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ABSTRACT

A class of languages is defined, the semantics for which
includes an arbitrary number M of possible «truth-values» and
an arbitrary «critical» value S. In addition to the standard
connectives and quantifiers, the syntax includes a set of J
operators. The J operators are monadic sentential operators;
Jk(E) intuitively means «E takes value k». A resolution prin-
ciple for such languages is developed, and it is proved to be
both sound and complete. Some applications are also dis-
cussed.
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0. Introduction

Systems of logic with non-standard semantics sometimes
appear to be more useful, more intuitively applicable to real-
life situations and the analysis of natural languages than do
logics with the standard two-valued semantics. In recent years,
a particular type of many-valued logic, called «fuzzy logic»,
has received attention in the computing science literature. (See
[2] and the references contained there.)

Fuzzy logic uses conjunction, disjunction, negation, and uni-
versal and existential quantification (& V, —, (x), and (3x),
respectively). We will use E, E;, E' etc. as meta-expressions
and x;, Xy, ... as variables. The standard formation rules are
used to build expressions of the language. For fuzzy logic, an
interpretation over a domain D assigns real values over the
closed interval [0, 1] to each atomic ground expression in the
language, whereas for the normal two-valued case, the inter-
pretation is restricted to the values 0 and 1. Letting T(E) de-
signate the truth value of expression E, the interpretation for
more complex fuzzy logic expressions is given by the follow-
ing:

(i) T(—E = 1—T(E)

(i) T(E; & E;) = min{T(E), T(E,)}

(ili) T(E; V Es) = max{T(E), T(Es)}

(iv) T((x) E (xi)) = inf{T(E(x;))): x; € D}
(v) T((3x) E (x)) = sup{T(E(x): x; € D}

The value .5 is usually taken to be a «critical value» for
fuzzy logic. An interpretation I is said to satisfy an expres-
sion E just in case T(E) = .5 in I; I is said to falsify an expres-
sion E just in case T(E) < .5 in I. An expression E is said to
be unsatisfiable just in case every interpretation falsifies E.
Note that «unsatisfiable» in this sense is not equivalent to
«not satisfiable». For example, if E is an atomic expression,
then are interpretations in which E & — E takes the value .5;
hence the expression is satisfiable. However, for no interpre-
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tation does the expression take a value greater than .5, and
hence it is unsatisfiable.

Using these notions, it is possible to obtain a complete re-
solution procedure for fuzzy logic. However, such a procedure
is of very restricted practical interest; it has been shown by
Lee ([2], p. 115) that «A set S of clauses is unsatisfiable in fuzzy
logic if and only if it is unsatisfiable in two-valued logic.» In
order to make automatic theorem proving for fuzzy logic of
practical interest we need a method of incorporating infor-
mation about the truth values of expressions into the lang-
uage. We now turn to a limited solution to that problem.

Fuzzy logic allows expressions to take on any one of an in-
finite number of possible truth values. We will restrict our
discussion here to the treatment of systems with a finite num-
ber of truth values. The values are assumed to be integers
ranging from 1 through M. (Alternatively, these values may
be assumed to be the subscripts of some non-integer values
vy, ..., Vi.) Fuzzy logic assumes a critical value of .5. For the
logics discussed here, we will assume an arbitrary critical
value S such that 1 <<S < M. The values from S through M
are the intuitively «true» values-we will call them the desig-
nated values. The values from 1 to (but not including) S are the
intuitively «false» values-we will call them the undesignated
values.

In addition to negation, conjunction, disjunction, universal
and existential quantification, we will introduce one-place
sentence operators J;, 1 < i < M. Intuitively, J;(E) means «ex-
pression E takes value i». The formation rules are the same as
for the standard case with the addition of: «If E is any well
formed formula, then so is J;(E), for 1 <i < M.» Thus in addi-
tion to the usual expressions, we will have expressions like
the following:

Ji((x) (3x9)Pxi%e), and (3 x,)(Qx; & Jp(Gxy)).

Logics similar to the sort just described are treated in some
detail by Rosser and Turquette in [3]. The major difference is
that for Rosser and Turquette the «high» values are undesig-
nated (false) while the «low» values are designated (true).
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There are other differences which we will not mention, as our
treatment below is self-contained.

In the following material, we will take a purely model theor-
etic approach. Sometimes reference will be made to «the two-
valued case». The reader unfamiliar with this material is
directed to the treatment by Kreisel and Krivine in [1]; our
development parallels theirs to a considerable degree.

1. Sentential calculus

We will first treat the sentential calculus and later expand
our treatment to the functional calculus of first order. We spe-
cify the syntax of our language as follows:

1. set of sentence parameters: A = {A;, Ag, ...}
2. monadic sentence operators:

a. negation: —

b. J operators: J;, for integer i, 1 <i <M
3. dyadic sentence operators:

a. disjunction: V

b. conjunction: &

We will assume the usual recursive definition of «formula».

