TENSE LOGIC AND STANDARD LOGIC

J.F.A K. vAN BENTHEM

1. Introduction

It is a matter of debate whether the logical «theory of time»
should constitute an independent discipline (consisting of
ordinary predicate logic with added tense operators), or be
viewed as an applied predicate calculus (in which quantifica-
tion occurs over moments in time). The former point of view
was advocated by A. Prior (cf. his influential [13]) — and
seems to be widely accepted as part of the package deal in-
volving tenses, modalities, deontic notions, etc., called infen-
sional logic —, whereas the latter opinion is voiced by spora-
dic dissidents (cf. Massey [11] and Needham [12]). In this paper
we try to shed some light upon this controversy (or even: a
clash of Kuhnian paradigms, according to Massey) by compar-
ing the two approaches from a technical point of view. The
relevant material is arranged as follows. Section 2 is concerned
with the general argumentation pro or contra the two appro-
aches, which is partly philosophical, partly linguistical, etc.
It is argued that the burden of justification lies with the Prior
approach, which is only partially successful in this respect.
In section 3 several publications of «Prioreans» are discussed,
as far as relevant to the present theme. These are Prior [13],
Kamp [6], Kamp [7], Vlach [18], Aqvist [1], Agvist & Guen-
thner [2] and Gabbay [5], in that order. It will be seen that, as
the complexity of the respective tense-logical languages in-
creases, they «converge» towards predicate logic (although
some authors do not seem to be aware of it). This section
extends the analogous discussion in Needham [12], chapter V.
1, 2, 3, Section 4 is devoted to the latter book, which is one of
the clearest expositions of the non-Priorean approach. Not-
withstanding this clarity, it leaves something to be desired
from the point of view of technical precision. A paper of
Quine ([14]) showing how to formulate predicate logic without
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using individual variables (using permutation and substitution
operators — for argument places — instead), is explained in
section 5. Since such operators occur in recent tense-logical
languages (cf. section 3), section 5 supports the «convergence»
claim made above. Finally, section 6 contains our main con-
clusions, viz. (1) the two approaches are not mutually exclu-
sive, in fact (2) Priorean tense logics may be profitably regard-
ed as (often interesting) subsystems of the predicate logic with
time variables, but (3) as the complexity of Priorean tense
logics increases, they reach a point where an open conversion
to the second approach may be preferable.

2. The general case

Before proceeding to the battle field, let us sketch the two
positions. On Prior's view, a sentence like

(1) A child is born (B)
expresses a proposition which may be true or false, depending

on the time of its utterance. (We abstract from other context
factors for the moment). Its past tense formulation

(2) A child was born

may be viewed as the result of a past tense operator P (to be
read as «it was the case that») transforming B into PB. Similar-
ly, the future tense operator F (to be read as «it will be the
case that») would transform B into FB, i.e.,

(3) A child will be born.

A typical Priorean procedure is the iteration of such operators,
to arrive at combinations like PPB: «It was the case that (it
was the case that B)», or, in plain English:

(4) A child had been born,
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or PFB: «It was the case that (it will [= would, in idiomatic
English] be the case that B)», i.e.,

(5) A child would be born.

This is all very elegant, and the opposing view (let us call
it the classical one) seems rather cumbersome by comparison.
It uses a two-sorted predicate calculus with variables x, v, z, ...
for individuals and t, t', t", ..., t, t;, ... for moments («points in
time»), to bring out graphically the dependence on time. E.g.,
Bt will stand for «A child is born at time t». Paradoxically,
this policy may also be described as de-tensing (cf. Massey
[11]), because Bt, if true, will be timelessly true. (Many com-
batants feel an abysmal divergence here between the two
approaches — whereas we can only see a notational differ-
ence). The next step is more momentous. Let E denote the rela-
tion of precedence among points in time (earlier than). The
above sentences will then be expressed by means of quanti-
fiers as follows.

(1)’ Bt (t always denotes the «point of evaluation»),

(2’ 3t'(Et't ABt) («A child is born at some time t' earlier
than t»),

(3 3It'(Ett' A Bt') («A child is born at some time t' later
than t»),

(4) 3Ft(ELt A It (EL"t A BtY),

(6 3Jt(Et't A It"(Bt't" A Bt")).

The classical approach seems at a clear disadvantage from
the point of view of mere complexity. But, let us not judge
too early. A finer analysis of (1) might read

(6) 3Ix(Cx A Bx) («Some individual is a child which is
born»), which would have the «classical» counterpart

(Ctx: «x is a child at t», Btx: «x is born at t»)

(6) 3Ix(Ctx A Btx).
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A sentence like
(7) A child was born which would be king

(an example taken from Kamp [5]) will get the Priorean read-

ing
(8) P Ix(Cx A Bx A FKx).

Its classical counterpart is

(8) 3Jt'(Et't A Ix(Ct'x A Bt'x A It"(Bt't” A Kt"x))),

which is surely less perspicuous. But, now consider the follow-
ing sentence — also due to Kamp —

(9) A child was born which will be king.

A minor modification of (8)' will yield its classical transcrip-
tion

9) 3Jt(Ett A Ix(Ct'x A Bt'x A It"Et()t" A Kt"x))).

(9) cannot be expressed in terms of the above operators, how-
ever, whence a third operator N (for now) has to be added.
(9) then gets the Priorean reading

(10) P Ix(Cx A Bx A NFKx).

It seems the classical approach has scored a point: a simple
alteration («simple» from ifs point of view, that is) had to be
accounted for by the introduction of a whole new operator in
the rival theory.

The above will suffice to show in what way the two appro-
aches differ, but also which obvious parallels exist. Such
parallels, i.e., classical transcriptions of Priorean formulas, can
always be found (cf. section 3), at least, as long as Priorean
tense logicians keep using operators which can be expressed
in Kripke semantics (and they show every intention of doing
so). Now, predicate logic is a venerable system which is well-
understood from a technical point of view. From this point of
view, then, the burden of justification would seem to lie with
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the Prior approach: why not use existing logical systems ?

The argument of the preceding paragraph applies not only to
tense logic, but also to other variants of intensional logic, like
modal logic. (E.g., the theory of counterfactuals, in which
authors manage to come up with legions of operators in one
paper, would be an obvious next candidate — and, indeed,
Needham (written communication) is planning the campaign
already). The first line of defence then often consists in an
appeal to authority. D. Scott writes in [16]:

«One often hears that modal (or some other) logic is point-
less because it can be translated into some simpler language in
a first-order way. Take no notice of such arguments. There is
no weight to the claim that the original system must therefore
be replaced by the new one. What is essential is to single out
important concepts and to investigate their properties. The
fact that the real numbers can be defined in terms of sets is
no argument for being interested in arbitrary sets. One must
look among the sets for the significant ones and cannot be
censured if one finds the intrinsic properties of the reals more
interesting than any of their formulations in set theorys.

The analogy seems to fail, however. It is, admittedly, ridi-
culous to reduce real analysis in practice to set theory. This
would require such an amount of «unpacking» of definitions
that simple results would fill whole volumes. But the distance
between intensional logic and its classical counterpart is not
all that great, and the «reductionist» approach is practically
viable as well as theoretically enlightening (we will argue for
this below). And, anyway, even Scott admits that the inten-
sional operator approach should justify itself: by yielding re-
sults (the tree is to be known by its fruits). Fruitfulness is a
rather subjective notion, however, so we turn to other argu-
ments advanced in favour of the Priorean approach.

According to Massey, arguments are of no importance here,
because the two approaches are different paradigms (in the
sense of Kuhn [8]), between which no rational decision is pos-
sible. This view is exaggerated, since both parties often seem
to differ not so much in what they are doing (technically), as
in their interpretation of what they are doing. But, if the picture
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of two competing theories is correct, then, again, the matter
of the «burden of proof» arises. Which of the two is the re-
volutionary theory, having to display a better performance in
order to dislodge the established one ? Nowadays, the Prior
approach is so widely accepted, that Needham pictures him-
self as a revolutionary David advancing against Goliath. But,
only as far back as 1969, Massey could describe Prior and
his «dedicated band of revolutionaries» as subversive elements
turning against the main logical tradition of «Russell, Keynes
and Quine» (cf. [11], p. 18). The latter view seems historically
more correct. (This does not mean that Massey's account of
Priorean tense logic is correct. E.g., some of his attacks concern
irrelevant details, like Prior's Polish preoccupations: «langu-
ages which boast theses like 'CpNFNPp' and 'CNFNCpqCFp
Fq'» ([11], p.19). Moreover, he is too extravagant both in
his criticism and in his praise:

«In this paper I have argued that Prior’s tense-logic program-
me is unviable, because it purports to lead to logics of sys-
tems of tokens, and ill-advised, because grounded in bad
physics and indefensible metaphysics (...). Yet few if any
viable and well-advised programmes have been more interest-
ing, yielded more insights, or abounded more in ingenious in-
novations than has the programme I have argued against».
([11], p. 31/2)

Arguments advanced in favour of the Priorean approach fall
into three categories: philosophical, linguistical and technical
(i.e., purely logical). Some of the philosophical arguments are
peculiar to predicate tense logic, like those involving the (in)
validity of the Barcan formula

F 3xAx— IxF Ax.

