UNSPECIFIED CONSTANTS IN PREDICATE CALCULUS
AND FIRST-ORDER THEORIES.

Ross T. Brapy

In this paper, I will present arguments to show that un-
specified constants, that is, constants which have no axiom-
atic characterisation placed on them by the formal system,
should not be included in Predicate Calculus or in a first-
order theory, both with a semantics, with the exception of
unspecified individual constants in first-order theories which
can only have one-element domains in their semantics. I will
also indicate an improvement on Tarski's semantics of Predic-
ate Calculus. I will deal firstly with unspecified individual
constants in predicate calculus and then deal with other un-
specified constants and with 1st-order theories by using similar
arguments. The practice of including unspecified individual
constants in Predicate Calculus and 1st-order theories is quite
widespread (e.g. in [2], [5], [#] and [8]).

§1. Proof-Theoretic Considerations.

In order to point out the problems of including unspecified
individual constants, I will use the following axiomatisation
of Predicate Calculus, similar to that used by Leblanc in
(6], pp. 2-3. I will use the symbols p, q, 1, ... for sentential

variables; x, y, z, ... for free individual variables; x5 Vi Zh
... for bound individual variables; a, b, ¢, ... for individual
constants; f, g, h, ... for predicate variables. The formation

rules for the primitives ~, V and V are as follows:
1. A sentential variable is a wff.
2. If f is an n-place predicate variable and ty, ..., t, are terms,

then ft;...t, is a wff. (A term is an individual constant
or a free individual variable.)
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3. If A and B are wffs then ~A and A V B are wifs.

4. If A is a wif then (Vx') A (x'/x) is a wff, where A(x'/x)
consists of the wif A with all occurrences of the free
individual variable x replaced by the bound individual
variable x'.

The definitions of & > and = are as usual.
(Ix) A (x'/x) =df ~(Vx')~A(x'/x).

Any axiomatisation of sentential calculus will do, provided
the axioms are in schematic form. The axioms and rule
dealing with the quantificational part are as follows:

Axioms,

1. (Vx')A(x'/x) D A(t/x'), where the wif A(t/x) is A(x'/x)
with the term t substituted for all occurrences of x' which
are not in the scope of a quantifier, (Vx') or (3Ix).

2. (Vx)(A o B(x'/x)) 2.A o (Vx')B (x'/x).

Rule.

A = - (Vx)A (x/x), where each free individual vari-
able x in the wff A does not appear in the scope of a quanti-
fier, (Vx') or (I x)).

Consider a proof in this formal system of the wff A(c),
where c is an individual constant occurring in A. There are
two ways in which this constant ¢ could have been intro-
duced into the proof. Firstly, ¢ could have been introduced
using the first axiom in the form, (V x)B (x/x) o B(c/x'),
where at least one substitution of ¢ has occurred. Secondly,
¢ could have been introduced as part of a wif which has been
substituted for a schematic letter. Let z be a free individual
variable which does not occur at all in the proof of A(c).
At each occurrence when the constant ¢ was introduced into
the proof of A(c), z could equally well have been introduced
instead of c. Since z does not occur in the proof, z cannot
be generalised upon using the rule and hence cannot be
used in a way in which ¢ could not be used, if z is sub-
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stituted for ¢ at each introduction of ¢ in the proof. Hence
A(z) is also provable. We have shown that if ~ A(c) then
+ A(z), where z does not occur in the proof of A(c). This
is a rule that is used by Church on p. 242, [1], and by Mendel-
son on p. 75, [8], without proof or reference.

To sharpen this rule, we can generalise A(z), using the
transformation rule, to prove (Vz') A (z'/z), where each z
in A(z) does not appear in the scope of a quantifier, (Vz')
or (3z'). Using the first axiom, we obtain (Vz') A (z'/z) D
A(y/z'), where y is substituted in A(z'/z) for all occurrences
of z' which are not in the scope of a quantifier, (Vz') or (3z).
Hence, we can prove A(y), where y is substituted for all
occurrences of ¢ in A(c). Henceforth, let us assume this con-
dition when writing 'A(y)’, after 'A(c)’. We have now shown
that if ~ A(c) then +~ A(y). If we add the condition, that Yy
does not occur in A(c), to guarantee that the occurrences
of y in A(y) are at exactly the same places as the occurrences
of ¢ in A(c), then, if - A(y) then + A(c), and hence:
() = A(c) iff ~ A(y), where y does not occur in A(c).

