A TENSE SYSTEM WITH SPLIT TRUTH TABLE*

Dov. M. GaBpaY

Abstract

On his thesis [3], J.A.W. Kamp introduced a tense system US
for real numbers time with the two binary connectives Since
and Until. Kamp showed that these two connectives are strong
enough to express any other n-place tense connective for any
n. (See remark 10 below for the precise result). This paper in-
troduces a tense system 1 for real numbers time with the two
unary operators F (will) and P (was) that is equivalent in
strength to Kamp's system. In fact, Since and Until are defin-
able in t using F and P.

We furthermore show that the operators F and P of t are
intuitive in the sense that they are used in English.

1. Background and Statement of Resulis.

Let (1, <) be the linearly ordered real numbers flow of time,
with < ir-reflexive and transitive earlier-later relation. Let L
be a propositional tense logic with the usual classical connect-
ives ~, & V,— and the additional two binary tense connect-
ives U(A, B) and S(A, B) (reading «B until A» and «B since A»
respectively). Ly is interpreted semantically as follows (see
[3]). If g is a function assigning for each atomic p a subset
g(p) € A, then in (A, <<, g) the truth value of a wff A at t
denoted by ||A||# is defined by induction as follows (1 is

truth, O is falsity). (We omit g when possible.)
(*) This paper was written while the author was supported by the DFG

(Bonn-Bad Godesberg) through the grant Ro 245/8 to he University of
Stuttgart.
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1 |lplls =1 iff t € g(p), p atomic
||~ All, =1 iff |[|A]], = 0.
||AVB||, =1 iff ||A]]. = 1 or [|B|], = 1
[|A&B||. =1 iff |[|A]]. = |[|B]]. = 1.
|[|A—B||. = 1 iff [|A]]¢ = 0or ||B]], = 1.

2) |IS(A,B)||. = 1 iff for some s<<t, ||A||, = 1 and for
all t', if s <<t'<t then ||B|[, = 1.

(3) [|UA,B||¢ = 1 iff for some s>t, ||A||, = 1 and for
all t', if t<<t"<s then ||B||, = 1

The usual tense operators P*A and F*A are definable by

I

4) (a) P*A
(b) F*A

S(A, A— A).
U(A, A= A).

Let US be'the set of all wif valid in every t of (A, <) and
every assignment g. That is for all A,
A€ US iff forallteh and all g, ||A]]¢ = 1.

An axiomatization a(US) of US was given by Kamp and is
quoted in Hoepelman [4].
We thus have, for the finite axiomatization a(US):

a(US) - A iff A e US.

The reader should note that S and U are not definable via
P+ and F* alone,.

Systems with S and U were applied by Hoepelman [4] to the
study of the tenses of natural language. Other systems also
use operators of at least similar strength [5].

Consider now the following truth table, for a system t in a
language L; with unary P and F only. The notation g[A]: reads

the truth value of A at the point s, with respect to the refer-
ence point t, and assignment g. (We omit g when possible.):
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(%) [p]: = 1 iff s € g(p), for p atomic.

(6) The conditions for &, V, ~, — are the usual.

(7) [FA] = 1 iff
(@ t = s and for some s' > s, [AlL, = 1.
(b) t<<s and [Al} = 1.
(c) t>s and for some s <u<t [Al: = 1.

(8) [PA] = 1 iff
(@) t = s and for some s' <s [A]:, = 1.
(b) t<<s and for some t<<u<s [AlY = 1.
() t>s and [A]} = 1.

Let © be the set of all wif A such that [A]: = 1 foralltin

(* <) and all assignments g.

Thus we have, for any wif A:
A e iff for all g, t, S[A]i = 1.

The main purpose of part 1 of this note is to show that US and
v are inter-translatable into each other. This means that:

Theorem 9

(a) For each wif A of the language of US there exists a
wif A* of the language of t such that:
AesUSiff A*e+
or equivalently, since «(US) is an axiomatization of US,
a(US) - A iff A*e<

(b) For each B of the language of t there exists a B# of the
language of US such that:
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Beriff BT e Us (or a(US) B#).

Remark 9

The previous theorem yields an axiomatization «(t) of t, ob-
tained from the axiomatization «(US) of US.
We shall see that later. The two functions *: A — A* and

# :B—>B# are defined effectively and inductively on the
complexity of the wifs.

© is of particular interest since its connectives are unary (P
and F) and they have the same expressive power as the binary
connectives U and S. Furthermore, Kamp [3] has shown that
US is a very strong system in the following sense:

Remark 10

Consider a language for (A, <) with a symbol «<» for the
order, variables t, s, t;, s;, ... ranging over elements of A and
variables Qy, Qj, ... ranging over subsets of A. Add the usual
classical connectives together with quantifiers on the elements
of A (i.e. quantifiers of the form Vt, 3t).

This is really the first order theory of (A, <<, Qi Q, ...). Let
Y(t, Qy ..., Q,) be any wif of this language with variable t free
and containing exactly the set variables Qy, ..., Q,. In [1], page
140, ¢ is called an n-place 1-dimensional truth table (for the
flow of time (A, <)). Kamp shows that for any such y(t, Qq, ...,
Q) there exists a wff of US of the form A(qy ..., qu), with
exactly the n atoms qy, ..., q, such that for any assignment g:

Ay o @) |8 =1 iff <) F bt g(@) - g (@)

Kamps theorem holds for (A, <) or any complete flow of time.
It does not hold for e.g. the case of rational time (y, <<). Kamp
gave the following example of a table for a connective K(p),
not definable in (y, <) using Since and Until.
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Y(to, P) = (3 << to) (P(t1) AN Vtg(tl <t <t,—
(P(tg) f\ 3 tg(tg < ts < to /\ Vt4(tg < t4 < t3 —-)P[t.d))] V
(~P(ta) A (Fts <tg) Viy(ts <ty < ty—> ~P(tg)))).
2. The equivalence of US and .