It may be doubted if these arguments are anywhere as cogent
here as they are in the case of modal logic. Moreover, we want
the discussion to apply to propositional tense logic as well;
which leaves us with enough arguments anyway.

The main philosophical argument relies on Quine's doctrine
of ontological commitment. The classical approach uses quanti-
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fication over moments, thereby committing itself to the exist-
ence of moments. Much of the discourse involving time, how-
ever, — it is said — is not committed to this, so it should not
be described in this fashion. The Priorean languages keep our
hands free, so to speak, allowing different interpretations, of
which the «time axis» is only one. In a sense, this argument
— which also applies to, e.g., modal logic — is correct. Inten-
sional notations are not inextricably tied up with Kripke se-
mantics; which leaves room for possible new associations. Still,
one wonders how much of this is mere ideology, especially in
tense logic. Why are Kripke type semantics always introduced
in the same breath with the Priorean language ?

Some will reply that this is for technical convenience only.
This then often turns out to amount to a completeness proof.
But completeness results refer to the semantics in their for-
mulation, and are even usually interpreted as giving priority
to semantics: the axiomatic system succeeds in capturing the
richness of the semantic notion of truth. The reply, therefore,
only has some force coming from people who use the semantics
as nothing more than a convenient tool for proving purely
syntactic results, like e.g., Hamblin's «fifteen tenses theorem».
But these are rare. One gets the impression that there is some
truth in Needham's accusation that tense-logicians want to
have their cake and eat it. By banishing moments to the meta-
language (of semantical interpretation), they hope to enjoy all
the practical benefits of operating with moments, without being
ontologically committed to them. But one does not escape
from Quine so easily !

It is difficult for a logician to assess the merits of linguistical
arguments. Nevertheless, we mention a few heard in recent
yvears. (1) «Tenses are operators: this is just common sense
about language.» This type of argument should be thoroughly
distrusted. Is it not one of the tasks of logic to attack so-called
«linguistically evident» facts ? And, to put it more bluntly, what
is linguistic evidence but traditional school grammar raised to
the level of «intuitive insight» ? (2) «The classical approach
gives verbs a higher number of arguments than they actually
have. E.g., 'is born' is unary, not binary (as in (1)’ above). 'Is
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born at’ is binary, but that is a different verb.» This argument
points backwards at the user as well: indexical semantics also
raises the arity, but is more clever at hiding this fact notation-
ally. (3) «The classical approach uses a language that is foo
rich. Maybe a Priorean procedure of adding enough operators,
no matter how ad hoc, will turn out to suffice for the descrip-
tion of natural language». This argument is dangerous (as well
as being unflattering to natural language). A similar line of
thought might show that no general theory of quantification is
required, because natural language contains no more than, say,
five types of iterated quantifier (which could be described ad
hoc by means of some kind of «suppositio» theory). Frege's
general theory, however, turned out to be both simpler and
stronger than the ad hoc one !

From a technical point of view, it may be advanced that
Priorean tense logics have a more elegant and efficient nota-
tion than the classical one. This is true, but only to a certain
extent (cf. the above discussion and also section 3). Also,
these logics are often interesting as such (true again) and have
turned out to be natural in the sense of being connected with
other mathematical subjects (like algebra and topology). Never-
theless, these considerations, if true, only establish that Prio-
rean tense logic is interesting, not that it is — in any deep
sense of the word — better. Moreover, exclusive concentra-
tion on tense logic as such may create problems as well. E.g.,
one sometimes finds superfluous proofs of pendants of classical
results, or wrong estimates of the value of results obtained
about tense logics (cf. section 3). And, even where genuinely
novel results are obtained (like in Segerberg [17]), one often
wonders if tense logic means tying one's hands behind one's
back and then trying to prove something which used to be
easy. (Compare Segerberg's proof of the completeness of Lin
DA with respect to the rationals, [17] theorem 2.1., with the
classical proof of R,-categoricity (and, therefore, completen-
ess) of the theory of dense linear orderings.) To be fair, how-
ever, it should be added that almost all interesting questions
result from specialization with respect to a very general ques-
tion.
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Reviewing the three kinds of arguments advanced in favour
of the Priorean approach, we see that the philosophical ones
could carry some weight if tense-logicians were to live in
accordance with them, the linguistical ones are outside our
range of competence, and the technical ones merely establish
that tense logics are interesting objects of study — if only as
nice subsystems of an applied predicate calculus. As the com-
plexity of tense logics increases, however, it may become pre-
ferable to use that predicate calculus in its full strength (cf.
section 3).

To conclude this section, we recall some arguments em-
ployed by Massey against Priorean tense logic. The above
quotation contained the following charges: it is unviable (lead-
ing to logics of systems of tokens), and ill-advised (being
grounded in bad physics and indefensible metaphysics). Two
of these will not be considered here. Tense logic is viable, for
it exists; and most activities in life are based upon indefensible
metaphysics, without, thereby, becoming uninteresting. But an
accusation of «bad physics» hurts. E.g., Massey shows that the
formula

CKPpPqA APKpqPKpPqPKqPp, i.e.,
(Pp A Pq)— (P(p A @) V P(p A Pq) V P(q A Pp)),

which is accepted by most tense logicians (it holds on a linear
time axis), is falsified by the Standard Theory of Relativity.
Two lines of defense are open here. First, by attacking in this
way, Massey accepts an intra-theoretical question, about the
validity of some Priorean formula; which almost amounts to
admitting that the Priorean framework is interesting. The more
common objection is that, at least for the description of natural
language, «common sense physics» (i.e., physics before it be-
came too difficult) suffices. On this view, tense logic should not
describe how the world is, but how language users imagine
it to be. This objection has a limited force, however, because
(at least) philosophers should require more than this. Moreover,
language is not as static as is presupposed here: it may be in-
fluenced by science. Nevertheless, tense logic need not be
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bothered (yet ?) with fine technical points about physical time,
because natural language cannot be expected to be definite
about each of these. (Its wide applicability and adaptability
are based upon a certain indeterminacy). E.g., it will be hard
to find linguistical arguments to decide between the rationals
and the reals as the «correct» time axis. Take this one for
example: «Dying is a continuous process. Yet we talk about a
‘'moment of death’. This means we presuppose the Upper Bound
Theorem, hence Dedekind Completeness, hence the reals.» Si-
milar arguments exist with respect to the marriage ceremony.
But all this is asking too much from language. E.g., should we
say that the marriage takes place when both say 'Yes' ? This
takes time, so should not one be more precise ? At the moment,
then, when both have said 'Yes' 2 But how is it defined 2 When
the last longitudinal vibrations of the 'Yes' have died out to
amplitude ... ? Surely, this is nonsensical: some interval deter-
mines the marriage; all further decisions will be theoretical
stipulations.

3. Some Priorean tense logics

In this section several systems of tense logic are discussed,
as far as possible in increasing order of strength. Most of the
discussion will be devoted to propositional tense logic, where
the tense operators may be studied without interference of the
individual quantifiers (which creates problems of its own).

3.1 A. Prior

In [13] Prior considers various systems of tense logic, of
which we mention only the simplest one. (We will use our own
notation). Let the language contain proposition letters p, q, 1, ...,
a unary connective | (negation), a binary connective — (mate-
rial implication) and unary tense operators F («it will be the
case that») and P («it was the case that»). The other Boolean
connectives /A (and), V' (and/or), < (if and only if) may then be
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introduced in the standard fashion. Two additional tense opera-
tors G («it will always — from now on — be the case that») and
H («it has always been — up to now — the case that») are de-
fined by Gp k= 1Fle and Hp = 7P]¢. Formulas are then de-
fined in the obvious way.