The semantics for the language may be given by an ela-
boration of the notions «interpretation» and «valuation». An
interpretation I is any function with domain A and range a
subset (non-empty) of the integers {1,..., M}. Thus an inte-
pretation assigns a value to each sentence parameter. Values
are assigned to more complex expressions by the valuation
function V, which is defined for all T as follows:

VAL,LD = [(A)

V(0 EI = M+1—V(E]

V(E; V Ey ) = max{V(E, ), V(E, )}
V(E; &Eg I) = min{V(E, I), V(E )}
V(IJk(E),I) = M, if V(E,I) = k

1, otherwise

For some chosen value S, 1 < S < M, we say that the values
greater than or equal to S but less than or equal to M are
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«designated»; the values greater than or equal to 1 but strictly
less than S are «undesignated». If an expression E takes a
designated value under interpretation I we say that I satis-
fies E; if E takes an undesignated value under I we say that I
falsifies E. An expression is satisfiable (falsifiable) just in case
there is some interpretation which satisfies (falsifies) the ex-
pression. We say that I satisfies a set of expressions if it
satisfies every member of the set. A set of expressions is satis-
fiable just in case there is some interpretation which satisfies
the set.

From the definition of V it is easy to verify the standard
associative and commutative laws for V and &, so parentheses
will be omitted where no confusion will arise. We will make
use of the following special notation:

n

|§1 Ei =a E; V..V En

-]

Ei = at E1 &...&E,
1
8—1
~E =4 1§1 Ji(E)

,...
Il

It is easy to verify that E is designated (undesignated) if and
only if ~ E is undesignated (designated). However, it should
be noted that ~ ~ E is not in general equivalent in value to E.

We now proceed to state and prove various theorems about
the sentential calculus which will be of use later in our de-
velopment.

Theorem 1: Let S be a set of formulas such that every finite
subset of S is satisfiable. Then S is satisfiable.

Proof: Let A;, ..., A,, ... be an enumeration of sentence para-
meters of the language. Suppose we have found a map f from
the set {Ay, ..., A} into the integers 1 through M such that
every finite subset of S has an interpretation satisfying it in
which Ay, ..., Ay take the values f(Ay), ..., f(Ay). We propose
to extend the function f to Ay ,;. We claim there must be some
integer i between 1 and M such that by setting f(Ay.;) = i,
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all finite subsets of S have an interpretation satisfying the
subset in which Ay, ..., Ax take the value f(A,), ..., f(Ay) and
Ay .1 takes the value i; for suppose not. Then for each i there
is a finite subset U; of S such that there is no interpretation
satisfying U; in which A, ..., Ax.; take the values f(A,),...,
f(Ay),i. Consider the set U = U; U ... U Uy. Clearly U is a
finite subset of S, and by construction there is no interpreta-
tion satisfying U in which A, ..., Ay take the values assigned
by f. But this contradicts our assumption, and hence there must
be an i to extend f to Ay,;. By employing some choice proce-
dure at each step (e.g., take the least value i such that the
required interpretations exist), we may define by recursion
on n an interpretation I satisfying every finite subset of S
in which A, ..., A, take the values assigned by f. Now, it is
easy to see that I satisfies S as follows: Consider an arbitrary
formula E in S; to see that I satisfies E, we simply take n large
enough so that all sentence letters in E occur in the list A4, ...,
A, QED.

Theorem 2: If every interpretation satisfies one of the for-
mulas of a set S of formulas, then there are formulas E;, ..., E;
in S such that E, V ... V E, is satisfied by every interpreta-
tion.

Prooi: Suppose the hypothesis of the theorem is true but that
such a set does not exist. Then for each finite subset {E,, ...,
E,} of S there is some interpretation which falsifies every
member of it and therefore satisfies the set { ~ Ej, ..., ~ E,}.
Let S’ be the set { ~ E:E € S}. Then every finite subset of S'
has an interpretation which satisfies it, and so by Theorem 1,
there is an interpretation which satisfies S'. But this contra-
dicts the assumption that every interpretation satisfies some
formula of S. Q.E.D.

Theorem 3: If every interpretation falsifies one of the for-
mulas of a set S of formulas, then there are formulas E,, ..., E,
in S such that E; & ... & E, is falsified by every interpretation.

Proof: Consider the set S' consisting of formulas ~ E for
E in S. Every interpretation satisfies one of the formulas of S'.
Thus by Theorem 2, there are formulas ~ E, ..., ~ E, such that
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~E V..V ~E, is satisfied by every interpretation. Thus
every interpretation falsifies at least one of E,, ..., E,. Hence
every interpretation falsifies E; & ... & E,. Q.E.D.

In the following material we will make some use of the empty
string, which will be designated by e. We will stipulate that
for any E, EVe = e VE = E. We assume that whenever
a contraction of this type is possible, it is done. In terms of
our semantics, the empty string is always assigned the
value 1.

We will also make use of various notions analogous to the
two-valued conjunctive normal form (CNF). Consider an ex-
pression in the following form:

n m,
II I E;
i=1 j=1

m,
Each of the expressions I E;; is called a «clause». The for-
j=1
mulas E; may be of variojus types:
(i) A
(i) — A,
(iii) Ji(Ap)
(iV] Jkl { Jkt (Ap} ...]

(v) e

If the E;; are all of types (i)-(iv), the formula will be said to
be 1-CNF. If the E; are all of types (i)-(iii) and (v), the formula
will be said to be 2-CNF. If the E; are all of types (iii) and (v),
the formula will be said to be J-CNF.

Theorem 4: To any formula E, there corresponds a 1-CNF
formula E' such that for all I, V(E, I) = V(E,I).