‘We begin with the proof of (9a).

Definition 11. Let * be the following translation from US into t.

(@ (p)* = p, p atomic
(b) (A&B)* = A*&B*
(~A)* = ~A¥

(AVB* = A*V B*

(A—>B)* = A*— B*
() S(A,B)* = P(PA*& ~F ~B*)
(d) UA,B)* = F(FA* & ~P ~B*).

Lemma 12. Under the translation *, A € US iff A* = 1.

Proof: Obvious from the semantical conditions. In fact, for any
assignment g, and any t € A,

[|A]ls = sas):.

Remark. Note in particular, that F*+ of US, is translated into
(FtA)* = UA, A—> A)* = F(FA*& ~P ~ (A= A)¥)

which is equivalent to FFA*,

Similarly for P+. This shows, what is semantically evident,

that F* can be taken as FF and P* as PP in 1.

‘We now proceed to prove (9b), and define the translation #

from t into US. For this purpose we need some auxiliary
results.

Remark 13. Below are some axioms and rules valid in 1.

(a) All wifs of the form below and their mirror images (obtain-
ed by interchanging P and F).
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Let Hx = ~P~x and Gx = ~F~x,

(1)

()

@)

(4)

)

A& HA & GA

For any A which is a substitution instance of a truth
functional tautology.

Let U+(x, y}gef F(Fx & Hy)

S*(x, )" P(Px & Gy).
Then for any A of US such that A € US let A * be the
wif obtained from A by replacing each U by U* and S
by S+, then A* = 1.
(Compare with 11).

G(A &B) & GA & GB
GA—>A)

GHA— A)

GH A+ GtA

Fx < FFx, x atomic
G(FA & FB <> F(A & B))
G(F ~ A© ~FA)

G(HA & HB < H(A &B)).

A & H*A — G(HA — FH*A)

G(FA - i HB,) = G*(~B; = G(FA - i\m/ HB,)
= =2

For any finite set A, let Y.* (A A, C) be defined as

follows, by induction on A:
d

- 4
A =0:y*@A 2,0 * UA Q).
A = n:y* (4, A,C) =
V U+ (C&A A &y (A, A-A", C), O).
A'CA +
A+
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The following is valid in 1.

F(FA & HC & z\lPBi) <yt (A, {By, ..., B,}, ).

(6) G* (FHA — P*FH A) — G* (FF*tHA — FH A).
(b) The following rules are valid in .

A ~-~A—>B

(1) )

~ P*B& FtA—C
— A— H(PB— GQC)

@)

- AeB

3)
0 (A) e (B)

where ¢(x) is any wiff built up using U* and S* only
(i.e. for some ¢ of US, o = vy*), and x is atomic.

Lemma 14. (a) In t, any wif of the form FD is a equivalent to
a disjunction lV“C!i, where each Q; has the form vy, (A, {B;}, C),
=1

where

v.(A, {B;},C) = F(FA& HC & /’\ PB)).

(b) Similarly for the mirror image case of PD, we
can obtain a y_(A, {B;}, C).

Proof: Write D in disjunctive normal form, regarding anything
of the form FX or PX as atoms. Thus D is equivalent to a dis-
junction VD;, where each D; has the form /;\X,-, where X; is

either atomic or of the form FA; or of the form PB; or a nega-
tion of these forms.
FD is equivalent to VFD;.
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We know (see 13) that F(p & A) is equivalent to F(Fp & A),
whenever p is an atomic wiff. Therefore each FD; is equivalent
to F A Xj, where each X; is either of the form FA or ~FA or
PB or ~PB. Furthermore, since
G(~FA©F~A)erx
we can assume that the form ~FA does not occur. Further-
more since
G(FA&FB«< FA&B) et _
we can assume that there exists at most one X; of the form
FA. Now further since ~PA is the same as H ~ A and
G(HA&HBe HA&B) e
we can assume that there exists at most one wif X; of the
form HC. Thus we are left with at most one FA, at most one
HC and possibly several PB;, We can assume that at least one
FA and HC appear because G(A— A) € 1

GHA—A) e 1.
We can conclude that each FD; is equivalent to a wff of the
form Y+(A, {BJ }! C)'

Lemma 14a. For any wff E, there exist A; B;, C; such that
G(E(—) VL(FA{ & HC; & /j\ PBi.j)).

Proof: Follows from the proof of the previous lemma.
Similarly for the mirror image case.

Definition 15. For any wif of the form y, (A, {B;},C), i = 1,
..., 1 we define, by induction on n, a wif y‘; of US.

We write y,({By, ..., B,}) for brevity: For n = O let
def
v.(A @,C) = F(FA & HC).
@ n=0 y1= U(A, Q).
n=1 y° = UB&C&U(A,C)C)

(b) Case n = 2 y° = U(B{&B,&C&U(A,C),C). V

U(C&B &y, ({B:})%C) V
U(C&Bs &y, ({B}) Q).
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(c) Case n + 1 y,({By...Ba,1})° =

VA c {B1...Bn} U(C&/\A&Yi(A’@'C)IC)
AxD

where ® = {B;...B,} — A.

