A SEQUENCE OF NORMAL MODAL SYSTEMS WITH NON-CONTINGENCY BASES ## Chris Mortensen In [1], [2], [3], and [4], Montgomery and Routley investigate some properties of a sequence of systems T_{\triangle}^{n} , $n \ge 0$, defined by: $T_{\triangle}^n = T$ (specified by some suitable non-contingency basis, see [1] pp 318-319), together with the axiom $\triangle^n p$, where \triangle^n denotes n iterations of the non-contingency operator \triangle^n (\triangle^n denotes 'p'). We investigate some properties of a simi- lar sequence of systems S_{Δ}^n , $n \ge 0$, defined by: $S_{\Delta} = T$ (specified by some non-contingency basis) together with the axiom $\Delta^n p = \Delta^{n+1} p$. Montgomery and Routley obtain the following results (where $'A \rightarrow B'$ means 'The set of theorems of B is a subset (not necessarily proper) of the set of theorems of A') 1) $$\sim (T_{\triangle}^n \rightarrow T_{\triangle}^m)$$ for $m < n$ 2) $$T_{\wedge} \rightarrow T_{\wedge}^{m}$$ for $m \ge n$ 3) $$\sim (T_{\wedge}^{n} \rightarrow S_{\wedge}^{m})$$ for $m < n$ 4) $$T_{\Delta}^{n} \rightarrow S_{\Delta}^{m}$$ for $m \ge n$ We note in passing that 3) and 4) provide relative consistency results for the S^n_{\triangle} , $n \ge 1$. S_{\triangle} is of course the inconsistent system. An S-model for S^1_{Δ} is an ordered triple < K, R, v > where $K = \{H_1, ..., H_k\}$, k arbitrary but > 1 $R\subseteq K^2$ such that $H_i\:R\:H_j$ iff $i\leqslant j$ $v\in\{T,F\}$ WxK (where W is the set of wffs of S_{Δ}^{1}) is the usual valuation function, satisfying in particular $v(\Delta \alpha, H_i) = T \text{ iff } (j, l) (H_iRH_j \& H_iRH_l . \supset v(\alpha, H_j) = v(\alpha, H_l))$ for any $\alpha \in W$, any H_i , H_i , H_i $\in K$. Theorem 1 Any theorem of S^1_{Δ} is true in all S-models. Proof. Any S-model $\langle K, R, v \rangle$ is normal, and R is reflexive, so any S-model is a model for T. It remains to be shown that $\Delta p \equiv \Delta \Delta p$ is true in all S-models. Suppose that $v(\Delta p, H_i) = T$. Then (j, l) $(H_iRH_i \& H_iRH_l . \supset v(p, H_i) = v(p, H_l))$. But H_iRH_i , so (j) $(H_iRH_j \supset v(p, H_i) = v(p, H_j)$. So for j > i, $v(\Delta p, H_i) = T$. So for j > i, $v(\Delta p, H_i) = T$. Thus $v(\Delta p \equiv \Delta \Delta p, H_i) = T$. In particular, since H_kRH_k , and H_kRH_l for $l \neq k$, $v(\Delta p, H_k) = T$, and so for $n \geqslant l$, $v(\Delta^n, H_k) = T$ by an induction. Suppose on the other hand that $v(\Delta p, H_i) = F$. Then for some H_i , $H_i \in K$; H_iRH_i , H_iRH_i , $v(p, H_i) = F$ and $v(p, H_i) = T$. Let $h = \min \{j, l\}$. Then since $h \leq j$, l, $v(\Delta p, H_h) = F$. But $v(\Delta p, H_k) = T$, and H_iRH_k . So $v(\Delta \Delta p, H_i) = F$. Thus $v(\Delta p \equiv \Delta \Delta p, H_i) = T$. Theorem 2 $S_{\Delta}^{n} \rightarrow S_{\Delta}^{m}$, for $n \leq m$. Proof. For $n \neq m$, the result follows by alternate applications of $\vdash \alpha \rightarrow \vdash \triangle \alpha$ and $\triangle (p \equiv q) \supset \triangle p \equiv \triangle q$, both of which hold for T. See [1] pp 318-9. Theorem 3 Any theorem of S^n_{\triangle} is true in all S-models. Proof. Follows from theorems 1 and 2. Theorem 4. $\triangle^n p = \triangle^m p$; m, $n \ge 1$ is true in all S-models. Proof. Follows by an induction from theorem 3. Theorem 5. $\triangle^n p$, $n \ge 1$, are false in some S-model. Proof. An S-model which falsifies $\triangle^n p$ is as follows $K = \{H_1, H_2\}$, $R = \{\langle H_1, H_1 \rangle, \langle H_1, H_2 \rangle, \langle H_2, H_2 \rangle\}$, $v(p, H_1) = F$, $v(p, H_2) = T$. Clearly $v(\Delta p, H_1) = F$ and $v(\Delta p, H_2) = T$. Whence by theorem $4, v(\Delta^n p, H_1) = F$, for any $n \ge 1$. Theorem 6. $\sim (S_{\Delta}^n \to T_{\Delta}^m)$ Proof. By theorems 3 and 5, there is a model for S^n_{Δ} which falsifies $\Delta^m p$. Theorem 7. $\sim (S_{\Delta}^n \to S_{\Delta}^m)$, for n > m. Proof. Follows from Montgomery and Routley's (3) and (4) above. If $S_{\Delta}^{n} \to S_{\Delta}^{m}$ for some n, m, n > m, then since $T_{\Delta}^{n} \to S_{\Delta}$, we have that $T_{\Delta}^{n} \to S_{\Delta}^{m}$ for some n, m, n > m, contradicting (3). The above theorems serve to separate the S^n_{Δ} from one another and from the T^m_{Δ} . The relationship between the two sequences can be diagrammed as follows: $$T_{\triangle}^{0} \to T_{\triangle}^{1} \to T_{\triangle}^{2} \to \dots$$ $$\updownarrow \qquad \qquad \downarrow \qquad \downarrow$$ $$S_{\triangle}^{0} \to S_{\triangle}^{1} \to S_{\triangle}^{2} \to \dots$$ Theorem 8. S_{Δ}^{n} , for $n \ge 1$, has 2(n + 1) modalities. Proof. Theorem 2 above shows that S^n_{\triangle} has at most 2(n+1) We need to show that $\triangle^i p \equiv {}^{\sim} \triangle^j p$, for i, $j \leq n$, are not provable in S^n_{\triangle} . Suppose the contrary and let $i = \min \{i, j\}$. Then since $S^i_{\triangle} \to S^n_{\triangle}$, $\triangle^i p \equiv {}^{\sim} \triangle^j p$ is provable in S^i_{\triangle} . But $\triangle^i p \equiv \triangle^j p$ is provable in S^i_{\triangle} , making S^i_{\triangle} , and T^i_{\triangle} , inconsistent. University of Adelaide. Chris Mortensen ## BIBLIOGRAPHY - [1] H. Montgomery and R. Routley «Contingency and Non-Contingency Bases for Normal Modal Logics». Logique et Analyse Vol. 9 (1966) pp 318-328. - [2] H. Montgomery and R. Routley «Non-Contingency Axioms for S4 and S5» Logique et Analyse Vol. 11 (1968) pp 422-424. - [3] H. Montgomery and R. Routley «Modal Reduction Axioms in Extensions of S1» Logique et Analyse Vol. 11 (1968) pp 492-501. - [4] H. Montgomery and R. Routley "Modalities in a Sequence of Normal Non-Contingency Modal Systems" Logique et Analyse Vol. 12 (1969) pp 225-227.