Proof: The proof is similar to the standard proof for two-
valued CNF. It is easy to verify the following equivalences:

(a) E, V E. eq. Es AV El, and E; & Eg eq. Eg &E,
(b) — — E eq. E
(€© — (B, VE) eq. — E; & — Ey
(d) - (El &Eg) eq. — E1 V | Eg
(& — (B eq. 3 L(E)
=k
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() EiV (E2&Es) eq. (E; V E) & (E; V Ey)
(@) Ju(— E) eq. Jy.1-x(E)

(h) Jx(E: & Eg) eq. [Jk(E1) & E J(Ea)] V [Jk(Es) & 2 J(El)]

k—1

k
(i) Jk(E; V Ep) eq. [Ju(Ey) & _EIJi(EEJ] V [x(Es) &E1 Ji(Ey)]

The proof is then by induction on the complexity of E. Q.E.D.

Theorem 5: To any 1-CNF formula E there corresponds a
2-CNF formula E' such that for all I, V(E,I) = V(E, ).

Proof: We must show how to remove expressions of the
form ‘Ik1("' Jkt (Ap) ...) from the given expression. We obtain

the following equivalence by nothing that the J operators may
take only the values 1 and M:

I(J:(E) eq. J.(E), if k = M
eq. = J(E), if k = 1
i=r

eq. e, otherwise

By iterated applications of this equivalence, each occurrence
of the type ‘Tk1 (os. Jkt (Ap) ...) may be replaced by a disjunction

of formulas of the types J,(A;) and e. QE.D.

Theorem 6: To any 2-CNF formula E there corresponds a
J-CNF formula E' such that for any interpretation I, E is satis-
fied by I if and only if E' is satisfied by L

Proof: We form E' by replacing each E;; in E of the form A,

M M+1—8
by ES Ji(Ap), and each Ej; in E of the form — A, by 2 Ji(A;).
i= i=1

Suppose we have an interpretation I that satisfies E. Then
since semantically speaking conjunction is a minimizing func-
tion, I must satisfy every clause of E, and hence we need con-
sider only a single arbitrary clause. Further, since semantic-
ally speaking disjunction is a maximizing function, we need
consider only the case in which the value of the clause is the
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value of one of the transformed E;;. In short, it is sufficient to

show that the value assigned to E;; is not less than S if and

only if the value assigned to its transform is not less than S.

Now, suppose A, takes the value k, where k > S. Then Ji(A,)
M

takes value M. Since Ji(A;) occurs in the transform = J;(A,),
==
and since disjunction is a maximizing function, the transform

takes value M. On the other hand, suppose the transform
M

Z Ji(A;) takes a value not less than S. Then at least one of
1=8

the Ji(A;) must take a value not less than S, where k > S.
But this means that Ji(A;) takes value M, and hence A, takes
value k, which is not less than S. For the other transform, sup-
pose — A, takes a value not less than S, say k. Then A,
takes the value M + 1 —k. Hence Jy.1_x(A,) takes value M.

M+1—8
Since M+1—S=>M+1—k=>1, 2 Jj(A,) takes value M.
=1

On the other hand, suppose the transform is satisfied. Then
for some k between 1 and M + 1 —S8, Ji(A,) is satisfied. Hen-
ce A, takes value k, which means — A, takes value M + 1 —
k. Bt M=M+1—k >S. QED.

Theorem 7: To any formula E there corresponds a J-CNF
formula E' such that for any I, E is satisfied by I if and only
if E' is satisfied by I

Proof: The proof is immediate from Theorems 4-7. Q.E.D.

We now go on to expand our treatment to cover the first-
order predicate calculus with functions but without identity.
The intuitive semantics behind the connectives so far introduc-

ed will remain the same, although some of the technical de-
tails will change.

2. First-order functional calculus

We will use the same sentential connectives introduced
above, but this should not give rise to confusion. Additional
symbols are also introduced. The syntax of the language may
be specified as follows:
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1. sets of n-ary relations, forn = 1,2, ...:
R, = {P“ll, ...,P;‘, o}

2, sets of n-ary functions, forn = 0,1,...:
F, = {f‘ll, ...,f;‘, .

3. set of variables:

V = {X1, e Xy ...}
4, monadic sentence operators:

a. negation: —

b. Joperators: J;, for integeri, 1 <i <M

c. universal quantifiers: (x;), fori = 1,2, ...

d. existential quantifiers: (3x;), fori = 1,2, ...
5. dyadic sentence operators:

a. disjunction: V

b. conjunction: &

We denote the set of all relations by R = U R,, and the set
of all functions by F = U F,. We assume the standard defini-
n

tion of «term» and «atomic formula». We will sometimes treat
atomic formulas as sentence parameters of the sentential cal-
culus. We denote the set of all terms by T and the set of all
atomic formulas by At. We assume the standard definitions
of «formula», «free variable», and «bound variable». As usual
a formula is said to be closed if it contains no free variables.
We will also assume for convenience that formulas contain
no vacuous or overlapping quantifiers, We use the terms
«formula» and «expression» interchangeably, and we will con-
tinue to make use of the special notation introduced above.