Lemma 16. For any assignment g and t € A and any atomic
A B, C
Ely. (A (B OFF = ||y° (A (B} O)| |

Proof: By induction on the number n of B,

Case n = O: [y.(A, @,C)]: = 1 iff
[F(FA &HC)]i = 1 iff (by the semantic truth condition and
the fact that A and C are atomic) | |U(A, Q)] = 1.
Casen + 1: Let A + @ be a subset of {B; ... B,,;} and let

® be {By...By,1} — A. Then
|1y° (A {By ..., Bars h O) | |¢ = 1 iff

| Vv UC&A A&y° (A, @, C), 0] = 1
|A§{Blr---an+l} * |It
Az

iff for some t', t <t' and some A € {By, ..., Bp.1}, A = & we
have that the following holds:

(@ Forall t<x<t, |[|C||]: =1

(b) ||/\A||t! = 13 HY:_(Ar(DrC)Htr = 1.

Since A, C, B; are all atomic, and by the induction hypothesis

for ®<n+ 1 we get that (a) is equivalent to (a') and (b) to
(b') where:

(@) For all t<<x <t Cx =1
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0) (A AL = 1; [y.(A, 6,0 = 1.

Thus we have established that:
||yjr(A,{B1...Bn+1},C||,; = 1 iff for some t'>t and A as

above, conditions (a') and (b‘) hold.
Now regard the following:

[y+(A {By... By,1}, O)If = 1 iff by definition,
[F(FA & HC& A PB)]t = 1
i
iff forsomesanduy;, i = 1,...n+ 1, t<sand t<<uy <s and

[A]Z =1 and []31]::11 =1 and for all y, if t<y<s then
[C]§ = 1.

The u; need not necessarily be different. Let t' = {u;} be the
smallest (i.e. nearer to t) from among the u; and let A =
{Bi|ly; = t'}. Then at t' the following holds:

(@) For all y, t<<y < t' implies [CH = 1.
() [C&A A&FFARHC& A ({By ... By} — A))]Y = 1
ie. [C&AN A&y,(A {B}— A Q) = L

Conversely, if (a') (b") hold at some t' for some A then cer-
tainly [y, (A, {By ..., Bp.1}, Q' = 1.

We can thus conclude that [y. (A, {B;, ..., Bu.1} C}: =

= ||y‘_’!_ (A, {B; ... B,Hl},C! |l; since both sides of the equation

are equal 1 iff (a') and (b') both hold.
Thus the induction step is completed and lemma 16 follows.

Remark 16a. In lemma 16 we assumed that A, B;, C are atomic.
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This assumption was used only to show that &[X]' = &[|X]|,,

for X = {A, B;, C}. Therefore the following version of 16 is
true.

Let A, A#, B; B; #, C, C# be such that for any X € {A, B;, C}

#
any g and any! [XI! = X |]e
Then for any g and t

K[Y+ (A'l {Bl}l C]: = | |Y1(A#r {Bl#

Le®)e.
(17)

We can now define the translation # of t into US.

(a) A# = A, for A atomic
(b) (A&B)# = A#&B#
o at
(AVB)# = A#VB#
(A—)B)# = A#-—>B#

(c) For the case of FD, we have only to define the translation
for wifs of the form y,(A, {B;}, C), in view of (14). Hence
let

Y+(A-r {B]‘}l C)l# = Y+(A #1 {BJ# }r C#)o'

(d) Similar to (c) for the case of PD.

Lemma 17. For any A of v and any assignment g and a mo-
ment t,
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sl = |1a%()s

Proof: By induction, in view of 16a.

Lemma 17 yields theorem 9 b. Now that theorem 9 is establish-
ed, we can use it to find an axiomatization a(r) of 1. Let a*(US)
be the *-translations of all the axioms and rules of a(US). That
is, the set of axioms in o*(US) is the set of all A* for A an
axiom of o(US) and the set of rules of a*(US) is the set of all

I—A;'

I—Ai ;
i =1,...n, ,i=1...n
where

~ B* ~ B
is a rule of a(US).
Now let a(r) be the axiom system o*(US) together with the set

rules of the form

of all axioms of the form A < A# * for A in the language' of T,
and the additional rule of modus ponens. We now prove:

(18) a(r) - A iff A= 1.

Proof: That all axioms and rules are t valid, follows from 9a
and 9b. '

Now assume g[B]: =1, for all t and g. Then certainly

||B#||f = 1, for all g and t and hence
«(US) - p¥

Hence o*(US) B#*

and hence (1) + B, since a(r) ~ B#* - B,

Thus 18 is proved and a(r) is an axiomatization of .

It is desirable to find a simple axiomatization for r.

Any set of axioms and rules that is sound and can prove all
the axioms and rules of a(t) is of course complete.
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One final remark. The truth table given for P and F of is not
arbitrary. P and F do occur in English.

(a) Clause (7a) captures the behaviour of «will» in «He will
come»,

(b) Clause (7b) captures the behaviour of the second will in
«I will come and bring the parcel».
«He will say he is coming».

(¢} (7c) captures the meaning of «would» in
«He said he would comen».
Or better, its mirror image, (8c), captures the future perfect.

To make our connectives P and F more plausible to the reader,
here is an example of how to express «until» using «will» and
«will have» «When the postman delivers the parcel he will ask
what's in it and add that he has been asking what's in it all
the time»,
This has the form

F(Fp & Hp)
or U(deliver, ask).
(i.e. asks until delivers).

§ 3 Axiomatization of .