In the terminology of Hiz, on p. 194 of [4], and of Corcoran,
on p.432 of [3], (*) is an admissible rule, as it is thesis-pre-
serving. Admissible rules, whether derived rules or not, can
be added to the transformation rules of a system without
affecting the set of theses of the system. Admissible rules
are obtained by using meta-theoretic methods and, unlike
derived rules, may not hold when the system they apply to
is extended by the addition of extra axioms or extra primi-
tives. However, as will be shown, (*) will continue to hold
when the Predicate Calculus is extended, provided the in-
dividual constants a, b, ¢, ... are not axiomatically charac-
terised.

Because Predicate Calculus is complete, (*) will yield the
validity-preserving rule:

(+) A(c) is logically valid iff A(y) is logically valid, where
y does not occur in A(c).

Hence, one set of symbols, either those for individual
constants or those for free individual variables, is redundant,
since the two sets of symbols are interchangeable in theses
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and logically valid wiffs. Within the logic, there is no way
of distinguishing the individual constants from the free in-
dividual variables, because they both have the same logical
properties. The only difference that appears in the axiom-
atisation is that the transformation rule generalises on free
individual variables rather than individual constants, but, by
applying (*), it can be shown that this generalisation can also
apply to individual constants.

In the next section, we will decide which it is better to
eliminate from the formal system, individual constants or
free individual variables.

§2. Semantic Considerations.

In order to make this decision, we will prove (+) using
semantical methods. We will use the Tarski semantics of
Predicate Calculus, as set out in Hunter, [5], pp. 141-149,

Consider the wif A(c) and the wiff A(y), with the above
convention applying. Let A(c) be logically valid. Then A(c) is
true for every interpretation I and hence, for all interpretations
I, every denumerable sequence SD of members of the domain

D of I satisfies A(c).
Putting this in symbols, using restricted quantification,
(V domains D) (V interpretations I with domain D) (VsD]

[sD satisfies A(c)). Hence,

(V domains D) (Vd = D) (V interpretations I with domain
D and with c assigned as d) [VSD) (SD satisfies A(c)).

Let y be the k-th variable in the enumeration of free indi-
vidual variables. By specializing the sequences sD, we obtain,

(V domains D) (Vd €D) (V interpretations I with domain D

and with c assigned as d) (Vs with d as its k-th member)
D

(SD satisfies A(c)). Such sequences SD with d as their k-th

member will also satisfy A(y), and hence,
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(V domains D) (Vd = D) (V interpretations I with domain
D and with ¢ assigned as d) (VSD with d as its k-th member)

(SD satisfies A(y)).

Since all the occurrences of c¢ in A(c) are now replaced
by vy, this result would apply for all interpretations I with
domain D, independently of the assignment given to c. Hence,
(V domains D) (V interpretations I with domain D) (Vd € D)
(VsD with d as its k-th member) ( SD satisfies A(y)). Hence,

(V domains D) (V interpretations I with domain D) (VSD)
(sD satisfies A(y)). Hence A(y) is true for every interpretation

I and A(y) is logically valid.

‘We have shown that if A(c) is logically valid then A(y)
is logically valid. Since, if A(y) is logically valid then A(c)
is logically valid, where vy does not occur in A(c), we have:
(+) A(c) is logically valid iff A(y) is logically valid, where
vy does not occur in A(c).

Since a logically valid wff is one which is true for every
interpretation, one has to consider all interpretations of A(c)
to determine its logical validity. By keeping the domain D
fixed, one can vary the interpretations of A(c) by varying
the assignment of the individual constant ¢ in the domain D.
To obtain the rest of the interpretations of A(c), one would
have to vary the domain D, as in the above proof.

Intuitively, an individual constant c should be assigned a
unique member of a given domain D, whereas a free individ-
ual variable should be allowed to range over all members
of the domain D. By varying the interpretations of A(c) in
the above way, it can be seen that the individual constant ¢
is allowed to range over all members of the domain, des-
pite the fact that Tarski's semantics deals with individual
constants and free individual variables differently. The way
the free individual variable y is allowed to range over the
domain D is by allowing the k-th member of sequences to be
any member of D,
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As also indicated in the proof, this type of assignment for
individual constants accounts for the inter-substitutivity of
individual constants and free individual variables, since both
of these are allowed to range over a given domain D. How-
ever, such an interpretation for an individual constant is coun-
ter-intuitive and so it is better to eliminate the individual
constants rather than the free individual variables from the
formal system, given that Tarski's semantics is used.

