the members of T. Let TP be the set of terms that appear

in the set of formulas I'.

A set of formulas & is a MQ-set iff for every formula A
of F(Ta) i. A 4« L, ii. if A¢A, then & U {A}+ 1, and iii. if
~VxAeA, then there is a term t in Ta such that (St&~ At/x)
4. A MQ-set is just a saturated set with respect to the set
F(T4) of formulas of the morphology which contains only terms
found in &, where saturation is defined as is appropriate for
free logic.

MQ-set Lemma: If I is a set of formulas such that 'y« 1,
and there is an infinite set of terms T of L, none of which is
in TF, then there is a MQ-set A such that I'C A, and AC

F(T U 7).

Proof: Similar to the proof of the Lindenbaum Lemma.

MQ-sets obey the usual properties of saturated sets when
attention is restricted to the formulas of their corresponding
morphologies. In particular

P. When 4 is a MQ-set, the following properties hold for
all A, B € F(Ty):

1. if A—A,then A=A,

2. ~AelAiff AeA,

3. (AoB)ed iff A¢A orBeA,

4. VxAeA iff for all terms tET,, (EtDAtx)e A,

5. Semantics for MQ

An M-model U for L is a quintuple <D, R, I, ¥, u©=>, where
<D, R> is a member of the set of Kripke frames which deter-

(°) Following Hansson and Gardenfors [3] a Kripke frame is a pair
< D, R > consisting of a non-empty domain D (of possible worlds) and a
binary relation R on D. A propositional modal logic M is determined by
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mine M, (°) I is a non-empty set (of individuals), y is a function
which assigns to each deD a subset of the set of functions
from D into I, and u is an interpretation function which assigns
to each term t a function u(t) from D into I, and which assigns
to each j-ary predicate letter P! (other than E) a function from
D into the power set of I, (We let I°={@}, where @ is the
null set, so that in the case of a propositional variable P°,
u(Po)(d) is { @ }=1 or & (true of false).

We define 'U F4A’" (read 'A is true on U at d') as follows:

0) U &=, Bt iff u(t) e ®(d)

1) U =4 Pity...t; iff <u(t))(d), ..., u(t;) (d)>>eu(P)(d)

2) U Fgs=tiff u(s)(d) is u(t)(d)

3) UFg ~Aiffnot Uz A

4) UEq(ADB)iffnotUFE;AorU ;B

5) U F4 VxA iffUf/x or f/xk=4 A for all feU(d)
(Uf/x the model identical to U save that its interpretation
function assigns f to x.)

6) U =4 OA iff for all e=D, if Rde, then U = ,A.

A set of formulas I' of morphology L is MQ-satisfiable in L
just in case there is an M-model for L en which each of the
members of I' is true. Validity is defined from satisfaction in
the usual way.

It is a simple matter to show by induction that

S. UM/, =4 A iff Ukg4 Atx,

6. The completeness of MQ

Let us define a canonical model Ug,, (or U for short) as the
quintuple <D, R, I, ¥, u=>, where i. deD iff d is a MQ-set, and
there is an infinite set of terms of L not in T, and ii. Rdc iff
{A:0 Aed}Cc, and iii. u(t)(d) is {s : s=ted}, and iv. u(P!)(d)

a class K of Kripke frames just in case for every member < D, R> of K,
every model for < D, R > satisfies all and only the theorems of M,
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is {<u(t))(d), ..., u(t;)(d)>: Pit; ... ;=d}, and v. il iff u(t)(d)
is i for some term t of L and deD, and vi. f=¥(d) iff u(t) is f
and Eted for some term t of L.

If follows from this definition that

E. Eted iff u(t) e U(d)

Proof: The proof from left to right is trivial. Now suppose
that u(t)eU(d). Then for some t', u(t) is u(t’) and Et'ed. But
u(t) is u(t’) only when t is t', for when t is not t' there is always
a MQ-set eeD where t=T, and t'&T, with the result that
u(t)(e) is not &, while u(t')(e) is. It follows then that Et d.

‘We are not ready to prove

The Model Lemma  For every formula A and each d&D, if
A EF(Ty), then Ug,, E=4A iff A=d.