This section proposes an axiomatization (1) of 1 and proves
a direct completeness theorem for f(z). The proof will also
suggest a simple axiomatization §(US) of US to be compared
with the axiomatization «(US) quoted in Hoepelman [4].

Let B(r) be the axiom system with the following axioms and
rules and their mirror images:

(Recall that F+ = FF, Pt = PP,G= ~F~and H= ~ P ~))

(19) The system f(z):

(@) All substitution instances of truth functional tauto-
logies with the rule of modus ponens.
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(b)

()

(e)

(9)

(h)

(k)

DOV. M. GABBAY

The usual axioms for rational time with P+ and F+
ie.
1) G*(A—>B)— (G* A—> G*B)
2) GtrA— GtGtA
3) ~A—GtPtA
4) G*(G*A—B) VG*(B&G'B— A)
5) G*GtA — GTA
A
6) ki 0
- GTA
7} Fr(A— A)

1) G(p < Fp), p atomic

2) G(~ FAe©F ~ A)

3) G(F(A &B) <> FA & FB)

4) G(HA & HB < H(A & B))

5) GA, for all A that are substitutions of truth func-
tional tautologies.

x&H'x&Gr~x—
— [F(FC & A PB; & HD) < F+(C & H*(x V D) &
A PT(B; & ~ x))]

FAeA, - Bj<—>B;, FCeC

+F(FA & HC& \ PB) <> F(FA' & HC & /\ PB)).

G*(FHA — P+F HA) — G*(F+*FHA —FHA).

A= Oi(As— Op(Ag— ... O,-1(A, = (Gtx — x))..)

A — D1(A2'—) D'Q[A3—> s Dn—l "-'An) ]
Where x is an atom not appearing in A, ..., A, and
O; is either G* or H,

Lemma 20 B(x) - A iff A e

Proof: To show one direction, check every axiom and rule of
B(r) and verify they are all valid and are in t. For the direction,
namely, A € t—>f(t) - A, we need a series of constructions.
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Definition 21

a) Let I be the set of all nonzero integers and let I* denote
the set of all finite sequences of elements of I. Let R C I* x I*
denote the relation of «being an initial segment of», thus, for
x, yE€I*, xRyiff x = y or y is a longer sequence continuing
x. Let & denote the empty sequence. @ & I*.

b) Let * denote concatenation of sequence and let t' be the
sequence obtained from t by deleting the last element of t.
Let t® denote t n-times. Thus s = t®@ iff for some my, ..., m,
el t = s*my, ..., my).

Let t denote the last element of the sequence t (for t = ).

Thus t = t'*(t), for t + J.
Definition 22

An ordered pair ® = (S, 8) is called a B(r) finite table or just
a table, iff the following holds.

(a) S<1I* S is finite.

b)) es&tesS—>t €8).

(c) For each t € S, §(t) is a wif of B(r) which is B(r) consistent

and & (t') ~ O;ﬁ(t)

F* if x>0
e s {P+ if x<<O

Definition 23

Let ®© = (S,d) be a table and t € S and let x be a wif.
Define the following structure O[x, t], which is a candidate for
another table.

(a) Let d(x,t) = 6(t) &x
and by induction,
d (x, t+)) = p (1U+D & Ot(—i) d(x, t®).
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Now let 8 (x,s) = d(s), for all s such that ~sRt.
Let @ [x,t] = (5,0 (% 8)).

Lemma 24

(@) ~d(x, t®) = j3t")— O BT DI(E)(’L)—HC] sea)s

t(i—l)
where 0 = ~ O ~.
-~ (x, t®)
(b) ;
o~ 0 (x, t0+D)
€ F ~b(xt0) & ~d (~ x, t0) = ~ §(tD).

Proof: a) is checked by direct computation or by induction.
b) follows from a) and the axioms of B(1).
¢) is proved by induction on i.

Case i = O: It is clear that
B)—>x) &G ()= ~x) = ~b (1).

Case i + 1: ~d (x,t4+D) & ~§ (~x, t0+D) imply, by definition
(6 (¢40) = O~ ~8 (x, )& B (t+9) > O ~b (~x, 1))

which implies
d (t0+D) = I:lt(—n ~d (X, tD) & ~d (~x, 1))

by the induction hypothesis, this implies
(i+1) A )
b (t4+D) > O ® o (tD)

but since § (t4+D) - Oﬂ_‘)ﬁ (tD)

we conclude

~0 (t0+D),

This proves c).
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Lemma 25,

Let ® = (S,9) be a table and t € S and x a wff. Then either
O [x, t] is a table or @ [~x, t] is a table.

Proof: For © [x,t] to be a table, all we need is that each
d(x, t™) be f(x) consistent, for all m. So if (25) is not true, we
get for some m, n that

- o~d (X, t®), - ~B (~x, t®).

By lemma 24b we can assume m = n and by lemma 24c
— ~3& (t™), contradicting the consistency of § (t™),

It is clear, that if & (x, s) is consistent, it satisfies the other con-
ditions of a table.

Lemma 26.

Let © = (S, 9) be a table and t € S. Assume § (t) - G*x, then
the following (S, 8*) is a table; where
0*(s) =
d(s)&x if s = t and s> O
b (s) otherwise.

Proof: We must show that

(a) &* is comsistent.
(b) % () = O =b*(s).

To show (a) assume otherwise that - x — ~ 8 (s) hence
— Gtx— Gt~ (s)
and since d(s') - Gtx we get 3 (s') - G* ~0 (s) but since

s> O then by assumption 3 (s) ~ F*+d (s), which is a contra-
diction.

