ON PROING LINEARITY

Robert P. McARTHUR

1. In his review of my paper «The Makinson Completeness
of Tense Logic» [LOGIQUE ET ANALYSE, 17 (Sept - Dec, 1974),
pp. 453-460] () David Makinson notes that the proof offered
for Lemma 4(b) [ p. 458] is incorrect. The source of the mistake
reveals something of the character of linear tense logics which
has not been studied in the literature. In this paper I will re-
port the error which Makinson discovered and provide a new
proof for the Lemma. For those unfamiliar with linear tense
logic or my earlier paper, a summary is provided in the next
section.

2. A tense logic adds two sentential operators to the primi-
tive signs for classical logic. These are 'G’ (read: «It will al-
ways be the case that») and 'H' (read: «It has always been
the case that»). Hence, in addition to the usual formation
rules, a tense logic requires that 'GA' and 'HA' are well-
formed formulas (wifs) if 'A’" is a wff. For the purposes of this
paper, the classical signs ">', '~', '(’, and ')’ (in their usual
roles) will be deployed and a denumerable run of sentence
letters will be presumed available. Henceforth, 'A’, 'B’, and
'C'" will be used only to designate wifs, and ‘~G~"' and
'~H~" will be abbreviated by 'F' (read: «It will be the case
that») and 'P' (read: «It has been the case that»), respectively.

The axiom schemata for the linear tense logic CL are as
follows: (%)

{!) Makinson's review is forthcoming in ZENTRALBLATT FUR MATHE-
MATIK. It was through correspondance with Dr. Makinson that I learned
of the error he discovered.

(®) Although known widely in the literature as CL this system is called
TL? in the original paper. A few other alterations have been incorporated
here to bring the notation and terminology in line with those used in my
TENSE LOGIC (D. Reidel Publishing Co., 1976).
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Al. A, wehere A is a tautology

A2, G(A o B) o (GA o GB)

A3. PGAD A

A4, GA o GGA

AS5. (FA & FB) o (F(A & B) V (F(A & FB) V F(B & FA)))

A6. GA, where A is an axiom

A7F. MI(A), where A is an axiom and MI(A) is the result of
simultaneously replacing each occurrence of G in A
by H and each occurrence of H by G.

Modus Ponens is the only rule of inference for CL.

The derivability of (wff) A from set (of wffs) S — S - A,
for short — the provability of A — - A, for short — and the
consistency of S are all understood for CL in the usual manner.

By a truth-value assignment ¢ for CL is meant any function
from the sentence letters of CL to {1, 0} (the truth-values). By
a familiy of truth-value assignments is meant any indexing
function Q from the positive integers to the truth-value assign-
ments for CL. It is helpful intuitively to think of Q as a set
of truth-value assignements paired with indices, i.e., as hav-
ing members of the sort <¢,i>, where ¢ is a truth-value
assignement and i its (integer) index. Notice that whereas
only one truth-value assignment is given each index, several
indices may be given the same truth-value assignment., Think-
ing of indexed truth-value assignments as «world-states»,
this means the «world» can be the same on several occa-
sions. (%)

Let R be any dyadic relation on the members of Q which
has the following properties:

P1. (Vx) (Vy) (V2) (R(x, Y) & R(y,2)) D R(y, 2))

P2. (Vx) (Vy) (V2) (R(x, y) & R(x,2)) 2 ([y = 2) V R(y,2)
V R(z,y))))

P3. (Vx) (Vy) (V2) (R(y, %) & R(z, %)) D ((y = 2) V (R(y,2)
VR(z )

() For details on the interpretation of the semantics for CL consult
TENSE LOGIC, Ch. 1.
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Truth and falsity are calculated for the wffs of CL by means
of triples of the sort <Q, <g, i, R>, which are called his-
torical moments. Pairs of the sort <Q, R> are called histories.
It is useful to think of R as the earlier/later-than relation on
the «world-states» in Q. WIf A is said to be valid within the
history <Q, R> iff A is true at every historical moment <,
<@, i>, R> such that <@, i> is a member of Q. A is said
to be CL-valid iff A is valid within every history of CL. Satis-
faction and entailment for CL are defined as usual.

The truth conditions for the wifs of CL are as follows:

(1) Where A is a sentence letter, A is true at <Q, <q, i>,
R> iff p(A) = 1;

(2) Where A is a negation ~B, A is true at <Q, <g, i>,
R> iff B is not true;

(3) Where A is a conditional B o C, A is true at <Q, <q,
i>, R> iff either B is not true or C is;

(4) Where A is of the sort GB, A is true at <Q, <g, i>,
R> iff B is true at every <Q, <p, j>, R> such that R(<g,
i>, <p, j>); and

(5) Where A is of the sort HB, A is true at <Q, <gq, i>,
R> iff B is true at every <Q, <p, j>, R> such that R(<p,
i> <g i>).