In this language, one may formulate tense-logical principles
that are thought to be intuitively wvalid, like FFp— Fp or
P — HFp. This results in various axiomatic systems of which
we mention two (cf, Segerberg [17]). The minimal tense logic K,
consists of the axioms of some calculus complete (with respect
to modus ponens as its sole rule of inference) for propositional
logic together with the above definitions, the additional axioms

(1) Gl = y) = (Gp = Gy)
(2) H(ep—> ) = (Hp — Hy)
() 9—> GPg
(4) 9 — HFg

and the additional rules of inference
. ¢
Go ' He

Intuitively, K; imposes no restriction whatsoever upon the
structure of the time axis. The next system imposes several,
however. K;D4.3 adds the following axioms to Kj;:

(5) Gg— GGy («transitivity»)

(6) GGy — Gg («pseudo-density»)

(7) Flg—¢) («succession to the right»)

(8) Plo— o) («succession to the left»)

(9) Fo— G(Fg¢ V ¢ V Pg) («pseudo-connectedness to the
right»)

(10) Pg—>H(Pp V ¢ V Fg) («pseudo-connectedness to the
left»)

The relational properties on the right-hand side will be explain-
ed below. To avoid misunderstandings, we remark that the
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dual forms (i.e., G replaced by H) of (5) and (6) are not needed:
they are derivable in K;D4.3.

Very often, axioms just represent a haphazard choice of
«first intuitions». A more systematic view of the matter re-
quires a semantics. Let us define a structure as a triple
M = <T,<,V>, where T is a non-empty set (of «mo-
ments»), << a binary relation on T («precedence») and V a
valuation yielding, for each proposition letter p, a subset V(p)
of T (the set of «xmoments when p holds»). The truth definition
is then as follows. M= ¢ [t] («¢p holds at t in Ms»), where
t € T, is defined by a recursion whose only non-trivial clauses
are
(11) M = Fe [t] iff, for some t' & T such that t<<t', M ¢ [t'].
(12) M k= Pg [t] iff, for some t' € T such that t' <t, M k= ¢ [t'].

The most basic result of tense logic is the completeness of
K;:

3.1.1 Theorem
For any tense-logical formula ¢, ¢ is provable in K, if and
only if @ holds at t in M for all M and t.

In other words, provability in the minimal tense logic and
universal validity coincide. Once we add restrictions on <,
however, — and there are some obvious candidates — K,
is not sufficient any more. We then need additional axioms
«corresponding» to these restrictions, One particular such
correspondence is the following. A couple F = <<T, <> as
above (a «bare time structure») will be called a frame, and the
tense-logical formula ¢ is said to hold in F if, for all t € T and
all valuations V, <T, <, V> F ¢ [t]. (Notation: F E=¢.) Now
@ is said to express the relational property R if and only if ¢
holds on exactly the frames satisfying R. Some examples are
(cf. Van Benthem [3]):

(5)" Gp— GGp expresses Vx Vy x<y—
Valy <z—>x<1z)
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(6)" GGp— Gp expresses Vx Vy(x<y—
Jzx<z A z<y))

(' Flp—p) expresses Vx dyx <y

(8)" P(p—p) expresses Vx dyy<x

(9 Fp—>G(Fp Vp V Pp) expresses Vx Vy x<y—
Vax<z—> (y<z V
y=12zVz<y))

(10) Pp—>H(Pp V p V Fp) expresses Vx Vy(y<x—
Vze<x—-> (y<z V
Yy = zVz<y))

Now let R be the conjunction of the properties mentioned
in (5)', ..., (10)". It can be proved that

3.1.2 Theorem
For any tense-logical formula ¢, ¢ is provable in K;D4.3 if
and only if ¢ holds in all frames satisfying R.

In fact, one can do better than this (cf. Segerberg [17]). The
frame <@, <> (Q is the set of rational numbers, << the
«smaller than» ordering) satisfies R, and K;D4.3 «characterizes»
this frame:

3.1.3 Theorem

For any tense-logical formula ¢, ¢ is provable in K,D4.3 if
and only if ¢ holds in <@, <>.

A similar theorem holds with respect to <IR, <> (where
IR is the set of real numbers), if one adds a certain «complete-
ness» axiom (cf. [17]) to K;D4.3. But, as was argued at the end
of section 2, the decision whether or not to accept this addi-
tional axiom seems to be of a more philosophical than linguis-
tical nature.

The above will have given some impression of the interest
of tense logic. We now proceed to the connection with a two-
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sorted predicate calculus, i.e., its «classical» rival. There are
variables x,v,z, ... for individuals, and t,t',t", ..., to &, ts, ...
for moments. As long as we are concerned with propositional
logic, the only predicate constants needed are unary P, @, R,...
(corresponding to the proposition letters p, q, r,...) taking one
(moment) variable, and a binary E («earlier than») taking two
(moment) variables. Now define a «translation function» —

taking each tense-logical formula ¢ to a formula ¢ of this
predicate calculus containing one free (moment) variable (say
a fixed variable t):

3.1.4 Definition

p = Pt for proposition letters p
To = To
=Y = ooy

Fp = IJtI(Ett! A g(t})), where t! = t'-(timed -/ and i is the
smallest number such that t' does not occur in ¢, and ¢(t) is

the result of substituting ti for t in @,

Pp = 3Jti(Etit A p(t)).

A tense-logical structure as described above may be regard-
ed as a structure for this two-sorted language in an obvious
way: in fact, it is such a structure already. For M = <T, <,
V> and t, € T, this yields the following basic equivalence,
for any tense-logical formula g:

(13) M = ¢ [ty if and only if M = EJ [to] (where t, is assigned
to t).

Do not think of (13) as something to be proven: it is so utterly
obvious |

As a subclass of all predicate-logical formulas, the ¢'s (for
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a tense-logical g) are particularly interesting in that they con-
tain only restricted quantifiers of the forms I t'(Et't A ... and
At (Ett" A ... (where t is a variable distinct from t'). Such quan-
tifiers play an important role in various branches of mathema-
tics, e.g. in number theory (Iy <x A ...), and set theory
(3y (y € x A ...). For this reason, this class of formulas has
been characterized (as a subclass of all formulas) model-theo-
retically by S. Feferman (cf. [4] and also Van Benthem [3]), in
terms of invariance under certain model-theoretic construc-
tions. We mention this to show the technical interest in these
questions.

A stray remark made above about the elegance of Prior's
notation will be clarified now. Call a formula of the form @
(for a tense-logical formula ¢) a P-formula. The most natural
corresponding class in our predicate logic are the p-formulas,
constructed from atomic formulas of the form Qt (t may be
any moment variable) using |, = and restricted quantifiers as
described above. Not all p-formulas are P-formulas, e.g.,
Jt"(Ett" A Rt™") is not, but this is not essential:

3.1.5 Lemma (cf. Van Benthem [3], 1.3)
Any p-formula ¢ is logically equivalent to a Boolean com-

bination of P-formulas whose (single) free variable is among
that of g.

3.1.6 Corollary

Any p-formula with one free variable is logically equivalent
to a P-formula (and hence to a tense-logical formula).

The elegance of Prior's notation thus consists in its provid-
ing a variable-free notation for an important class of predic-
ate-logical formulas. Note also that, once the relation << in
structures is required to be connected (ie, Vx Vy(x <y V x
=y V y<x)), any quantifier becomes definable in terms of
restricted ones, by means of the equivalence (t' is any variable
free for t in ¢):

(14) Ttot) < FLELL A @t) V ot') V IEL A ¢(t).
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We will return to this below.

3.1.6 fails for the case of predicate tense logic. We do not
explain this system here, trusting the reader to understand
(or look up) the notation:

A Priorean formula like Px will now be translated into Ptx,
VxFQx into Vx 3t'(Btt' A Qt'x), P IxQx into It'(Et't A
dx Qt'x), etc. Note that the translation will now depend on
the particular Kripke semantics one uses for the structures. E.g.,
if not all points in time have the same domain of individuals,
then a decision has to be made at the «quantifier clause»:

P Jx Qx might have to be translated as

AtEEA Ix(etx A Qt'x),

where t'x means: x exists at t'.

Now the following formulas are not equivalent to a Boolean
combination of Priorean ones:

Vx(Qtix = Qtex) («whatever is Q at t; is Q at t,)
3 tg[Etﬂ:z A Vx(Qtﬂt —>Qt2x]].

(A formal proof of this is not even easy!)