To show (b) observe that since - G*x & Ffy — F*(x & y), (this
can be proved from the axioms and rules of 19b), we get
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8*(s") ~ G*x & F*$ (s) = F*(x & 8(s)) hence
0*(s) = F+o*(s).
A similar lemma holds for H+.

Definition 27.

Let N be a function associating with each wff A a positive
Goedel Number N(A). Leet © be a table (S,8) and let t & S
be such that & (t) -~ F*x. Let q be a propositional variable not
appearing in any 9 (s), s € S. Then by axiom 19k,

d(t) - ~F*(x & ~q & Gtq).

Define the following table
(Spvy1 ). Spu, = S U {t*(N(A))}
8*(t*(N(A)) = x& ~q&G*q
*(t) = d(t) & F*(x & ~q& G*q)

and by induction

*pA+1)y = (i+1) e (i)
B*(LAHD) = (t ) & O 3¥(0).

3*(s) = d(s) for any s € S, such that ~ Ji(s = t®),
We can assume that N(A) is a number not appearing anywhere,
ie. that t*(N(A)) & S.

We must show that we obtain a table. For this purpose show
that 8*(t) is consistent,

Otherwise

-3 (t0) >0 e B e
= Gf(x—> (Gtq—>q)) ....

hence by 19)

@ *
ot — 0O D

—...GT (~ x)...)
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which is the same as

D) = ~ O § ({0
=0 (tV) — Ot“_!)a[t )

and is impossible.

A similar result holds for the case of P+x. In this case add
t*(—N(A)) and use ~q&H*q.

Definition 28.

A sequence of tables (S,, §,) is called regular iff it satisfies the
the following conditions:

B B, C8hut..ES = U8,
n

(b) 8a,1(t) - B,(t), for all t € S,

() For any wif x and any t € S there exists an n such that
da(t) = x or 64(t) - ~x.

(d) For any G*x and t, s € S and m such 8,(t) - G*x and

s’ = t there exists an n > m such that §,(s) ~ x. Similarly
for H*,

(e} For any t =S and m such that 8,(t) - F*x there exists
an n > m and s such that s’ = t and s > O and d,(s) - x.
Similarly for P+, -

(f) For any t& S there exists a q and an n such that
d.(t) - ~q& G*q or §,(t) - ~q& H*q.

Lemma 29.

Let A be a consistent wff, then there exists a regular sequence
of tables, (S,, 9,) such that §,(<) ~ A.
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Proof: Since A is consistent so is A & ~q & G*q, for q atomic,
q not appearing in A. Let S, = {1}, §,(d) = A& ~q&G*q.
To define (S,, §,) for all n = 1, we need an auxiliary function
f as follows. Let f be a function on the natural numbers such
that f(m) = (ty, By), where t, € I* and B, a wff. We can al-
ways arrange that each pair (t, B), t € I* and B a wif is obtain-
ed in the range of f infinitely many times for odd m and in-
finitely many times for even m. We can now construct by in-
duction the sequence (S, d,).

Assume (S, 8,) has been defined. To define (S,.1 0,.1) let
fln) = (t, B).

‘We distinguish several cases:
(@ I te&S, let Sp,q = S, Ot = O

{b) If tS, and n is even, then we know that either
(Sn 8;) [B, t] is a table, or (S, d,) [~B, t] is a table.

So let (Spy1 0n.1) be (S, 8,) [B, t] if it is a table and otherwise
let (Sni10ns1) = (Su 8) [~B, t].

(c) t= S, and n is odd and B is of the form F*C or P*+C, then
let (S,.1 0,,1) be the corresponding table constructed in
n (27). If B is of the form G*C or H*C, let (S,,, d,.) be
the table constructed in (26).

(d) If te S, n is odd and B is not of the form of c), then
proceed as in case b).

It is easy to verify that we obtain a regular sequence.
Definition 30.

Let (S, 8,) be a regular sequence. Let S = U, S,. For each
tesS let Ay = {A]| for some n, d,(t) - A}. Let T = {A,]

t € S}. Define < on T by A < 0 iff for all GtA, GtA € A =
Ae0.
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Lemma 31.

(@)
(b)

(©)
(d)

(e)

Each A, is a complete and consistant B(r) theory.

For each A, there exists a q such that ~q& G*tq € A,
and r such that ~r& Htre A,

If A1< Ag and HYA Ag then A Al.

(T, <) is a transitive, dense linear order without endpoints
and < is irreflexive.

If FFA e A T then for some A', A A", A'e T and
A < A’. Similarly the mirror condition for P+,

Proof:

(@)

(b)

(e)

Follows from conditions 28b) and 28c).

Follows from the construction. Each t when introduced in-
to S, its d(t) contains a q with either ~q& H*q or
~q & G*q. From the axiom it follows that a similar mirror
r is also available.

Follows from axiom 19hbg).

Transitivity follows from axiom 19b,). Ir-reflexivity foll-
ows from b) above.

To obtained linearity, first show connectedness: Using c)
and transitivity show that for all t + &, te U,S,,
Ag <A or A< A@. This would give connectivity.

It can be shown by induction on the length of t, using
28d-e). Now linearity follows from 19b,) and density from
19b5). The order is non ending since axiom 19b,) is avail-
able, together with e) below.

If F*A € Ay, then for some m, §,(t) - F*A. By condition
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28e), there exists an n>>m and s such that s > O and
t = s" with §,(s) — A. Thus A € A,, We now show that
Ay << A, Let Gtx € Ay, then for some m/, d,, (t) - G*x,
and by 28e) we can assume m' > n. So by 28d) for some
', dy(s) - x, ie. x € A,

From now on we deal with (T, <) obtained above. The proper-
ties that interest us in (T, <) are summarised in (32) below.