However, if one changes the semantics in such a way as
to give the intuitive interpretation to individual constants,
that is, to assign to each individual constant a unique member
of each domain, then one needs to be able to specify the
appropriate member of each domain. One will have to assign
to each individual constant a, b, ¢, ... of the formal system,
a unique member of D, for each domain D. That is, for each
individual constant, say a, there must be a function J,,
associated with it, so that a is assigned &,(D), for each
domain D. In order for this to be so, there must be some
characterising properties which are sufficient to pick out
each member &,(D) of D, for each D. In order to formalise
these properties, one would need a first-order theory with
predicate constants and with non-logical axioms, each of
which would express these properties of the individual con-
stants. Hence, this semantics would then be more than just
Predicate Calculus semantics as it deals with predicate con-
stants in addition to the primitives of Predicate Calculus. Note
that, in Predicate Calculus, unlike first-order theories, one
cannot add axioms characterising individual constants without
adding some predicate constants as well.

In the case of a domainless semantics for Predicate Calculus,
the only way to provide an interpretation for an individual
constant would be to give a set of characterising properties.
However, this would yield a semantics for a first-order theory,
as above.

Therefore, in any semantics for Predicate Calculus, indi-
vidual constants cannot be given their intuitive interpretation
and so should not be included in the formalisation of Predicate
Calculus, with a semantics.
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However, individual constants may appear in a formalisa-
tion of Predicate Calculus, provided they are not given their
intuitive interpretation. They may be interpreted as variables
or not given an interpretation at all. They may be included
for reasons of technical expediency. They may also be in-
cluded to show how specified individual constants would be-
have in the context of Predicate Calculus, if such individual
constants were introduced.

§ 3. Other Arguments.

(i) One may want to say that the unspecified individual con-
stants are arbitrary constants, thus allowing such an indivi-
dual constant to be assigned any member of a domain. But
then there would be no difference between the interpretations
of 'free individual variable’ and 'arbitrary individual constant'
and the introduction of a concept of arbitrary individual con-
stant would be superfluous.

Note that in Tarski's semantics the above two concepts
would be distinguished using his notion of an interpretation,
but he is artificially distinguishing two concepts which turn
out to be the same. Moreover, in § 5, it will be shown that
Tarski's notion of an interpretation can be replaced by an al-
ternative notion which would not distinguish between the two
concepts, if they were introduced.

(i) One may argue that unspecified individual constants
should be included in Predicate Calculus so as to form a
predicate logic that is common to those first-order theories
which contain individual constants. However, the individual
constants, unspecified in Predicate Calculus, would be inter-
preted in many different ways in the first-order theories in
which they are specified and could not be given any specific
interpretation in any semantics of Predicate Calculus. Hence,
as above, they would have to be left uninterpreted.

(iii) Some may argue that individual constants are essential
for substituting into free individual variables. If this type of
substitution is legitimate in the formal system, it is not essen-
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tial for any such substitution to be made to show validity or to
indicate the range of the variables. Moreover, the assignments
to free individual variables are allowed to range over a do-
main in the semantics, and the substitution into free individual
variables, that is needed, is semantic rather then syntactic.
Hence the individual constants do not have to be introduced
into the syntax for this purpose.

§ 4. Other Conclusions.

In this section, we will extend our conclusion about indivi-
dual constants in Predicate Calculus to other constants and to
first-order theories and Natural Deduction systems.

(i) The arguments that have been used for showing that un-
specified individual constants should not be included in Pre-
dicate Calculus, with a semantics, can be modified in such a
way as to apply to unspecified predicate and sentential con-
stants in Predicate Calculus.

In formalisations of Predicate Calculus, authors have used
either predicate variables (as in § 1), predicate «letters» or
predicate «symbols», but not both predicate constants and
predicate variables. The terminology, ‘'letters’ and 'symbols’,
does not make it clear whether the predicate symbols involved
are to be interpreted as predicate constants or predicate
variables. It is preferable to use a terminology which indicates
how the symbols are to be interpreted, that is, one should use
'predicate variables' or 'predicate constants’, whichever the
case may be.

In Hunter, [§], p. 141, predicate «<symbols» are assigned some
property or relation defined for objects in the domain of an
interpretation, which, on further specification, becomes a set
of ordered n-tuples of members of the domain of an interpre-
tation. As with the assignments to an individual constant for
a fixed domain, one can vary the interpretations of a predicate
«symbol» by varying the assignments to it. Since these pre-
dicate «symbols» have no fixed assignment for a given domain
and their assignments are allowed to range over all the sets of
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ordered n-tuples of members of the given domain, they are
interpreted in the manner of predicate variables rather than
predicate constants, in this semantics.