Even if one does not accept the above translation as a
reduction of tense logic to standard logic, it serves at least
as a channel of information in the following sense: many known
results about standard logic become applicable. E.g., Léwen-
heim-Skolem and compactness theorems about tense logic are
immediate (and tense-logical proofs of these are, therefore,
superfluous). (Cf. the remarks made in section 2.) A complete-
ness result is also forthcoming: a tense-logical formula ¢ is

universally valid iff Vto(t) is provable in predicate logic. In
other words, theorem 3.1.1. is not important as a completeness
result (though many people think so), but as a technical result
to the effect that K, suffices as a complete system of deduction,
rather than the more comprehensive standard axiom system of
predicate logic. Accordingly, the proper way to view the
Henkin technique of Makinson (cf. [10]) and Lemmon-Scott
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(cf. [11]) is as an interesting, but not sensational tool. (In fact,
application of this technique has quickly become a routine
procedure, often applied — and published — unthinkingly.)
Similar remarks apply to decidability. The above equivalence
implies that the class of universally valid tense-logical formulas
is recursively enumerable. A purely semantical argument esta-
blishes that non-universally valid tense-logical formulas have
finite counterexamples, which makes this class recursively
enumerable as well. It follows, by Post's theorem, that uni-
versal validity is a decidable notion: again a result obtained
by standard means.

Finally, we mention a purely syntactical result provable by
means of semantic considerations. This serves as an example
of the kind of benefit a «strict» tense-logician could accept
from Kripke semantics without committing himself to the
existence of moments. If J¢ holds at t in a structure M, then,
for any t' <<t, 7Gg holds at t' in M. It follows that, if all struc-
tures satisfy Vx dyy <<x, Go is universally valid only if ¢
is. This yields the corresponding syntactical result: for the
logic KD = K; with the additional axiom (8), and for all tense-
logical formulas ¢, G¢ is provable in KD only if ¢ is. Once he
knows this, the strict logician will try to prove it purely syn-
tactically, of course — but he might still be grateful.

(By the way, the syntactical proof is:

)y Ge¢ (supposed to be proven)

(i) HGg (rule of inference of Ky)

(ili) HGg— PGg {provable in KD, thanks to (8))
(iv) PGo

(v) le—>HFlg (axiom (4))

(vi) THF]e—1Te

(vil) PGg —g (use equivalences provable in Kj)
(viii) @.

Also, note that GP(p — p) is provable in K, but P(p — p) is not).



412 J.F. A.K. VAN BENTHEM
3.2 H. Kamp

In [6] Kamp introduces a «now»-operator N, to account for
the difference between (6) and (7) of section 2:

(6) A child was born which would be king,
i.e., in Prior's notation,
P 3x(Cx A Bx A FKx) and

(7) A child was born which will be king,
which becomes
P 3x(Cx A Bx A NFKx).

Semantically, this means that two points in time will be
needed in the evaluation of a tense-logical formula: t,, the
moment of speech («now») and a «running variable» t, the
moment of evaluation. The truth definition may now be given
for M F g[t,, t], with clauses [recall that M = <T, <, V>>)

(15) M k= p [ty t] if and only if t € V(p)

(16) M k= Fo [ty t] if and only if, for some t' € T such that
t<<t, ME gt t] etc,, and a new clause

(17) M E Ng [t t] if and only if M E g [ty, to].

The above translation — (cf. 3.1.4) may be taken over as it

stands, with one additional clause (let ¢ = @(t))

(18) m = subst, ., where subst, ¢ is the result of substi-
o o

tuting t, for t in @.

(An equivalence like (13) above will hold now, where t; may
be regarded as a fixed free variable or an individual constant.)
In other words, N functions as a substitution operator. This
explains very neatly why «now» dominates all other contexts
in a sentence. (Cf. Needham [12], chapter IIl.) Note that, if §
is to correspond to a sentence actually uttered, then the vari-
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able t must be set equal to t;: the first moment of evaluation
coincides with the moment of speech.

Kamp proves that, for any propositional formula ¢ in his
language, there exists a ¢' in the Priorean language of 3.1
such that, for all M and t,

(19) M E g [ty to] if and only if M k& ¢ [to].

A similar result could be proved for our corresponding predic-
ate logic, but, there, it would not be interesting. (19) implies
that the full force of N only shows in predicate tense logic,
like the examples (6) and (7) already suggested. The proof
that N is not eliminable from the latter system is quite involved
— although the result is intuitively obvious from a few exam-
ples.

A second paper by Kamp, his doctoral dissertation [7], is
maybe the most (logically) sophisticated publication in the
field yet. We mention a few of his results. Let two binary tense
operators S («Since») and U («Until») be added to a proposi-
tional language. Their interpretation is as follows:

(20 M k= S(q, ) [t] if and only if, for some t'<<t, M = g[t']
and, for all t" with t' <<t"<<t, M E 1y [t"]

(i.e., «it has been the case that ¢ since it was the case that g»)

and a dual

(21) M k= U(g, y) [t] if and only if, for some t' >t, M = ¢ [t']
and, for all t" with t<<t"<<t', Mk ¢ [t"]

(i.e., «it will be the case that ¢ until it will be the case that y»).

This language is the strongest one available for the case of

a «single point index», in a sense to be explained below. First,

note that P and F are definable now, by means of

Py =get S(g, ¢ —>¢) and

Fo =gt Ulg—> g, @).

The same holds for the «present progressive tense» Pr ¢, de-

fined by

(22) M F Pro [t] if and only if, for some t', t" with t' <t <t",
MEg@[t']forallt” " such thatt' <t < t".
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Pro =4 S(¢, ¢) A ¢ A U(g, ¢). It was shown by Kamp that
Pr is not definable in terms of P and F alone. Kamp's main re-
sult states that his language is functionally complete in the
following sense.

3.2.1 Theorem
For any formula ¢ (with one free variable) in the first-order
language of 3.1 there exists a formula ¢’ of the above language

whose translation ¢’ is logically equivalent to ¢, provided that
attention is restricted to structures in which << is a complete
linear ordering.

(< is complete if any non-empty subset S of T with a lower
(upper) bound also has a greatest lower (smallest upper)
bound.)

Examples of such orderings are the integers with «smaller
than», or the reals with «smaller than». This ordering is not
complete on the rationals, however. The question if a similar
result can be proved for the class of all linear orderings is still
open. Kamp shows that S and U do not suffice in this general
case. The following formula ¢ is not definable (on the class of
linear orderings) in terms of S and U. (Cf. [7], chapter IV,
theorem 5).

{23] Htl(t] <t0 A P-t1 A Vtg[tl<t2<t0—-—)

{Ptg A 3 tattg < i3 < ty A Vt4(t2 < ty <t3— Pt4}}} \Y%
Leaving out the underlined atomic subformula yields a formula
equivalent to (23) on the class of dense linear orderings:

[24} | tl(t1 < to /\ Pt1 /\ Vtg[tl < tg < tD -
(Ptg A 3 tg(tg < i3 < to A V‘t4(t2 < ty <t3— Pt4)}) vV
(-]Ptg A 3 t3(t3 < te /\ Vt,;(ta < 14 < ts — -|Pt4)])))

We will return to (24) in 3.4 below.
Kamps notes (p. 29) that there are tense operators, like «most-
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ly» or «usually», which are not definable in our first-order
language, and, therefore, outside the scope of theorem 3.2.1.
Being second-order in nature, they are outside the scope of the
present discussion as well. In fact, even (23) and (24) have a
second-order flavour. They do not hold on complete orderings
for any interpretation of t, and P (which is why they are,
trivially, definable in the sense of 3.2.1). But, this fact itself
comes close to defining the (second-order) property of com-
pleteness. On p. 38, Kamp remarks «We do not believe that
such tenses can be expressed in English without explicit refer-
ence to moments», which points at a detached stand in the
«operator/quantifier controversy».

Finally, note that from the classical point of view, 3.2.1
amounts to a normal form theorem for predicate-logical form-
ulas, as Kamp himself states on p. 39. (Its proof is a technical
tour de force which cannot even be sketched here). The rele-
vance of the theorem depends, of course, on the acceptability
of the completeness restriction and the naturalness of the ten-
ses Since and Until as explained above. What does the theorem
contribute to our controversy, however ? It shows that, under
certain assumptions, the Priorean operator approach is as rich
in expressive power as the classical one (for the case of «single
point indices», that is). In this case, a technical choice between
the two approaches would be dictated by considerations of per-
spicuity (how complicated are the ¢"'s of 3.2.1, when compared
to the original ¢'s ?).