The proof is by induction on the form of A. Cases for formulas
having forms other than (OB are easy to provide given P.,
S., and E.. So we turn to the case for formulas having the
form OB. Suppose deD and (0B F(Ty). Now assume U =40B.
Then

(1) for all ceD, if Rdc, then U =, B.

Now let dD be {A: [0 Aed}, and suppose for reductio that
dDF B. Then dl] U{~B} 4 L. Since deD, there is an infinite
set T of terms foreign to ¢, and since the members of dL'_"I U
{ ~B} are all in F(Ty), no member of T appears in dD U{~B}.

Now form two infinite disjoint sets T;, Ts such that T is
T;UTe. () By the MQ-set Lemma, there is an MQ-set e such
that dD U {~B} Ce and eSF(T3UT,). There is an infinite set

(*) To do this, order T; then let T consist of odd, and Ty of even members
of the ordering.
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of terms (namely Ty) not in T,, so e€D. Furthermore Rde and
~B&e. Since OBF(Ty), BEF(T,), so by P. it follows that
Be=e. By the hypothesis of the induction and BEF(T;) we con-
clude that not U.B. So there is a member e of D such that
Rde and not Ul=,B, which contradicts (1). Our reductio is com-
plete, and so we know that dl:l +B. It follows that either B

or there are formulas Ay ..., A, € d such that ~(A; &
... & A;)SB. In the first case ~ OB, hence OB&d by P, and
in the second case it follows by the principles of M (which
is as strong as K) that ~(0A; &... & OA;) o OB. Sod + OB,
and by P.,0B<d.

Now let e be any member of D and suppose that DJBed and
Rde. Then Bee, and so BEF(T,). We employ the hypothesis of
the induction and this last result to obtain U =,B. It follows
that U =,0B.

Theorem. MQ is strongly complete.

Proof. We show that any consistent set of formulas is MQ-
satisfiable. Let I" be any consistent set of formulas in morpho-
logy L. Let L' be the morphology that results from adding to
the terms of L an infinite set T of terms foreign to L. Now
divide T into two disjoint infinite sets Ty, Ts. (*) By the MQ-set
Lemma, there is an extension A of I" such that A C F(TP U Ty).

Now consider Ug,,. We may use the principles of M to show
that its Kripke frame <<D, R> is a member of the class of
Kripke frames which determines M, by reviewing the appro-
priate portion of the completeness proof for M, since the defi-
nition given for R in Ug,, is standard. So Ug,, is an M-model.
Now there is an infinite set (namely T;) of variables of L'
which are not in T, and so it follows that A €D. By the Model
Lemma, A€ A iff U [EaA. By forming the model like Ug,, save
that its interpretation function is restricted to the terms of L,
we produce an M-model for L which satisfies the set of for-
mulas of & which are written in L. Since I' is a subset of this
set, I' ust be MQ-satisfiable in L.

We have been somewhat detailed in our exposition of this
proof. That is because we have run a considerable risk of
failure in introducing saturated sets which do not contain all
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the terms of our language. It was therefore important to show
that the proof works in spite of the use of such improvershed

sets,

and so we paid particular attention to how mention of

the language plays a role in this proof.

University of Notre Dame James W, Garson
BIBLIOGRAPHY
[1] A. Bressan, A General Interpreted Modal Calculus, Yale University

[2] J.

[3] B.

Press (1972).

Garson, Indefinite topological logic, Journal of Philosophical Logic,
vol. 2, (1973), pp. 102-118.

Hansson and P. GirDENFORs, A guide to intensional semantics, in
Modality, Morality and Other Problems of Sense and Reference,
Lund (1973).

[4] J. Hintikka, Existential and uniqueness presuppositions, in Philosophical

[5] R.

(6] R.

Problems in Logic (ed. K. Lambert), Reidel (1970).

MonTAGUE, The proper treatment of quantification in english, in
Formal Philosophy (ed. R.H, Thomason) Yale University Press (1974),
PP. 247-270.

THOMASON, Modal logic and metaphysics, in The Logical Way of
Doing Things (ed. K. Lambert), Yale University Press (1969).