Showing that all of A1 — A7 are CL-valid is a straightfor-
ward matter and will not be dealt with here. As for complete-
ness (demonstrating that any set of wffs which is CL-consist-
ent is also CL-satisfiable), the earlier paper used an adapta-
tion of Henkin's methods due to David Makinson to secure
this result. As further background for the next section, the
principal features of the proof will be reviewed. ()

(*) See the original paper for the full proof. As pointed out there, the
basic structure of this completeness proof for CL (and other tense logics)
was originated by Makinson. See his «On Some Completeness Theorems
in Modal Logic» ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND
GRUNDLAGEN DER MATHEMATIK, Band 12 (1966), pp. 379-384.
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Starting with a consistent set S of wffs of CL, it is expanded
into a maximally consistent set S*. For each wiff of the sort
FA in S*, a set is formed consisting of A and all wffs B such
that GB is a member of S*, The maximally consistent exten-
sion of such a set is called a future attendant of S*. For each
wif of the sort PA in S*, a set is formed consisting of A and
all wifs B such that HB is a member of S*. The maximally
consistent extension of such a set is called a past attendant
of 5=,

Next formed is s, the least set containing S*, its future
and past attendants, their past and future attendants, their
future and past attendants, etc. Owing to the (at most) denu-
merability of Qg, its members can be ordered by the inte-
gers. S™ shall be dubbed ST, and the other members of

Qg shall be referred to as S‘;", S‘;", etc.

A dyadic relation Ry is defined on the members of Qg as
follows:
Rs (ST, S°j°) iff, for any wiff GA in ST A is a member of S‘i"’.
For each S in Qg there is a corresponding indexed truth-

value assignment which is characterized as below:
<@, i >is the corresponding truth-value assignment for S:"’

iff for every sentence letter A in ST e(A) = 1

Note that the index accorded ¢ in this case is the integer
assigned to S‘;° in the ordering of Q mentioned above.

Let Q be the family of indexed truth-value assignements
corresponding to the members of Q5, and let R be defined as
R(<g, i>, <p, j>) iff Rg(ST S‘;"), where <{g, i> corresponds

to 57° and <p, j> corresponds to S;’°.
By an induction on the complexity of a wif A, it is easily
shown that A is a member of S‘:“ iff A is true at <Q, <gq,

1>, R>, where <g, 1> is the corresponding (indexed) truth-
value assignment for S‘j"’.

If it can be shown that <Qg Rg>, and hence <Q, R>, is
appropriately constructed for CL, it follows that S, the initial
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set, is satisfiable in CL, thus guarenteeing the completeness
of CL. But this is the controverted step.

3. The error in the original version of this completeness
proof came at the point where the appropriateness of<<Qg,
Rs> was argued [Lemma 4(b)]. What is required here is proof
that the relation Rg has all of the essential properties, viz. P1 -
P3. Proof that Rg has Pl is routine, and causes no difficulty.
But proof that Rg has properties P2 and P3 was, as Makinson
has shown, significantly flawed.

The original argument [p. 458] took the following lines:

Suppose three sets in g, ST', S‘;", S‘:. are such that both
RS(S;'“. S°j°) and RS(S;”, S‘:). Further suppose that, for some A,
FA & FB is a member of S;”. Then depending upon which of
F(A & B), F(A & FB), or F(B & FA) is also a member of Si°° —
and one must surely be — either S;“’ is just the same set as
S“:, or Rs(ST- S;’:‘), or RS[S‘:, S‘j’°). Hence, Rg has property P2,

Makinson's counterexample supposed that A is a member of
S‘}° and that B is a member of a fourth set S::’ such that

RS(S;”, S‘:]. Therefore, because of the transitivity of Rg (i.e.
property P1), F(A & FB) can be a member of S‘:" without the
relation holding between S"j“’ and S. Given the denumerabi-

lity of Qg, the possibility envisioned by Makinson cannot be
ruled out.