Results similar to (*) and (+) can be derived for predicate
constants and variables, if there are both predicate constants
and variables in the system. Let the predicate constants be
symbolised using f', g’, h', .... Let A(f') be provable. There is
only one way in which f' could have been introduced into the
proof of A(f') and that is that ' was introduced as part of a
wif which was substituted for a schematic letter. However, the
predicate variable f could have been introduced instead of
f' and could have remainded so for the rest of the proof, yield-
ing a proof of A(f). Hence, if - A(f') then - A(f). Conversely,
if f does not occur in A(f), if ~A(f) then ~A(f). Then we
have:

(**)  +A(f) iff ~A(f), where f does not occur in A(f).
Because Predicate Calculus is complete, (**) will yield the
validity-preserving rule:

(++) A(f) is logically valid iff A(f) is logically valid, where
f does not occur in A(f').

Hence, one set of symbols, either those for predicate con-
stants or those for predicate variables, is redundant, since the
two sets of symbols are interchangeable in theses and in lo-
gically valid wffs. It seems from Tarski's semantics that the
predicate constants should be eliminated as, in Hunter's ac-
count, predicate «symbols» are interpreted as predicate vari-
ables.

If one changes the semantics in such a way as to give the
intuitive interpretation to predicate constants, that is, to
assign to each predicate constant a unique set of ordered
n-tuples from each domain, then, by a similar argument to
that in § 2, the semantics becomes one for a first-order theory
rather than for Predicate Calculus, because the semantics
would have to contain characterising properties for the pre-
dicate constants. The case of a domainless semantics is dealt
with as in § 2. Hence, unspecified predicate constants cannot
be given their intuitive interpretation in any semantics for
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Predicate Calculus and so should not be included in Predicate
Calculus, with a semantics.

A similar case can be made for not including unspecified
sentential constants in Predicate Calculus, with a semantics.
Incidentally, this would also apply to the Sentential Calculus.

(i) The same arguments used to eliminate unspecified in-
dividual, predicate and sentential constants in Predicate Cal-
culus can be used for systems containing Predicate Calculus,
such as first-order theories and Natural Deduction systems.

The admissible rules, (*) and (**) are obtainable for the
above formal systems with the appropriate unspecified con-
stants. The Predicate Calculus semantics is a part of the se-
mantics for these systems and, using this part of the semantics,
the validity-preserving rules, (+) and (++) are obtainable,
since the remainder of the semantics is not relevant to the
obtaining of these rules.

As argued before, when trying to give the intuitive interpre-
tation to unspecified constants, one is forced into a semantics
which contains properties used to characterise these constants,
except for one type of first-order theory, for which an account
will follow. For first-order theories, the semantics thus ob-
tained would be the semantics of a first-order theory with all
the unspecified constants specified sufficiently so that unique
assignements have to be made for them in a semantics. So the
semantics thus obtained would not be a semantics for the
original first-order theory with unspecified constants but would
be a semantics for a much stronger first-order theory with
axioms characterising these constants. Such a semantics would
not capture the arbitrariness of the unspecified constants in
that it could only provide a specific interpretation for each
constant.

There is also the case of unspecified individual constants in
first-order theories which can only have one-element domains
in their semantics, in which case the unspecified individual
constants can only be assigned the one element and thus al-
ways have their intuitive interpretation. On the other hand,
free individual variables would have to be interpreted as con-
stants, since only one assignment can be made to them. But



UNSPECIFIED CONSTANTS IN THEORIES 239

if free and bound individual variables are not separately sym-
bolised, then one might as well leave the free individual
variables in the formalisation to provide this technical sim-
plifcation.

Hence, with the above exception, unspecified constants can-
not be given their intuitive interpretation in any semantics
for first-order theories or Natural Deduction systems and
therefore unspecified constants should not be included in the
formalisations of these systems, with a semantics.

For the rest of this section, we will note some points in
relation to these systems.

In Predicate Calculus with Identity, which is taken to be
a first-order theory, '='is an example of a 2-place predicate
constant and, for a given domain D in the semantics, '=' is
assigned a particular set of ordered pairs with members from
the domain D, i.e. {<d,d>/d € D}. Also, ‘=" is axiomatic-
ally characterised by the two additional axioms (i) x = x
and (if) x = y © . A o B, where B is obtained from A by sub-
stituting y for a particular argument-place of x in A, and
where y is free for x in A.

A well-known example of unspecified individual constants
being added to a first-order theory for the purpose of tech-
nical expedience is in the proof of the Skolem-Léwenheim
Theorem. The individual constants are added so as to be able
to prove that every consistent first-order theory has a con-
sistent, complete and closed extension and to use this exten-
sion to obtain a countable model. (c.f. [7], pp. 160-164.) There
is no need to interpret these individual constants and the
notion of a first-order theory can be extended so as to in-
clude them.