3.3 F. Vlach

There are simple tensed sentences not expressible in the
symbolism of Kamp [6], as was noted by F. Vlach in [18]. Con-
sider the sentence:

(25) One day, all persons alive now will be dead,

or, in Kamp's notation,
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(26) F Vx(NAx— Dx),

and in our transcription:

27) 3It'(Ett’ A Vx(Atx — Dt'x)).

According to most people, its past tense formulation would be

(28) One day, all persons alive then would be dead.

The Priorean recipe would consist in prefixing (26) by P to get
a reading for (28):

(29) PF Vx(NAx — Dx).

(29) does not capture the intended meaning, however, since N
still refers back to the present moment. This is brought out by
the translation of (29):

(30) 3It"(Et"t A It'(Et" t' A Vx(Aty())x = Dt'x))).

This is not what we want for a reading of (28) — which is
rather

(31) It"(Et"t A It (EL"t A Vx(At"(!)x = Dt'x))).

Note how easy this whole matter is from the point of view
of predicate logic: the nature of a certain occurrence of a free
moment variable is to be specified. As a true Priorean, Vlach
introduces a new operator K, with the semantical stipulation:

(32) M E Ko [t, to] if and only if M = g[t, t].

In other words, a second substitution operator is introduced,
this time

(33 K¢ = substt,t0 .
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(28) may, them, be read as:
(34) PKF Vx(NAx — Dx).

An easy calculation shows that, indeed (34) is the desired (31).
In many cases, K may be given the natural language reading
«then»,

As the reader will have expected by now, this addition does
not solve all problems. Needham [12] contains an example
allegedly not expressible in Vlach's language (p. 73/74):

(35) Everyone who has come will be going to meet those who
play after the concert.

His reading of (35) is

(36) It (Etet" ' A Vx(It"(Et'ty N\ At'x) >
It (Et" 't A Vy(Bt" y— Ct'xy)))).

In spite of his claim to the contrary, (36) is expressible in
Vlach's language, however, viz. by

(37) NF Vx(NPAx — KF V y(NBy — Cxy)).
But the following sentence is really a counter-example:

(38) There will always jokes be told that were told at one time
in the past.

Its predicate-logical reading (or, at least, one of its readings)
is:

(39) Jt'(Bt"ty A Vi (Etet' = Ix(At'x A At"x))).

No formula in Vlach's language can describe this: all suitable
candidates fail. E.g, NPKNG Jx(Ax A NAx) becomes

40) It"(Et"ty A VH'(Et"t = Ix(At'x A At'x)))
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and NPNKG Jx(Ax A NAx) becomes
(1) Jt'(Bt'ty A VU (Ett — Ix(Atx A Atex))).

(NPGK 3x (Ax A NAx) and NPG Jx(Ax A KNAx) fail in a
similar manner).

This is no formal proof of course, but we hope the reader will
grant us that.

In an appendix, Vlach mentions a safety valve which blocks
this counterexample and similar ones. It consists in adding
operators Ny, Nj,... and corresponding K;, Ks,... in any quan-
tity. This will take care of all cases of cross-reference ,but —
as Needham rightly observes — such a move degenerates into
using a typographical variant of predicate logic (with sub-
scripts instead of variables), merely without calling it predic-
ate logic.

3.4 L. Agvist

In [1], a paper devoted to absorbing H. Reichenbach's ideas
(cf. [15], § 51) into Priorean tense logic, L. Aqvist introduces
the following operator in addition to Kamp's N: O,, «for which
no independent reading is codified» (p. 4). Its semantical inter-
pretation is as follows:

(42) M O; @ [t, to] if and only if M = g [t t].

(This clause is our, simplified, version of Aqvist's elaborate
semantical construction)) Note that a momentous step has
been taken: [y is a purely technical operator for which no
natural language reading exists. (It has only been added for
technical purposes.) [, may be viewed as a permutation
operator:

(43) Oie = permy; ¢,



TENSE LOGIC AND STANDARD LOGIC 419

where perm,, ¢ = [t/t,, to/t] c-ﬁ. i.e., the result of simulta-
0

neously replacing t by t, and t, by t in g.

Aqvist uses in fact two symbols [y and <, to denote the
same permutation operator. Although there is indeed some
formal similarity with modalities (in that <,¢ is equivalent to
104 " 1¢), nothing is gained, of course, by treating permuta-
tion in this way. This unnecessary obedience to the ritual
of the Priorean approach even carries the false suggestion that
Oy is some sort of quantifier. But, a simple notational detail
like this shows very vividly how strong is the hold of the
Priorean approach over its adherents.

A second salient feature of Aqvist's system is its introduc-
tion of the propositional constants bf, id and af, which are in-
terpreted as follows:

(44) M [= bf [t, to] if and only if t<<t,
MEid[t t)]ifand onlyift = t,
M E af [t, t] if and only if t, < t.

In other words:

(45) bf = Ett,

we have added new atomic formulas (besides the already exist-
ing Pt's and Pty's).

The addition of id alone already yields bf and af, however.
bf may be defined as Fid, and af as Pid. Moreover, Aqvist
assumes << to be a linear dense ordering, which allows us to
define Ng as H(id = ¢) A (id = ¢) A G(id — ). So, let us res-
trict attention to the Priorean language of 3.1 with an added
propositional constant id, on the class of linear dense order-
ings. This language is quite strong, as may be seen from the
following examples:
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S(@: W) =aet NP(p A\ G(bf — )
U{Cp. 1|-’) = ot NF(w A H(af_> (P))'

Aqvist himself shows how to define positional quantifiers
dt e (t', t") in his language, where

(46) Fte (t't)g =@t <t"A It <tAt<<t"Ag) V
t=t"A[thlg V
<t At <t At<t A g)).

(His notation is < ¢ where
—_—

47 & ¢ = 3t e (¢ t)g.
-

Next, readmitting the operator [, yields a very strong
language. E.g., a laborious calculation shows that the formula
(24) of 3.2 (which was not definable by means of Since and
Until) has the following definition in Aqvist's language:

(48) P(p A G(bf— (p A O,P(af A H(af = p))) V
("Tp A O,NPG(bf — T1p))).
The reader is invited to check this by himself.

In view of this and similar examples we think it would be
interesting to find out if Aqvist's language is functionally com-
plete with respect to first-order formulas with at most two free
variables, always assuming the orderings to be dense and
linear. One might try to adapt Kamp's proof in [7].

The «conversion» operator [, has a peculiar behaviour,
witness universally valid principles like

(49) O,pep for proposition letters p

(50) O, Tee 1 0:9

(51) Ox(@ AY) e O; A Oy (similarly for V)
(52) Ox Oxp e .

[0y cannot be defined in terms of the other primitives, how-
ever. This may be shown by considering the formula
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(53) At(ELHL AL = tAQL),

definable by O,P("lid A q), but not definable without using 0.

Finally, we want to comment upon Aqvist's question about
a completeness proof for an axiomatic system presented in [1].
Universal validity in his semantics is axiomatizable in standard
logic, by means of our translation. Therefore, no very deep
interest attaches to finding a completeness result with respect
to the «purely Aqvistian» language. (Cf. our comments in 2
and 3.1.) Moreover, Reichenbach himself was quite definitely
in the non-Priorean tradition (he presented his analysis of ten-
ses as an application of standard logic), so it does not seem
appropriate to attach his name to a purely Priorean problem.

After this paper had been finished, K. Segerberg's paper
«Two-dimensional modal logic» (The Journal of Philosophical
Logic 2 (1973), 77-96) came to our attention. Segerberg proves
a completeness theorem for a tense logic with six operators
Oy, O Os, O4 Oz and Og. These get the following semantic
interpretation (translated into the terminology of this paper):

(i) ME Olt t] iff for all t,tye T, Mk ¢ [t, to]
(i) ME Ot to] iff for al ty, € T , M ¢ [t, tg]
(iii) M= O [t, to] iff for all te T , ME @t t]
(iv) ME Oyt to] iff ME @[t t]

(v) ME O [t to] iff M k= ¢ [to, to)

(vi) M= Qg [t, to] iff M E o [to, 1]

As Segerberg notes himself, [0,, 005 and (g are «very strong
K-modalities of rather unusual kinds» (p. 82). Like Aqvist, he
seems to regard them as some kind of quantifiers, withness his
(deliberately ?) parallel clauses like
«f=y OB iff for all v € U such that Xu = Xv, ,B»

(which was transcribed as (ii) above) and

«=, O4B iff for that v € U such that Xv = Yv = Xu, &=,B»
(which was transcribed as (iv) above). (X and Y are some kind
of coordinate functions). Unlike Aqvist, Segerberg does not
use both [, and <>, for the same permutation operator.