For a proof of the linearity of Rg, which is what the proper-
ties P2 and P3 confer, one must first show that the defining
characteristic of Rg holds for ‘H' as well as for '‘G'. That is, it
is necessary to establish the following thesis on Rg (for any
two members S;“’ and S‘j"’ of £g):

Rs(S7, S?“] iff, for every wif HA in S'Jf" A is a member of S
As proof, first suppose that Rg(S;”, S‘j’°) and that HA belongs
to STr for any wff A. Then, for a reductio, further suppose A
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does not belong to S, Given the maximal consistency of
S‘;", it follows that ~A does belong to ST. By A3 and A7,

FHA S A is an axiom of CL, and is, therefore, a member of
S‘;". So, too, is its contrapositive by Al, i.e., ~A o ~FHA,

Hence, again by the maximal consistency of S‘;“, ~FHA
belongs to S‘;’. Since ~F~B = GB, G~HA thus belongs to
ST. But, by the definition of Ry and the assumption that
Rs(S7, S‘;°), ~HA belongs to S‘;”, which contradicts the maxim-
al consistency of S;‘°. On the other hand, suppose that, for
every wif HA in S°;’, A belongs to S}°. For a reductio, further
assume that it is not the case that Rs(S7™, S:_”). Then there is
a a wif GB in S‘;“ such that B is not a member of S;"’, and,

hence, such that ~B is a member. By the contrapositive of
A3 — ~B o ~PGB — it follows that ~PGB is a member of
S‘;". Hence H~GB is a member of S*. So, from the assumption,

~GB is a member of S;"' which is a contradiction.

Using this additional fact about Rg, we can proceed to the
main result — that Rg has P2. The proof is in 7 steps.

(1) Suppose, for three members S‘l’"r S‘j’°, and S;" of Qg, that
both RS[ST’, S;‘°) and RS(S‘;". S7). Further suppose, for a reduc-
tio, that all of the following hold:

a. S‘j"' e S;"

b. It is not the case that Rg(S>, S;")

c. It is not the case that RS(S;(”, S‘j"‘)

(2) From a, there is sure to be a wff C which is a member
of S}” and is not a member of S;’:. Hence, ~C is a member of

ST. From b., there is sure to be a wif GA which belongs to
S‘j"' such that A is not a member of S;" (this follows from the

definition of Rg). Hence, ~A is a member of S:’. From c., and



ON PROING LINEARITY 411

the proof given above, there is sure to be a wif HB which
belongs to S;"’ such that B does not belong to S‘:. Hence, ~B

is a member of Sy

(3) From step (2), ~A & (~B & ~C) is a member of S‘l’:,
and GA & (HB & C) is a member of Si°°. Given that ~ A'DHFA'
(by A3 and Al), HF(~A & (~B & ~C)) is a member of S
and HF(GA & (HB & C)) is a member of S:_"‘. Hence, from the

assumptions in step (1) on Rg, F(~A & (~B & ~C)) and F(GA
(HB & C)) are both members of S;". Hence, by virtue of AS5,

one of the following must also be a member of S‘j"’:
d. F((~A & (~B& ~C)) & (GA & (HB & Q)))

e. F((~A&(~B& ~C)) & F(GA & (HB & C)))
f. F(GA& (HB&C)) &F(~A & (~B& ~C)))

(4) Suppose d. is a member of S‘j”. Then there is a member
S* of Qg such that (~A & (~B & ~C)) & (GA & (HB&C)) is a
member of 5. But, given that C and ~C are conjuncts of this
wif, this contradicts the maximal consistency of S:". Hence,
d. cannot be a member of S}”.

(5) Suppose e. is a member of 5. Then there is a member
5% of Qg such that (~A & (~B & ~C)) & F(GA & (HB & Q))
is a member of SZ". But given that - FHA' © A’ (from A3 and

A7) and that + F(A' & B) o (FA' & FB') (from Al, A2, and
A6), it would follow that B and ~B both are members of S‘:,

which contradicts its maximal consistency. Hence, e. cannot
be a member of S;“’.

(6) Suppose f. is a member of S:". Then there is a member
S‘: of Qg such that (GA & (HB & C)) & F(~A & (~B & ~Q))
iIs a member of S*. But given that - F(A' & B) o (FA" &

FB'), it would follow that F~A (= ~GA) and GA both are
members of S:° which contradicts its maximal consistency.
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Hence, f. cannot be a member of S";’.

(7) Supposing that any of d. — f. belongs to S;” leads to

contradiction, hence at least one of a. — c¢. must be false.
Hence, Ry has property P2.

By a similar argument, but using (PA & PB) o (P(A & B) V
(P(A & PB) V P(B & PA))) (which follows from A5 and A7) in
place of A5, it can be established that Rg also has P3. Hence,
Rg is the appropriate relation for CL.
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