Central to our account of semantics is a slightly different
notion of interpretation than that used above; it is also slightly
different from that used for the standard two-valued func-
tional calculus. Instead of assigning to each n-place relation
a set of n-tuples from the domain, for each integer between 1
and M we assign such a subset to the relation. Formally, an
interpretation I consists of the following:

1. a non-empty domain D of objects
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2. for each f‘;, an n-ary function f;‘ from D" into D; this

yields a map from T into D in the usual way
3. for each P’;r an n-ary function P;l from D" into the set of

integers {1, ..., M}

Our valuation function is also slightly different from the
standard one. Consider the set G consisting of all functions g
from V into D. For a given interpretation, the valuation func-
tion maps an expression and an integer from 1 through M in-
to a subset of G. For the formal elaboration, we first derive
a map from At x {1, ..., M} into the power set of G as follows:

I(Pit; ... ty k) = {g & G: Pi(gty, ..., gtj) = k}

where ty, ..., t; are any terms, and where gt,, 1 < p <j, is the
value taken by the function derived in the obvious way from
the f’x‘n when the variables take the values assigned by g. For

any variable x; gx; = g(x;); and more generally for terms
ty, ..., t, and function f;, gfl;(tl,...,tn) = f:‘n(gth..., gt,). For

any expression E, any integer k between 1 and M, and any
given interpretation I, the valuation function V is defined to
be a subset of G as follows:

ge V (E k1) iff g = I(E k), for E atomic

geV(—ELk]D iffge V(EM+1—k,I

ge V (JiE), kI iff k=1 and g& V (E i), or
k=M and g V (Ei]

ge V (E, VEy,k]I) iff ge V(E, kI and g V (B j, ])
for some j <k, or
ge V(B Kk I and g= V (Ey, j, I) for some j<k

ge V(E &Ex, k1) iff g V(E,k 1) and gV (Eyj )
for some j <k, or

ge V (Ey k I) and g € V (Ey, j, I) for some j =k

g € V ((Ix)E, k, 1) iff for every function g' differing from g
for at most the argument x;, there is no j > k such that

g €V (EjI); and for some such function g, g€V
E kI
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g € V ((x)E k, I) iff for every function g' differing from g
for at most the argument x;, there is no j < k such that
g € V(E j, I); and for some such g, g € V (E k, ])

Several important facts are easily verified from this defini-
tion. For any interpretation I, for every formula E and every
function g in G, there is one and only one integer k between
1 and M such that g € V (E, k, I). Further, in any interpreta-
tion, given any expression E and value k, whether or not a
given function ¢ is in V (E k, I) depends only on the values
which g takes over the free variables in E. That is, suppose
Xy, ..., Xy are all the free variables in E; then for any two func-
tions in G, say g and g, if g and ¢’ agree over the arguments
X1, ...s X, then for any k, g € V (E, k, I) iff g € V (E k,I). Thus
if E is a closed formula then for some k between 1 and M,
V (E k,I) = G, and for all j #k, V (E, j, I) is empty. We will
say that E takes the value k under I (or that I assigns E the
value k) just in case V (E, k, I) = G.

As before, we assume some specific critical value S to be
given, such that S is an integer greater than 1 but less than or
equal to M. The values greater than or equal to S are said to
be «designated», while those less than S are said to be «unde-
signated». If E takes a designated value under I, we say that
E is satisfied by I; if E takes an undesignated value under I,
we say that E is falsified by I. A set of expressions is satisfied
by I just in case every expression in the set is satisfied by L
If at least one expression in a set is falsified by I, we say that
the whole set is falsified by I. An expression is satisfiable just
in case there is some I which satisfies it; an expression is fal-
sifiable just in case there is some I which falsifies it. No ex-
pression can be both satisfied and falsified by the same inter-
pretation.

An expression is said to be «prenex» («a prenex expres-
sion», «in prenex form») if it consists of a sequence (possibly
empty) of quantifiers whose scope is a quantifier-free expres-
sion. The quantifier-free portion is called the «matrix». If all
the quantifiers are universal (existential) the expression is
said to be universal (existential).
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Theorem 8: To every expression E, there corresponds a pre-
nex expression E' such that for all I, k, and g, g € V (E, k, ])
iff ge V (E k1.

Proof: Since V (E, k, I) depends only on the free variables in
E, we may assume that the set of free variables and the set
of bound variables are disjoint; further, we may assume that
the bound variables are pairwise distinct. From the definition
of the valuation function V, above, it may be shown that all
of the standard transformations used in obtaining prenex for-
mulas for the two-valued case remain valid. The only compli-
cation is the distribution of the J operators through the quan-
tifiers. Let E be any expression with the free variable x; and
let E(i/j) be just like E only with all occurrences of x; re-
placed by x;, where x; is some variable that does not occur in
E. Then from the definition of V, the transformation for
J((Ix)E) is

M
(Ax)I(B) & = (Ix;) = Ju(E(i/))
n=k-+1

Similarly, the transform for Ji((x;)E) is

k—1
(3x)Jx(B) & = (Ix;) T Jo(E(/))
n=1

It may be shown by induction on the comlexity of E that E
can be transformed into a formula in which no quantifier oc-
curs within the scope of a J operator. The remainder of the
proof is then parallel to that for the two-valued case, by in-
duction on the complexity of the resulting formula. Q.E.D.

Theorem 9: To each prenex formula E there corresponds a
prenex formula E' whose language does not differ from that
of E except perhaps for the addition of a single function sym-
bol, such that the sequence of quantifiers for E' is exactly
like that of E except for the removal of the left-most existen-
tial quantifier (if there is one), such that the free variables of
E and E' are the same, and such that:

(@) For any I, k, and g, if g € V (E', k,I) then for some

ik geV(EjI); and
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b) Each interpretation I over the language of E can be ex-
tended to an interpretation I' (with the same domain)
over the language of E' such that for all g and k,
ge V(EKI) iff ge V (E' k1.