From our point of view, there is nothing more to «two-
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dimensionality» than the presence of two temporal parameters.
Segerberg thinks it so important, however, that he discusses
priority questions regarding its «discovery» (p. 79). We would
rather look upon Segerberg's paper as providing an interest-
ing complete axiomatization for a fragment of Quine's variable-
free predicate logic (cf. section 5). One would like to have
such an elegant complete axiomatization for that predicate
logic as a whole.

3.5 L. Aqvist & F. Giinthner

An extended version of Aqvist's system is found in [2]. Again

the language is that of a propositional tense logic, enriched
with tense operators. There are the, by now familiar, P, F, H, G,
N (written as «NOW»), as well as technical operators (written
in our notation as) O,, O., Oy O, O, about three of which
it is remarked on p. 7:
«For the time being, we refrain from offering any natural lang-
uage renderings of these three operators». In fact, none of them
receive a natural language reading, so we proceed to the
semantics for their explication. (There are even more opera-
tors than these ten, but these will do for the time being).

In order to give a Reichenbachian account of tenses, four
moments are now involved in the evaluation of a formula.
In our notation, these are

ty: the point of speech

ti: the designated point

1o: the point from where
t: the point of evaluation.

For our purposes, a structure may still be regarded as a triple
M = <T,<, V>, but the truth definition will now describe
the notion

{54) ‘M t: @ [tl t2r tlr tﬂ]'
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MU

We prefer this to the original cumbersome notation | .
t
To aid the reader's memory, we give it in full, repeating for-

mer clauses:

i) MEDpI[ttt, t) iff t = V(p)

(i) ME ot te ty, to] iff not M = @ [t, ta, ty, to]

(lii) MEe=yI[t ts ty, ty] iff if M E @[t 1, ty, to]
then M = ¢ [t, ty, 1, to]

(iv) M= Po [t, ts, ty, to] iff, for some t' € T witht' <t,
M '= P [t: tg, tlr tD]

(v) MEFglt tg, ty, tp] iff, for some t' € T witht <t
ME @[t ta ty, o]

(vi) M= NOWg [t, ta, ty, to] iff M = o [to, ty, to, t]
(thus a kind of «total» now)

(vii) ME O [t te t, ] iff M = o[t t, ty, tg

(viii) M= O, [t ts ty, tg] iff M E @[ty tg, t, tg]

(ix) ME Daglt ta ty, t] iff M = o]ty ta t, t)

(%) ME Ozt ta ty, to] iff ME @ [t te, t1, to]

(XI) M = DsfP {t, t2, t1. tg] iff M '_—' P [t[}, t2, tl, tg]

The clauses (vi), ..., (xi) will now be discussed from a ma-
thematical point of view. If we translate into first-order logic,

we will get translations ¢ = @ [t, t, t;, to] and the new opera-
tors will turn out to be permutation and substitution operators.
Although Aqvist & Giinthner do not motivate these operators,
the following «rational reconstruction» may be given. We want
to be able to permute t, ty, t; in any order (t, is always to re-
main fixed, being the point of actual utterance). This means
we have to describe 3!-1 (for the identity permutation) = 5
permutations. As is well-known, two inter-changes suffice for
this. The authors have

Oy = permy; (permutation of the first and second member)
O, = permys (permutation of the first and third member)

This indeed yields the remaining three permutations:
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permy; = the composition perm;s perm;; perm;z
and
(123)
= permyg perm
312 perm;g permyg
123
{231 ) = perm;; perms.

(Note the order convention: e.g., perm;, permys (i, ts, t;) =
permye (ty, ts, t) = ts 43, t. This is the reverse of the order con-
vention in the truth definition !)

ttat
Next, we want all mappings ( . 1), where u, v, w are
uv w

chosen from t, t3, t; such that at most two of them are different.
(The case of three different u, v, w has been taken care of by
the permutations). For this, it suffices to have the substitution
operators:

subst;, (substitution of the first member for the second)
substy; (substitution of the third member for the first),

tat
etc. Eg., ( : tl) will then be obtained as the composition
14

substy; substjs substs. The authors have two such operators:

O3 = substy and
O, = substy.

But, in fact, only one suffices, thanks to the permutations.
These will yield all substitutions, given any one of them. E.g.,
O3 may be defined in terms of [, as follows:
substy; = permgs substy permss, or — using the above defini-
tion of permgy — Oy = O, O, 0, O, O, O, O,.
Conversely, Oy may be defined as permg substy permss.
Finally, we want to be able to substitute t, anywhere in
t, ts ti. By the presence of the subst; operators, it suffices to
have any single such substitution. The authors have
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Oy = substitution of t; for the first member.

They themselves remark that NOW (= simultaneous substitu-
tion of t; in all three places) ¢ is definable as O, O, O, O.
Osp. Another definition. which does not use O, is

NOWg = 0O, O, O, O, Og.

In other words, four operators (instead of the original six)
allow for any combination of arguments to be obtained from
t, ts, t;. This fact is used when positional quantifiers are intro-
duced: it suffices to have only O_) , defined by

xii) ME O olt ty, ty, to) iff, for some t' € (t, ty),
=y
M '= @ [t'r t2| tla tﬂl

All other positional quantifiers will then be definable, and
available for use in Aqvist & Giinthner's theory of verb as-
pects.

Finally their system contains «comparative operators»
(«More», «Exactly as Much», etc.), which fall outside the
scope of this discussion. The same holds for their interesting
«theory of events».

The system presented here becomes comparable to that of
Aqvist in 3.4, once we add a propositional constant id, to be
interpreted as, e.g. (there are several equivalent choices):

(xiii) M = id [t, ts, by, t] Mf t = to.
A conjecture about its expressive power (now with respect to

formulas with at most four free variables) may then be stated
analogous to the one in 3.4.

3.6 D. Gabbay

The last author on our list has written a voluminous book
([5]) on modal and tense logics, of which we only mention the
chapters 10 («Two dimensional tense logics»), 11 (<A theory
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of proper names and conceptual change») and 12 («Tense logic
and the tenses of English»). We will not discuss these, but
only draw attention to a few passages in them illustrating our
present theme. As we have seen up to now, the tendency
exists to add ever more points in time at the index (of evalua-
tion), which are then «manipulated» by operators without
moment variables in the object language. The alternative,
which should have been kept in mind throughout the discus-
sion, is the use of predicate-logical formulas containing mo-
ment variables and overtly displaying these «manipulations»,
Clearly, if one is willing to increase the complexity of the in-
dex to any extent (while adding enough operators to take
profit of it), there is no need to ever resort to predicate logic
technically, but, in our opinion, it is a Pyrrhic victory. This
tendency is evident in Gabbay’'s work, which is why it is men-
tioned here.

The most interesting chapter of the three is 12, where Gab-
bay says:

«In this chapter we outline the kind of modal logic and
semantics that is suitable for the representation and analysis
of a non-trivial body of tensed statements in English. (...)

To achieve our goal, we shall need to depart radically from
traditional tense-logics, with regard to both semantic and syn-
tactic concepts.» (p. 165)

He turns out, however, to be fighting a concept of «tradi-
tional tense-logic», which does not exist any more. It consists
in, amongst others,

«(II) Choice of interpretation (i.e., the fact that each atomic
proposition has a truth value at a point t of time and not e.g.,
an interval of time or a sequence of points, etc.)

(IIT) Choice of truth tables (i.e., the fact that we evaluate
the truth value of A at a point and not something else).» (p.
167/8). But, as we have seen, Priorean tense-logicians are quite
willing to complicate both their languages and their structures,
Moreover, they often realize that intervals are needed in addi-
tion to moments (cf. Aqvist & Giinthner [2]). Gabbay then pre-
sents a lot of examples showing the need for ever more com-
plex systems of tense logic. Most of them are quite convincing,
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although some have a distinctly modal (or, at least, intensional)
flavour (involving phrases like «he told me that», «he will
hate you for», «I knew that», «he will realize that», etc.), which
points to a possible confusion. Such sentences cannot be treat-
ed by tense-logic alone, and no tense-logician would pretend
otherwise. On the other hand, Gabbay does seem to be aware
of this point, because he says on p. 165:

«To be sure, what is known as the tense-system of English
incorporates more than what is accounted for in our system,
since it involves also the factors of aspect and mood. But at
least we can claim that our system analyzes some of the
complexities of the tense system that are the result of temporal
references alone».