(32)

(@)

(b)
(©)

(d)

(T, <) is isomorphic to the rationals in order, with <C ir-
reflexive.

All members of T are f{r) complete and consistent theories.

< is defined by A <O iff for all A, GtA € A implies
A € 0 or equivalently for all A, H*A € © implies A € A,

F*A e A iff for some ©, A <0 and A 0.

Similarly the mirror condition for P*A.

Definition 33:

@)

(b)

Let I' be a set of wifs. We say I' is 3(t)G consistent iff for
no Ay ..., A, €T do we have B(r) - G~ /1\ A

(Notice we use G here and not G*I).
Similarly define the notion of f(t)H — consistency.

Let T be a complete (i.e. for all x, x eI or ~x 1)
B(t)G consistent set.
Define I't = {A|FA T}

Similarly define I~ for a complete B(t)H consistent set.
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Lemma 34.

Any B(t)G consistent set can be extended to a complete (1)G
consistent set.

Proof: It is sufficient to show that if I is 3(1)G consistent and
A is any wff then I' U {A} or ' U { ~A} is B(1)G consistent.
For otherwise for some B; C;, €T

— G (A Bi—> ~A)
- G (A C—A).

From the axioms of 19¢) it follows ~ G (/i\ (Ci&B)—> A& ~A)

hence - G~ (A C; & A By), a contradiction,
1 i

Lemma 35.
Let A, ® €T and A <O, then there exists a unique p(1)G —
consistent and complete I' = a (A, ©) such that:

(1) GAe A>AeT

2 Ce@—->FCerll

(3) If Dis such thatforallye T, A <y<{©-—>D vy then
HDeT.

(4) If B is such that for some, A <y<{© and B € y then
PBeT.

Proof: To show uniqueness, assume that I'y, I'; have the above
properties. Show by induction on A,

Aely e AeTl,

For atomic p, since - G (p<Fp) we get peslicpcs 0.
The case of FA is clear. So are the cases of HA and PA.

To show existence, let I'v = {A|GA e A} U {FC|C € 0}
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U {PB|B € vy, for some y such that A <y <@}
U{HD| forally, A<y<©->Deyl

We claim I'y is (t)G consistent. Otherwise for some A;, C,
By Dn G~ (AHD,&A A;& A FC, & A PB;). From the
axioms of 19c) weget - G ~ (HD & A & FC & A PB))

where A = A A;, C = AC, D = AD,.

So + GA— G ~ (HD & FC & A PB)

and since GA € A, we get
~F(HD & FC& A\ PB) € A.

Since ~ A << A, we can find an x such that x & H*x & G+
~x & A hence by (19¢) ~F*(H* (DV x)&C& A P+ (B; &
i

~3x)e A
but this is impossible since

C&H*(DVx)&AP*(B;& ~x) € ©® and A < 0.

Thus I'; is B(1)G consistent and can be extended to an o (4, ©)

as required.
A similar mirror lemma holds for the existence of « (0, A)

for A <.
Lemma 36.

For every wif A, there exists a wif B of the form
B = V; (Fx; & Hu; & A Py;) such that +~ B(r) G (A < B).
1

Prooi: Follow the steps of the proof of lemma 14a and note that
axioms (19¢) and (19g) allow you fo prove the equivalence in
p(D).

A similar lemma holds for the case of PA.
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Lemma 37.

For A €T,
C = F(Fx& Hu & A Pyj)) € A if, and only if for some © € T,
1

A <O and
Fx&Hu&/\PyiEE(A,G).

Proof: From axiom 19 it follows, since for some A,
A&QHTA&GY~A € A, that

CoFr(x&HuV A)&&PHy; & ~ A)) € A

and hence C O iff for some © and some A <, <O, y; €t

and x € O and for all A <t<{®, u € t. Thus by construction

of (A, ©) iff

Fx & Hu& A\ Py; € a (A, 0).

A similar lemma holds for the mirror case.

Lemma 38.

Let a (A, A) = A and let gx) = {AeT|xe A}, for x
atomic. Then for (T, <<, g) and any wif A,

A
Al = Liff Aca(, ).

Proof: By induction on A. For atomic A, this holds by definition
of g and the fact that axiom (19¢,) is available.
The cases of &, V, ~,— present no difficulty.

Case of F and A = 0O:
FA € A, iff by lemma 36, V;F(Fx;&Hu; & A\ Py;) € A iff
1

some disjunct j is in A, iff by 37, for some ® A <<© and
FXj &.Hul & /\ PYU = g (A, @)
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iff by 36 for some ©, A <© and A € a (4, O) iff by the in-
0

duction hypothesis g[A] A = 1 for some © such that A <<

o
iff g[FA]A = s

Case F and A < O:
FA € a (4, ©) iff by construction A € @ iff by the induction

. C] A
hypothesis g[A]@ = 1 iff g[FA]@ = 1

Case F and © < A:
FA € o (0, A) iff by construction for some t, @ <<t < A and

A
A € tiff by the induction hypothesis g[A]: = 1iffe [FA]@ = 1.

The case of P is the mirror of the case of F.
Thus lemma 38 is proved.
What we have proved is the following:

Theorem 39:

Let A be a f(3(1) consistent sentence, then there exists a struc-
ture of the form (v, <, g), with (n, <) the rationals such that
(@) PB(r) - B implies g[B]‘t = 1, for all t € y and all B.