Proof: By induction on the number of quantifiers in E. Sup-
pose there are none. Then set E' to E and clearly both (a) and
(b) are satisfied.

Suppose E = (x;)E;. Then by the induction hypothesis, there
is a formula E;" which satisfies the theorem with respect to E.
We set E' = (x;)E;'. We prove that (a) is satisfied by contra-
diction. Suppose for some g, I, k, and j <k, g € V (E', k, I) but
g € V (E j,I). Then for some g' differing from g for at most
the argument x;, g' € V (Ej, j, I). But we know that for some
I, g € V(E'r]I), and by the induction hypothesis, r < j.
Hence, r < k. This contradicts the fact that g € V (E', k, I), for
by definition of V there can be no such g' such that for r <k,
g' € V (E{, 1, I). The fact that (b) is satisfied follows directly
from the definition of V and the induction hypothesis.

Suppose E = (3x)E,. Let x4, ..., x, be the free variables in
E and let f;‘ be a function symbol not occurring in E. We form

E’ by replacing every free occurrence of x; in E; by the term
f’]}[x;....,xn). For (a), suppose g € V (E', k,I); we know that

for some r, g & V (E, 1,I). Let g’ take the same values as g
except g'(x;) = f;’(g(xl), .-+ g(Xy)). Then clearly g € V (Ey k,
I). Since g differs from g for at most the argument x;, by the
definition of V, r must be greater than or equal to k. For (b),
let some interpretation I for E be given. To extend I for E’, it
is necessary to interpret the function f;‘. Intuitively, for each
g, if g(x;) = d;, 1 <j<n, we will assign f’j‘(dl,...,dn) the
value d for which the value of E; is a maximum when g(x;) =
d. To do this, let g € G be given. Let G' be the set of functions
g’ differing from g for at most the argument x;. (Note: As

usual, we are assuming g € G'.) We make the following defi-
nitions:

k* = max {k: g €V (E,k])}
ged
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D' = {g(x): ¢ €G and ¢’ € V (B, k*, )}

Clearly by construction D' is not empty. Let d be an arbitrary
member of D'. Then we set f’; (g(x1), ..., g(x,)) = d. By employ-

ing this procedure for each g € G, we obtain a complete de-
finition of f;?. (Actually, we only consider those g which differ

over the free variables of E;.) The required interpretation I'
is just I supplemented by the interpretation of f?. Now, if

g € V (E k, 1), then k is the maximum value for whch there
is a g’ differing from g for at most the argument x; such that
g € V (Ey k, I). But x; is not free in E', and the interpretation
of f:} is such as to make E; take on its maximum value for the

function g. Hence g € V (E', k, I'). On the other hand, suppose
ge V (E'k TI). Form g just like g except g'(x;) = f}‘ (g(xy),
.1 g(xy)). Clearly g € V (E;, k, I). Also, by construction of
f'j’, k is the maximum value j for which there is some such

g € V(E, ]} I). Hence g € V (E k, I). QE.D.

Theorem 10: To each prenex formula E, there corresponds
a universal prenex formula E' whose language does not differ
from that of E except perhaps for the addition of a finite num-
ber of function symbols, such that:

(@) For any I, k, and g, if g V (E, k,I) then for some
i=k ge V(E]j]I); and

(b) Each interpretation I over the language of E can be
extended to an interpretation I' (with the same domain)
over the language of E' such that for all g and all k,
ge V(K] iff ge V (E, k,I).

Proof: By iterated applications of Theorem 9. Q.E.D.

A canonical interpretation of a set of formulas is an inter-
pretation whose domain is the set of terms built up from the
functions and variables occurring in the set, such that the
function symbols are given their canonical values as functions
on the terms. Such interpretations will be of great importance
for the material to follow. We will now prove that we need
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only consider canonical interpretations to answer questions
about satisfiability.

Theorem 11: Let E be a closed universal prenex formula,
If there is an interpretation I that assigns E the value k, then
there is a canonical interpretation I' that assigns E the value
j, where j = k.

Proof: Let the interpretation I be given, and let g* be an
arbitrary member of G. The domain of I' will be the terms,
and the functions receive their canonical interpretation. The
interpretation for the relation symbol P“: is the function P;“

which we define as follows: P‘;‘ (ty, .o t) = k iff PL“ (g*ty, -.

g*ty) = k, where P’l;‘ is the interpretation of P"Z under I. Let

Gr be the set of functions gy mapping the variables into the
terms, We define the map R from Grp into G by setting R(gr)
= g, where g(x;) = g*gr(xi) for all variables x;. We now prove
a series of lemmas to aid in proving the main theorem.

Lemma 11.1: Let gy € Gr, and suppose R(gy) = g. Then for
any term t, gt = g*grt.

Proof: By induction on the complexity of t. If t is a variable,
then the condition is immediate from the definition of R. Sup-
pose t is of the form f*(ty, ..., ty). Then

gt = fﬁl{gtl, S gtm)

= fiﬂ(g*thl, ...y g¥grty), by induction
= g*f]::(g'l'tlv L] thm)
= g*grf(ty .., tn)
= g*grt
Lemma 11.2: Let gr € Gr and suppose R(gr) = g. Let E be
any formula with no quantifiers. Then for anv k, if gr € V (E,
k,I'thenge V (E k, I).
Proof: By induction on the complexity of E. If E is atomic,
the result is immediate from the definition of I' and Lemma

11.1. The induction for &, V, and — is straightforward and is
omitted here. We give the proof for the J operators. Suppose
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E = Ju(E). If gr € V (Ju(Ey), k, I') then eitherk = 1 ork = M.
Suppose k = M. Then gr € V (E;, m, I') and hence by induc-
tion, g € V (E, m, I), whi¢ch means that g eV (JnE) MI).
Suppose k = 1. Then gy & V (E;, m, I'). Thus for some n & m,
gr € V (E, n, I'). But then by induction, g € V (E;, n, I), and
hence g & V (E;, m, I). Thus g € V (Ju(Ey), 1,I). QED.