Now our main point is that Gabbay, despite his criticism of
«traditional tense-logic», is well within the Priorean tradition,
because he does not even consider the possibility of using
ordinary predicate logic to resolve his difficulties. Several
examples involving an ever increasing number of events to
be mutually related (in terms of «earlier» and «later»), lead
him to introduce ever more «points» corresponding to such
events. These are then to be used for future reference. On p.
174 we read:

«In the meantime, the tentative conclusion is that we must
gives tables for evaluating sentences ||[A| Lt ty g 1000 We
must keep record of the entire sequence of points and not
only that, but also keep track of the kind of operators used
(i.e., whether t3 was introduced because of an F or not, be-
cause if we have another F, the next point may have to be
chosen in the future of ts!)».

Such a passage is quite interesting from a historical point
of view. The difficulty described here is exactly that which
logicians had before Frege invented the theory of quanti-
fiers with attached variables for cross-reference. But, even a
competent logician like Gabbay does not recognize it for what
it is.

In the earlier chapter 10, Gabbay defines an «n-place, m-di-
mensional truth table with parameters in T», where the para-
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meters are the points referred to above. We quote the defini-
tion, not for its technical content, but for another illustration
of how the author refuses the helping hand of predicate logic
(p. 140):

«Given a flow of time t = (T, R, o) we now give a general
definition of the notion of an n-place, m-dimensional truth
table ¥ with parameters s;,...,s; € T. Let Q,...,Q, be n vari-
ables ranging over T™, let W(t;,...,tm: Sise- Sk Qus-..,Qy) be a wif
with the indicated free variables in a language with quanti-
fiers V, 3 ranging over elements of T, the usual classical con-
nectives (...) and the predicates and constants 0, sj,...,S; R.
Then ¥ is said to be an n-place, m-dimensional truth table with
parameters in t».

One cannot help wondering: why not use the truth table,
and forget the corresponding operator?

4, Temporal Perspective

This section is devoted to P. Needham's dissertation «Tem-
poral Perspective, a logical analysis of Temporal Reference in
English» ([12]). Needham is an opponent of the Priorean ap-
proach, witness his preface:

«The book is (...) critical, in that it is opposed to the basic
tenet in the writings of Arthur Prior — the founder of modern
tense logic — that tenses behave essentially very much like
propositional operators».

We will not review Needham's arguments against Prior,
Kamp and Vlach: many of them have been mentioned already.
Our aim is to give some impression of what a «classical» tense
logic looks like:

«The constructive aspect lies in developing the expressive
powers of a first-order logic and demonstrating the applica-
bility of its greater flexibility over conventional tense logic».
(Note, by the way, that Massey's «revolutionary tense logic»
of 1969, was already «conventional» in the perspective of
1975, the year in which [12] appeared).
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We will explain Needham's languages, and discuss some of
his results.

«The important results are theorems 5 and 10. Theorem 5
embodies within the formal system what I take to be the cru-
cial principle, that the point of view of the speaker dominates
all subordinate contexts. The standard prenex normal form
theorem, theorem 10, lays the foundation for the definition of
a tense».

Needham presents the case against Priorean tense logic as
follows. By means of examples taken from natural language,
he shows that the tense logics of Prior, Kamp, and Vlach are
inadequate for a description of all tense phenomena. Of course,
new tense-logical operators may be added ad hoc to cope with
any amount of counter-examples, but he contrasts this with the
simplicity and perspicacity of two predicate-logical languages
L* and L, which can handle all these counterexamples effort-
lessly.

Like Aqvist, Needham claims Reichenbach for his ancestor,
whose S, R, E-analysis (i.e., a point of speech, a point of refer-
ence and a point of event are to account for verb tenses, (cf.
[15], § 51)) is incorporated into his languages. As Reichenbach
uses quantification over moments as a matter of course (cf. his
account of time indications as descriptions in § 47 and his an-
alysis of the sentence «the earth-quake was followed by the
explosion of the factory» in § 48), Needham's claim seems to
be the stronger one. (It must be admitted, however, that the
key section 51 is ambiguous on this point). At least in Aqvist
& Giinthner [2], there is no exact parallel between their «four
point index» and Reichenbach's <S,R,E>. But, the same
holds for Needham, whose allegiance to Reichenbach is nomin-
al in that he has no need for a distinction S/R (there are only
reference points) and leaves out E altogether (it has to be ac-
counted for by quantification). Moreover, Needham needs
three reference points, one «now» ,a past «then» and a future
«then». (Cf. his chapter II.4).

In a chapter called «A logic of tenses and dates», Needham
introduces a language L with the following salient features.
It is a two-sorted first-order language, having variables and
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constants for both individuals and moments. All predicate con-
stants are either of type <n, 1> for some n (i.e., they take n
individual terms and one moment term) or one of E («earlier
than») and = (identity, both for individuals and moments).
The logical operators are as usual, but for the addition of
three so-called indexical quantifiers II, A and I'. Semantical
structures are four-tuples <D, T, <p, n, =, V>, where D is
a non-empty set (of individuals),

T is a non-empty set (of moments) disjoint from D,

p, n, f are elements of T such that p < n <f{, where < is the
interpretation of E on T: a strict linear order relation, V is a
valuation assigning, to each predicate constant of type <ln,
1>, an (n+1)-ary predicate, whose first argument is to belong
to T, and the other n to D.

The truth definition is obvious, except for the clauses for the
indexical quantifiers. We will not give these, however, becau-
se — as Needham points out himself (p. 41) — these quanti-
fiers may be regarded as substitution operators. Ilxq (this is
not Needham's notation) = [p/x]¢ (p is an individual constant
for the reference point «then» in the past) and, similarly,
Axgp = [n/x]g («now») and I'xg = [f/x]¢ («then» in the fu-
ture).

«The fundamental principle of our analysis of tenses, that the
point of view of the speaker dominates all subordinate clau-
ses» is expressed by theorem 5 of chapter IIl. This is a quite
trivial technical result, which amounts to the realization that
any number of substitutions [p/x4],..., [p/%x] in a formula ¢
may be replaced by one substitution [p/y] in front of ¢, for a
suitable new variable y not occurring in ¢ which replaces all
former xj,...,Xx. (Similarly for n and f). Tenses are, then, con-
nected with resiricted moment quantifiers like we did in sec-
tion 3, and the phenomenon of sequences of tenses (cf. the
Priorean iterations PP, FP, etc.) is investigated.

An analysis of sentences like «I am taller than I was», in-
volving a comparison through time, leads to the introduction
of an extended language L*, allowing predicate constants of
any type <n, k> (n individual argument places, k moment
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argument places). The relevant argument, though highly in-
teresting, does not concern us here.

In chapter IV.5, Needham devotes a lot of attention to a
rigorous definition of a tense. Tenses turn out to be certain
chains of restricted quantifiers to be read off from a special
kind of prenex normal form of the formula under consideration.
Now the informal concept of a «tense» is so vague that it can
hardly support such formal scrutiny. Moreover, prenex normal
forms do not seem to provide very natural ways of defining
complexity. What Needham needs for his definition of a
«tense» is rather some modification of the concept of nested
quantifiers. Prenex normal forms may introduce «spurious»
complexity in this respect. E.g, IxAx V] Ix Ax, where
only nestings of depth 1 occur, becomes (say) Ix Iy (Ax V
1Ay), with a nesting of depth 2. One will, therefore, have to
use a measure like the quantifier depth (d), defined as the
maximal depth of a nesting of quantifiers occurring in the
formula, or — inductively —

d(g) = 0 if ¢ is atomic

d(le) = d(q)

d(¢—>v) = maximum (d(g), d(y))
d(Ixg) = d(Vxg) = d(g) + 1, etc.

In chapter 5, Needham compares his languages with those of
Prior, Kamp and Vlach. He shows how to translate tense-
logical formulas into L*. But, his method of showing that cer-
tain formulas of L* cannot (conversely) be expressed by tense-
logical formulas is clumsy; in fact, it is not a method at all.
He takes, e.g.,, an L*-formula, tries a few ways in which it
may be expressed as a tense-logical one, fails, and then con-
cludes that it is not so expressible. (Cf. pp. 68, 69). The worst
thing is that, like we have seen in 3.3, this procedure results
in mistaken claims. Now, Needham is partly excused in that
claims of the kind «formula ¢ is not logically equivalent to any
formula of the kind ...» are often exceedingly hard to prove.
(One needs the logical ingenuity of a Hans Kamp to prove
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them, cf. [7]). Moreover, exact proofs of these claims are often
quite uninformative.