(b)7For some t, & n, ¢[A]S = 1

Theorem 40:

Let (n) be the axioms and rules of (1) without axiom 19h).
Then B(n) is complete for all structures (n, <<, g) with raitonal
time.
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Proof: In the completeness proof of theorem 39, we never used
axiom (18h). Thus theorem 39 is valid for () as well and
since all axioms of (n) are valid in rational time, we get com-
pleteness.

We still have to prove the completeness theorem for (). To
do this, let us start with a structure of the form (n, <<,g) in
which all theorems of f(r) are valid (i.e. 39a, 39b hold) and
convert it to a structure of the form (A, <<, g*).

So let us approach our problem generally, we are going to
construct, from a given structure (ny, <, g) in which (19h) is
everywhere valid, another structure (A, <<, g*), in which (A, <)
is the completion of (y, <) and for any A and t € v, Al =

[ALL.

So let (, <, g) be given and let S;, S; be an open cut in v, i.e.
SiNS; = &, = 5,US,, andteS; ANseS;—>t<s and §
has no last element, and S; does not have a first element.

Lemma 41.

If for some t € S; and wif A we have [A] = 1,forall s € 5y,
s >t then for some t' € S; we have [A]} = 1 for all s<Tt

SESg.

Proof: Otherwise, take any s € S,. Then [HH(PGA — FFPGA)]:
= 1 but [HH{PP‘PGA—)PGA) = 0.

Let (4, <) is the completion of (n, <), so for each open cut in
M, A contains an element t defining the cut. We want to define
a theory ©% for each x € 1. For x € v, let 8% = {A| [A]x = 1}

‘We now want to define E)i forxel—n.
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Lemma 42.

For x € h—1), the following set /_\ﬁ is t consistent.

A = AXU A*U A*U A*U A%, where A* = {E| for
X 1 2 3 4 o o

some t<<x s, [E]g; =l foralyen t<y<s}

A’I‘ = [F(HA & /t\ PC; & FB)| for some t e, t>x, [B]: = 1,

and for some s; € S, x <s; <t, [Ci]: = 1 and for all s €y,

x<s<t[A] = 1}

A = {~F(HA & A PC; & FB)| the previous condition of AX
i
does not hold}

Ky = {P(GA' & N\ FC'; & PB'| the mirror of the condition of
i
A’l‘ holds}

Af = {~P(GA' & /1\ FC'; & PB'| the condition of A} does not
hold}

Proof: If A’; is not consistent then for some finite Ai+ c A’i‘,
U /_\i+ is not consistent. We will show that for some t € n near
enough to x, [A]“’, =1 for all AU L\i+ and all x <<t <t,

t' € n. Certainly for any t if t is near enough x, any of the
members of A: hold at (t, t). As for the members of A,j, if we

look on t's such that x <|t, then for any near enough t, all
members of /_\;r are valid. Now take any membe2r of A;, say

~F(HA & A\ PC; & FB) and assume that for no t > x, no matter

how near, can we make this sentence true at all (t', t'),
t'e S, x<<t'<{t. This implies that for any near enough ft,
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[F(HA & A PC& FB];> = 1, for some t, €1, x <t, <t. Take
i [¢]

such a to € and note that further for any x <<t<t,, t S
[A]: = 1. But this contradicts the fact that the above state-

ment is in A;.

Turning to Ay , let D = P(GA' & A FC;& PB) € Ay . By the
i

condition of admittance to /.’\?, there exists a t, <<x, t, € n
such that [B']:z =1, and for some t,<s<x, s EH7,

[C]s = 1 and for all t,<s<x, [AT = 1. By lemma 41
there exists a t,enx < t* such that foralls en, x<<s << t*

[AT, = 1. But this means now that for any t & 1, x <t <t*

[D]‘[ = 1. Thus for near enough t > x, all members (finite in

number) of /_\.; can be made true atan (t,t), x<<t' <<t t' .

Turning now to A, let D = P(GA'& A FC';&PB’) and
i

~De At

Suppose for any t € nx <<t there exists a t' €1, x <<t <t,

with [D]‘t', = 1. This assumption implies that

(a) For some t*>x. t, €n we have that [A]} = 1, for all
x<s<t*, s € 1. By lemma 41, for some s*<x, s, €,
[A']: = 1 for all s*<sx, s E.

(b) For each C';, (in view of lemma 41) and for each s; <<x <t;,
there exists s; <<s'; <<x<t;<t; such that

[C'i]ssi = [C] :: = 1. s,sh €.
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(c) Similarly for B.

But then (a), (b), (c) contradict the condition of admission of
~D into AI.

We have thus shown that for each A & U A;‘, there exists an
s e, x<s such that [A]Z’, =1, for all s’ ey, x<<s" <s.

Thus lemma 42 is proved.
Since A’; is a t consistent it can be extended to a complete

and consistent t theory G)i.

(43) Notice that by construction for any t <<x <s there exist
ths ent<<t <x<s' <s such that [A]:: = [A]:', = 1,

Lemma 44.

Let A;, t<s, t, sk be
A; = {A|GAE @i} U {FC|C S 92} U {HD|D S @3
for all t<<u<<s}

U{PB|B € ©! for some t<<u<s}

Then:
(a) A: is f(r)G consistent.

(b) For t, S & we have
Ae Al Al = 1.