Lemma 11.3: Let gr € Gy, and suppose R(gy) = g. Let E be
any formula with no quantifiers. Then for any k, if ge V
(E k, 1), then gr € V (E k, I).

Proof: Suppose g € V (E, k, I) but gy € V (E, k, I'). Then for
some j * k, gr€ V (E j,I'). Then by Lemma 112, gV
(E j, ), which contradicts our assumption that g € V (E, k, I).
Q.E.D.

Lemma 11.4: Let E be any universal prenex formula and
suppose g € V (E, k, I) and R(gr) = g. Then for some j >k,
gr €V Ej I).

Proof: By induction on the number of quantifiers in E. If E
has no quantifiers, then the result follows immediately from
Lemma 11.3. Suppose E = (x;)E;, where E, is a universal prenex
formula. Further suppose g € V (E k, I) and R(gy) = g. Sup-
pose contrary to the theorem that gr € V (E, j,I') and that
j <k. This means that for some gr differing from gr for at
most the argument x;, gv' € V (Ey, j, I'). By the induction hypo-
thesis, g' € V (E;, p,I), where p<j and g = R(gr'). Hence
p <k. But by definition of R, g' differs from g for at most the
argument x;, and this contradicts the assumption that g € V
(E k, I). QE.D.

Proof of main theorem continued: If I assigns E the value k,
then V (E k,I) = G. Since E is closed, there is some j such
that V (E, j,I') = Gr. By Lemma 11.4, j > k. Q.E.D.

Corollary 11.1: A set of closed universal prenex formulas is
satisfiable iff there is a canonical interpretation which satis-
fies the set.

It is sometimes valuable to treat quantifier-free expressions
as if they were expressions in sentential calculus. For this
purpose, atomic formuas play the role of sentence parameters,
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and the connectives &, V, —, and the J operators are seman-
tically interpreted as in the sentential calculus. We will say
that a quantifier-free expression is sententially satisfiable (fal-
sifiable) just in case there is some sentential interpretation
which satisfies (falsifies) the expression when it is treated as
an expression of the sentential calculus.

Theorem 12: Having a canonical interpretation I of a langu-
age is equivalent to having an interpretation I' of the senten-
tial calculus on the set of atomic formulas of the language.

Prooi: For each relation PY, I gives a function P;” from T*
into the set {1, ..., M}. For each atomic expression P‘;tl o b
we set I'(P;*tl Lot) = P':('fh ..., ty). Similarly, given I', we can
obtain I. Q.E.D.

Theorem 13: Let E(xy, ..., X,) be a quantifier-free formula
with free variables xy, ..., x, and let t;, ..., t, be any terms
of the language. Let g be any function from the set of variables
into the set of terms such that g(x)) = t;, 1 <i < m. Then in
a given canonical interpretation I, g € V (E(xy, ..., Xp), k, 1) if
and only if in the corresponding interpretation I' of the sen-
tential calculus on the atomic formulae, V (E(ty, ..., t"), I') = k.

Proof: By induction on the complexity of E, The case for E
atomic is trivial because of the relationship between I and I'.
(See the proof of Theorem 12.) The induction over the con-
nectives is straightforward, so we will do only the case for
conjunction here. Suppose E = E;, & E,. Then g € V (E;(xy,
oo Xp) & BEa(Xy, ..., Xu), k, 1) iff. g € V (Ei(xy, ..., Xu), k, I) and for
some j =k, g is also an element of V (Ey(xy, ..., Xu), j, I); or
g € V (Ez(xy, ..., Xu), k, I) and for some j >k, g € V (E((xy, ...,
Xw), J, I). But by the induction hypothesis, this is true iff: V (E;
(ty - tw), I') = k and for some j =k, V(Eulty, ..., t), I') = j;
or V (Es(ty, ..., tn), I') = k and for some j =k, V (E(ty, ..., ty),
I') = j. But this is true iff V (Ej(t;, ..., tn) & Es (ty, ..., tn), I') =
k. QED.

We now prove a very important theorem which is the
multi-valued analogue of the standard Herbrand result.
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Theorem 14: Let E (x4, ..., X;) be a quantifier-free formula
with free variables x, ..., x,. Then (x;) ... (X4)E(Xy, ..., Xy) is un-
satisfiable iff there are terms ti, s t;. 1 <ic<k, of the lan-

guage of E such that the formula
E(t',...,t' ) &... &E (t5, ..., t¥)
1 m 1 m
is sententially unsatisfiable.

Proof: Suppose such a set of terms exists. Then by the de-
finition of V, every canonical interpretation fails to satisfy
(x1) ... (%)E(%y, ..., X3). Then by Theorem 11, the formula is un-
satisfiable.