In giving an account of first-order languages, one normally
includes individual constants, predicate constants and func-
tion constants, but essentially these are there as a format,
showing what sorts of constants can arise in a first-order
theory. In a particular first-order theory, there is usually no
need to include individual constants, say, if there are none
axiomatically characterised and there is usually no need to
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add further individual constants if there are some specified
ones.

The intuitive interpretation of a constant in the semantics
of a first-order theory requires that the constant have a uni-
que assignment using a given domain of a normal model. In
non-normal models one would have to take into account the
fact that several members, or even infinitely many members,
of a domain may be identical with each other.

Tarski, in [10], and Tarski and Vaught, in [11], do not include
any unspecified constants in their formalisations, all of which
were first-order theories and not Predicate Calculus itself. Un-
specified constants have been added by various authors, who
have, as well, adapted his semantics to Predicate Calculus. So
Tarski is not to blame for these adaptations to his original se-
mantics.

In some Natural Deduction systems, individual constants are
introduced by the Existential Instantiation rule. However,
these constants are eliminated before a conclusion is reached
and hence they do not appear in any thesis or deduction. There-
fore, these constants do not have to be interpreted in the se-
mantics of any of these Natural Deduction systems and they
only form part of a method of proof. However, in Routley's
Natural Deduction system, in [9], an expression, 'exfx’, read as
‘any x which is f', is used instead of an individual constant
and this expression can appear in theses and deductions. In
this case, 'exfx’ would require an interpretation in the se-
mantics, similar to that of a restricted variable.

§ 5. The Semantics of Predicate Calculus.

As a result of eliminating constants in Predicate Calculus,
one can indicate improvements to Tarski's semantics. We will
apply the improvements to Hunter's account in [5], pp. 141-149.

The main object of this section is to avoid the use of se-
quences in the semantics of Predicate Calculus by showing,
without the use of sequences, that both free and bound indivi-



UNSPECIFIED CONSTANTS IN THEORIES 241

dual variables can be interpreted in a simpler and more intui-
tive way.

As shown in § 2, an «individual constant» is interpreted as
a free individual variable by assigning to it a member of the
domain of an interpretation, and by allowing such assignments
to range over all members of the domain, by varying the inter-
pretations so as to keep the domain fixed. It is simpler to in-
terpret free individual variables in this manner rather than by
using sequences.

In the Tarski semantics, the use of sequences in interpreting
a bound variable, say the k-th variable, is that the variable can
be assigned a member of the domain using the k-th position
in a sequence and that the assignment can be made to range
over the domain by varying the member of the domain in
the k-th position of the sequences. Such variation is required in
determining whether a sequence satisfies a wiff containing
such a bound variable. Such a use of sequences can be re-
placed by using all the assignments in the domain for the k-th
variable and by using truth-conditions for the particular quan-
tifier involved.

In this semantics, one would need to replace the notion of «a
sequence satisfying a wif for a given interpretation» by that
of a wif being true for an interpretation with a given domain.
Such an interpretation would be a set of assignments for all
the (free) variables in a wiff and an interpretation must be de-
fined for a particular domain to allow the assignments to vary
over their appropriate ranges. Once the assignments to all the
(free) variables in a wif are made, it can be determined whe-
ther the wif is true or false for this interpretation. Using the
notion of a wif being true for an interpretation with a given
domain, one can define satisfiability and validity of a wif for
a domain D and hence define satisfiability and logical validity
of a wif. Note that this notion of a wif being true for an inter-
pretation differs from Tarski's notion on p. 148 of [5].

Hence, the above method will enable one to eliminate se-
quences from the semantics. The sequences should be elimin-
ated because, not only do they form a redundant concept, but
they do allow different interpretations to be given for «indi-
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vidual constants» and free individual variables, as well as
different methods of interpretation to be applied to the three
types of (free) variables. It is better for the free individual,
predicate and sentential variables to be interpreted by making
assignments to the variables and by allowing these assignments
to vary over the appropriate ranges. This is in keeping with
the intuitive concept of a free variable, which would require a
standard method of interpretation for the three types of free
variables. It is by singling out the free individual variables
for a different method of interpretation using sequences that
Tarski arrives at his notion of a wff being true for an inter-
pretation, which differs from the one we have introduced by
applying the standard method of interpretation to all the free
variables.

The semantics that one arrives at by making the above im-
provements on Tarski's semantics is similar to the semantics
given in Church, [1], pp. 174-175 and to the semantics given in
Leblanc, [6], p. 3. ()
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