Proof: To show consistency assume otherwise and reach a
conradiction. Assume that some A;, D, C, B; from the respective
theories we have:
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E= AA— ~(HD& A PB; & FC)) and + GE.
‘We can take only one C and one D since we have axioms (19c).
And so

E, = ~FHD&FC& A PB) @:.
Case 1. t e

Then [Ej]; = 1. From what is given and (43) there exists a

uent<<u<ssuchthatforsomey € t<<uy <uy, [Bi]zi1 =1,

This means in view of the condition on HD, that for any s’ € y,
u<s'<s, [APB&HD|] = 1 and hence since [E] = 1,

[~C]:: = 1 for all u<<s'<{s. Now if s €1, then [/ PB; &
HD]! = 1, and hence by the same reasoning ~C & ©% a con-
tradiction. If s € A—m, then by construction ~C & @f‘s and

again a contradiction.
Case 2. t€d-n.

By the condition of admission into ®:, for no point t<<s', do
we have that the condition in the definition of A’l‘ of (42) is

satisfied. Thus by following the same reasoning as in case 1,
we get a contradiction.

(b) follows from (43).

We now define 0!, for t <s.If t, s €1, let e = {A] [A]tS = 1.

In this case Atsg ®: in view of (44b). Otherwise let @; be
some fixed complete ()G consistent extension of A:.
We can similarly define AZ, t>s and @ts, t > s using mirror-

argument.
We can no wdefine g*. Let g*(p) = {t€i|p e 0 }.
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Lemma 45.

For any A, in the structures (i, <<, g*):
AL = 1iff Ae ®:.

Proof: By induction.

The cases of A atomic and the cases of the classical con-
nectives are obvious.
*[FA]*S = 1, for t s, iff *[A]$ = 1 iff by induction A & os

iff by construction A 6);.

“[FA]:3 = 1t<]s, iff for all s<<u<t
*[A]:‘] = 1, iff (by the induction hypothesis) A @‘:1 for all
s<<u<|t iff (by definition of @:) FA @:.

*[FA]: = 1 implies that for some s > t, *[A]lL = 1 and hence
A € 0! and hence FA € ©! by construction of @:, t<Ts.
Now assume FA @:, then if t € v, then [FA]‘t = 1 and hence
for some s >t, s €y, [A]; = 1 and hence A @; and hence
*[A]l = 1 and hence *[FA]l = 1.
If t = h—m, then by lemma 14,

- FA < VFEC & A PB! & HDJ).

Now since the disjunction is in @):, one of the disjuncts @:.
t & n, say the j-th. By construction, for some s, s € n, t <s; <<s
[ = 1, [Bii]:; = 1and for all uey, t<u<s, D! = 1.

By construction of @)’; we have for s, s;, as above and any
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t<u<s, uek De 6! B e O], Ce@. By the induction
hypothesis

*[FC & A PB/& HDI|! = 1

ie. *[FA]t = 1.

Thus the proof of lemma 45 is complete.

‘We can now conclude

Theorem 46.

Every (1) consistent sentence A is valid in some (A <<, g*).
Thus f(1) is complete for validity in real numbers time.

§ 4 Further Remarks.

Let KC be Prior's logical system of all wifs of the language
with F* and P+ valid in real time (A, <<). KC can be axiomatised
using axiom group (19a), (19b) and the following axiom for real
time (and its mirror image):

(47) GH(G*A — P+GTA) = G*+(F*G*A — G*A).

We now define a translationt* from US into KC such that
US +~ A iff KC +~ AT,

Definition 48.

Let A(xy, ..., X,) be a wif of US with the atoms xy, ..., x,. We
define by induction on A a wiff A*(xy, ..., X4, V11 .-, Ym) Of KC
with atoms xy,..., %X, ¥4 ..., Ymr Where m is the number of
occurences of U and S in A,

(a) x* = x; x atomic.
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(b) (~A)* = ~A*
(c) Let A(xy ..., Xm), B(us, ..., ug) be given and let
A*(Xgy ooor Xy Yir oo0 Yo) BY(ugy vovy Uy, vy, ..., v;)  be their
translations. We can assume that all vy ..., Vo Vi, eos Vi
are different atoms.
Let (A&B)*t = At &B*
(AV Bt = A+ V B+
(A—B)* = A*—> B,
(d) Under the assumption on A, B in (c) let
UA B)* = z& H"2& G' ~z& F*(AT & H*(Bt V z))
S(A,B)t = z& G*z& H* ~ z& Pt (A* & G*(B+ V z2))
where Z is a new atom not appearing in A* or B+,

Lemma 49.

Let g, g' be two assignments. Write g =x1g’ iff g(x;) = g'(x),

i= 1: eenp IN. Then
[AG k) |[f = 1iff 3g' =g ||A*my[l¥ = 1.

Proof: By induction on A, For A atomic this is clear.
|[U(A,B)||a‘;’ =1iff Is>tVrIt<r<s—

|[|Al]5 = 1& [[B[[¢ = 1) iff for some g, 9" =xg
s>t Vrt<r<s—|[|A*][|s = 1&||B+H§" = 1).
Since he extra parameters of A+ and B+ can be taken to be
all different, we can assume that g = ¢". Let g* agree with

g', g" on all the parameters involved and let g*(z) = {r|r < t},
hence

Corollary 50: US + A iff KC - A*,
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Proof: From the previous lemma.

The above corollary suggests the following axiomatization of
US. Let F*A = U(A,A—> A), PtA = S(A, A— A). Let y(US)
contain all the axioms and rules of KC for F+ and P* together
with the following axiom and its mirror image:

Z& H*Z& G*~Z— [U (A, B) & FH(A & H(B V Z))).

Bar-llan University Dov. M., Gabbay.
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