On the other hand, suppose the formula is unsatisfiable,
Then there is no canonical interpretation that satisfies the
formula. But then by the definition of V, for every canonical
interpretation I, there are terms t,, ..., t, such that for g(x;) =
ty 1<i<n, gV (EXy..., %), j; ), where j<S. But by
Theorems 12 and 13, for every sentential interpretation I' on
the atomic formulas, there is a series of terms t;, ..., t, such
that V (E(ty, ..., t,), I') = j, where j <<S. But then by Theorem
3, there are terms ti, er tf], 1 <i <k, such that the formula

E(ti, e tlll) & ... &E(‘t‘l‘, ey t‘;)
is sententially unsatisfiable. Q.E.D.
We say that a formula is (universal, existential) prenex J-

CNF if it is (universal, existential) prenex and the quantifier-
free part is J-CNF,

Theorem 15: To each closed prenex expression E, there cor-
responds a closed prenex J-CNF expression E' such that in
any interpretation, E is satisfied if and only if E' is satisfied.

Proof: To form E', we simply treat the matrix of E as an ex-
pression in the sentential calculus over atomic formulas. The
result then follows from Theorems 7, 11, 12 and 13. Q.E.D.

3. Resolution

The resolution principle for the logics just described will be
quite similar to two-valued resolution. We will assume that
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the principle is to be applied only to formulas that are univer-
sal prenex J-CNF. The resolution principle seeks to determine
whether or not a given expression is satisfiable. If there is an
empty clause in the expression (a clause consisting only of the
empty string), then we know immediately that the expression
is unsatisfiable. Hence in all practical cases, the expression
with which we begin will not have an empty clause. Each
clause will be a disjunction of expressions of the form Jy(E),
where E is some atomic formula; such an expression will be
called a «J-literal». A «literal» will be for us an atomic expres-
sion.

Central to resolution procedures is the notion of «substitu-
tion». There is a close relationship between substitution and
our g functions, but this point will not be elaborated here. We
may use exactly the same notion of substitution for many-
valued logics as that used for the two-valued case. We also
employ the same notion of «unifying» a set of literals. The
standard unification algorithm may be used, and all of the
usual notation and theorems associated with it may be assum-
ed unchanged, since the algorithm is based solely on syntactic
considerations which remain unchanged by the introduction
of the J-operators. We will sometimes make use of the iden-
tity substitution; this substitution simply maps each variable
into itself without change.

Two J-literals, Jkl(El) and sz(Eg) will be said to be «com-

plementary» just in case the literals E; and E; are identical but
k; # ks Intuitively, a pair of complementary J-literals sim-
ply make contradctory semantic assignments to a given atom-
ic expression. Thus in any canonical interpretation, both could
not be satisfied, and hence their conjunction could never be
satisfied. Two sets of J-literals {JIJI (Ei1)s oo Jl’n (Eim)} and

{Jql(Egl), ...,qu (Eewm)} are said to be complementary just in
case for all i and j, Eli = E1j= E2£= Egj, and p; + q;

Let E; and E; be two clauses composed of J-literals. Their
many-valued resolvent (henceforth, mv-resolvent) E; is ob-
tained as follows:
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(i) Let Xp 1 eeor Xy be the variables occurring in E, and

let x; be the variable in E; with the highest index. Then
® is the substitution {(x;,1, le), soii (Bvwns Xgn) }. (None

of the variables in E;® occurs in E;, and vice versa.)
(ii) Let C; and C; be the sets of J-literals occurring in E;
and E, respectively. Suppose there is a pair of sets
of J-literals K = {K;,...,K,} and L = {Ly,...,L,} such
that:
(a) K€ C; and L € Cy;
(b) the set {K{,...,K;", Ly, ..., L'} is unifiable where K;’'
and L;' are the literals contained in the J-literals
K; and L; respectively; and
(c) if & is a unifying substitution, then KA and LA are
complementary.
Let A be the chosen simplest unifying substitution so
that KA and LOl, are sets of complementary J-literals.
Then Ej is the disjunction of the J-literals:
(Ci—K)y U (C:—1)0)

The many-valued resolution principle may now be stated as
follows:
Many-valued resolution principle: From any two clauses of
J-literals, E; and E, infer an mv-resolvent of E, and E,.
Let C be a set of clauses of J-literals. Then MVR(C) is the
set consisting of the members of C together with the mv-re-
solvents of all pairs of members of C. We define MVR?(C)
recursively as follows:

(i) MVR!C) = C
(i) MVR?(C) = MVR(MVR™(C)), for n > 0

Let C be a set of clauses and let E be a clause of J-literals.
Then the least value n such that E &€ MVR®(C) gives the num-
ber of applications of the mv-resolution principle required
to obtain E from the members of C.

We now proceed to state and prove a series of theorems
which establish the desirable properties of mv-resolution.

In obtaining the resolvent of two clauses, we make use of
two substitutions, A and ©. However, A is applied alone to
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one of the clauses, while the composite substitution O, is
applied to the other. It is more convenient to think in terms of
the two substitutions A;'and ®4,. Thus in the following material
whenever reference is made to the substitutions used in ob-
taining a resolvent, we shall mean };, and ©,.

Theorem 16: If Ey is an mv-resolvent of E; and E,, and 1; and
As are the substitutions employed for E; and E,, respectively;
then for any substitution A, if an interpretation I sententially
satisfies both EJA and Eshoh, then I sententially satisfies Eg.