In this discussion of expressive power, Needham should have
mentioned Kamp [7]. The tense logic with Since and Until
is one of the strongest ones around, and it would be much
harder to find natural examples of formulas outside its scope.
Needham required << to be a linear ordering without first or
last element. Therefore, Kamp's result about functional com-
pleteness does not apply here (since << need not be complete),
but it may be that all «natural» tenses are still definable in
terms of Since and Until. It is up to Needham to disprove
Kamp's claim ([7], p. 38) that «there is good reason to assume
that even if time is like the rational numbers those first-order
tenses which can be expressed by means of English tense
operators are expressible by means of NOT, AND, SINCE, and
UNTIL». Moreover, if Kamp is right in suggesting that all coun-
terexamples «must be intimately related to the differences
between the reals and the rationals», i.e., with the second-order
property of Dedekind Completeness (cf. the end of section 2),
then Needham's first-order language would be unsuitable for
expressing this difference as well. This omission is all the more
amazing, since Needham mentions [7] in his list of references.
But, maybe, he felt justified in omitting Kamp's technical re-
sults because they only apply to propositional tense logic,
whereas Needham does not consider such a subsystem.
(Kamp's completeness result probably does not extend to
predicate tense logic).

Summing up, [12] is an interesting exposition and defense
of the predicate-logical approach. The positive results obtained
are rather simple, however (theorems 5 and 10).

One rather serious mistake has been signalled, pointing at
a certain lack of precision. Finally, the attack upon the Prio-
rean approach, although not without force, is marred by its
omission of perhaps the most mature work in tense logic:
Kamp [7].
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5. Predicate logic without variables

In this section, a kind of appendix to the preceding discus-
sion, we explain an idea, due to Quine (cf. [14]), for writing
predicate-logical formulas without using variables. It will
appear that this is feasible, once permutation and substitution
operators are added to the language. Clearly, such a notational
change will not alter predicate logic in any essential respect,
particularly not in the respect of ontological commitment. This,
then, throws a new light on the operators or Aqvist [1] and
Aqvist & Giinthner [2]. They constitute an important step on
the road of getting the full expressive power of predicate logic,
while restricting oneself to operators all the time. So, banish-
ing moment variables is only a fight against symptoms of the
predicate-logical «disease».

Many students of logic are struck by the fact that, at a
certain simple level, predicate-logical notation is more in-
volved than seems required by the sentence being analyzed.
E.g., «<Everyone agrees» becomes, say, Vx Ax, which introdu-
ces two variables where none seem needed. Let us, then, drop
these and write V (A), to be interpreted as «the property of
universal instantiation holds of the predicate A». But what
about more complex sentences, involving cross-reference, like
Vx(Ax — Bx) ? Language needs no variables here either
(«Every A is B»), so let us write V (— (A, B)), where A, B are
predicates combined by —> to form the complex predicate
«being B if A». But, if dependences are expressed, like in
«Everyone agrees with someone», then variables become more
important. How, for instance, is Vx Jy Axy to be written
without variables ? A simple convention turns out to suffice.
What is needed is an explanation of 3 (A), where A may now
be a binary predicate. Let us stipulate that 3 «fills» the last
argument place. E.g., 3(A) means here: «agreeing with some-
one». (A similar convention applies to V.) Now, 3 (A) has
only one argument place left, so that one is «filled» by V in
the reading V(3 (A)) of the above sentence. Obviously, this
will not do yet, however. How is Vx 3y Ayx to be expressed ?
3 now will have to «fill» the first argument place of A. The
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order of arguments in A will, therefore, have to be changed.
E.g., let conv(A) denote the converse predicate of A. Then
V(3 (conv(A))) will be a reading for our sentence. In fact,
sentences like Vx 3y 3z Azxy show that any permutation of
arguments will have to be allowed: for any i, j(1 £i, 1 £j,
i # j) perm;; (interchange of i'th and j'th argument place) is,
therefore, added to the notation. (E.g., conv may be regarded
as permyy). Quine shows that two permutations suffice, instead
of the infinitely many perm;;:

major inversion (INV): interchange of first and last argument
place
and

minor inversion (inv): interchange of last and one but last
argument place.

Reviewing our notation, we now have V, 3,—, INV, inv.
Clearly, we also need 7| for taking the negation of predicates.
Moreover, — is not satisfactory as it stands: how are we to
write Vx Vy(Ax— By) 2 = (A, B) will yield Ax.(Ax — Bx) in-
stead of Axy.(Ax— By). The remedy is as follows: if A is
n-ary and B m-ary, then — (A, B) is to be the n + m-ary pre-
dicate which holds of objects d,,...,d,, ey,...,ey if and only if
(if A(dy,...,d,), then B(ey,...,en)). The above formula then be-
comes V(V(—(A, B))). But, this remedy seems to do more
harm than good: what will become of Vx(Ax — Bx) now ? —
(A, B) will yield &x y . (Ax — By), whereas we want Ax . (Ax —
Bx). It follows that an identification operator id is needed,
which identifies argument places. V (id(—(A, B))) is, then, the
required reading. The presence of arbitrary permutations
spares us a multitude of identification operators: an id identi-
fying the last and one but last argument place suffices. (Cf. the
remarks about the substitution operator of Aqvist & Giinthner
in 3.5). Our discussion has yielded the following result.
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5.1 Theorem (W.V.O. Quine)

The notation V, 3, 7, =, INV, inv, id as introduced above
suffices for writing any predicate-logical formula without oc-
currences of individual or functional constants.

One example will show that this reading need not be more
perspicuous, however. Consider Vx(Ax — Vy(Rxy — Ay)) and
its «translation», which is constructed as follows:

expression predicate denoted
A Ay.Ay
R Ax v.Rxy
—(R, A) Ax ¥ Z.(Rxy — Az)
id(—(R, A)) Axy.(Rxy — Ay)
Y (id(—(R, A))) Ax. Vy(Rxy — Ay)
—(A, V (id(—(R, A)))) X z.(Ax — Vy(Rzy — Ay))
id(—(A, V ({id(—(R, A)))) ix.(Ax = VyRxy — Ay))
V (id(—(A, V (id(—(R, A))))) Vx(Ax — VyRxy— Ay)).

On the other hand, this notation may have some explanatory
power. E.g.,, consider the simple sentence «Everyone loves
someone», symbolized as Vx dyLxy. The equally simple
predicate-logical formula Vx 3y Lyx corresponds, in sequen-
tial order, to the involved «For everyone there is someone who
loves him». Much more natural, however, is the synonymous
«Everyone is loved by someone», in which the passive cor-
responds to the above conversion operator. In other words,
the Quinean reading V (3 (inv(L))) reflects a tendency of na-
tural language.

Theorem 5.1 may be extended to cover the case of individual
and function constants by adding a substitution operator subst,
which turns a term t with n argument places and a term or
predicate o with m argument places into a (n+m-1)-ary term
or predicate subst(t, v), as in the following examples. Let a be
an individual constant, f a unary and g a binary function con-
stant.
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subst(a, f) denotes the object fa
subst(a, g) denotes the function Ax.gxa
subst(f g) denotes the function Axy  gxfy
subst(a, R) denotes the predicate Ax Rxa
subst(g, R) denotes the predicate Axyz.Rxgyz
Note that a term like gfxfy will require inv: subst(f, inv(subst

(£ 9))).

6. Conclusions

The discussion of section 2 showed that the philosophical
case for Priorean tense logic is not convincing. Linguistic
evidence for the operator approach may be more telling, but,
as we saw in section 3, tense-logical systems start appearing
which contain operators without natural language readings.
Moreover, since natural language seems averse to displaying
any kind of quantifiers plus explicit variables, the case against
moment variables may seem stronger than it actually is. (It
should be stated, however, that our discussion left out possible
arguments arising from the combination of tense phenomena
with quantification over individuals). From a technical point of
view, tense logics could be considered to be sublogics of pre-
dicate logic. Some of these are quite elegant (and worth study-
ing for its own sake), like Prior’s original system, or Kamp's
system with Since and Until. But, as tense logics become stron-
ger and stronger (containing ever more exotic operators), pre-
dicate logic itself becomes a serious rival as regards elegance
and simplicity.
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