Proof: First suppose Es = e. Then Eih; is of the form
Jl,1 EBE V..V Jpn(E)
and Eg)y is of the form
Jql (E)yV..V qu(E]
where for all i and j, p; #+ q;. But then E\A is just
Jpl(Eh) V..V Jpn(EJ\]
and Ejloh is just
Jqll (BN V..V qu(El)

Then there is no I which sententially satisfies both E;AA and
Eshsh, and thus the theorem follows vacuously.

On the other hand, suppose E; # e. Then E;}, is of the form
E; V E; and Ejks is of the form E; V E;, where E; and E; are
disjunctions of complementary J-literals and either E, # e or
E; #+ e. If I sententially satisfies both E;\A and Eslsh then I
sententially satisfies either E4. or Egh, since I cannot senten-
tially both EsA and E;A. Hence I sententially satisfies E;A V Ez;
that is, I sententially satisfies E;. Q.E.D.

We will inroduce a little more special notation. Let K be a
set of substitutions {A;, ..., 4,}, and let C be any set of clauses
{Ei ..., E.}. Then K(C) is the set of clauses {E};:E; = C and
A.j = K}

Theorem 17: Let C be any set of clauses of J-literals, let K,
be the set consisting of the identity substitution and the set
of all substitutions employed in forming MVR(C), and let K,
be any non-empty set of substitutions. Denote K;(K;(C)) by C;
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and K;(MVR(C)) by C,. Then for any interpretation I, if I sen-
tentially satisfies C;, I sententially satisfies C; as well.

Proof: Suppose the theorem is false. Then there is an inter-
pretation I, an expression E in MVR(C), and a substitution Ay
in K; such that I does not sententially satisfy Ely, but I does
sententially satisfy C;. Now, E cannot be a member of C, for
then El; would be a member of C; and hence I would satisfy
Els, contrary to our assumption. Thus E must be a resolvent
of two clauses E; and Eg, both in C. Let A, and ;"' be the sub-
stitutions employed in obtaining E from E; and E;. Then
Eil'As € C; and Ejly"Ae € Ce, and hence both are sententially
satisfied by 1. But then by Theorem 16, I sententially satisfies
Eks. But this contradicts our original assumption that I does
not sententially satisfy Els. Q.E.D.

Theorem 18: If C is any set of clauses of J-literals such that
for some n, e € MVR*(C), then there is a non-empty finite set
of substitutions K such that K(C) is sententially unsatisfiable.

Proof: By induction on n. The case for n = 0 is trivial; take
K to consist of only the identity substitution. For the induc-
tion step, suppose for p > 0, e € MVRP(C). But MVR?(C) is
just MVRIF(MVR(C)), and so by the induction hypothesis,
there is a set of substitutions K; such that K;(MVR(C)) is sen-
tentially unsatisfiable. Let K; be the set consisting of the
identity substitution and all the substitutions employed in
going from C to MVR(C). Then by Theorem 17, K;(Ky(C)) is
sententially unsatisfiable. We then take K to be all substitu-
tions of the form AsA;, where A; € K; and A € K,. Q.E.D.

Some substitutions are rather trivial in the sense that they
can be «undone». Such substitutions are only a «renaming»
of variables, maintaining distinctness. An example is the sub-
stitution ©® mentioned in (i) of the definition of resolvent. We
say that such substitutions are «reversible» since for any such
substitution A, there is another A’ such that EA' = E. It is not
difficult to show that the composition of any finite number
of reversible substitutions is a reversible substitution. Further,
it may easily be shown that if E; is an mv-resolvent of E; and
E;, then for any reversible substitutions A; and As, there is a
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reversible substitution As such that Esd; is an mv-resolvent of
EjMy and Ezls. We will make use of these facts in the next
theorem. :

Theorem 19: Let C be a set of clauses composed of J-literals.
If C is sententially unsatisfiable, then for some n, e € MVR2(C),
and it is possible to so obtain e making only reversible sub-
stitutions.

Proof: If e = C, then the proof is trivial. Hence - we assume
e & C. We define the number r(C) to be the number of J-
literals appearing in C minus the number of clauses in C. The
proof is then by induction on r(C).

If r(C) = 0, then each clause in C is composed of a single
J-literal. The only way C can be sententially unsatisfiable is
if there are two clauses of the form J,(E) and J,(E), where
p #* q. (Otherwise, for each J-literal, Ji(E;), we could assign
the literal E; the value k and thus sententially satisfy C.) But
applying the mv-resolution principle to these two clauses
would yield the empty string e, using only the substitution ©
and its inverse. Thus e € MVR!(C).

For the induction step, suppose r(C) = n + 1, for n = 0.
Then there is at least one clause E in C which is of the form
E; V E;, where E;, # e and E; #+ e. Let C' = C—{E}. We
break C into two parts, C; = C' U {E;} and C; = C' U {E:}.
It is easy to verify that both C; and C; must be sententially
unsatisfiable since C is sententially unsatisfiable. Further,
r(C;) <n + 1 and r(Cs) < n + 1. Hence by induction, for some
n;, e € MVR™(C,) and for some ny;, e € MVR™(C,); further, in
both cases, e may be so obtained making only reversible sub-
stitutions. But then noting that C = C' U {E; V E,}, either Es
€ MVR™(C), for A a reversible substitution, or e € MVR™(C).
If the latter is the case, then the proof is complete, so suppose
the former is the case. Then since C' € MVRM(C), e
MVRe+22(C), Q.E.D.

Theorem 20: Let ); and A; be substitutions. If E; is an mv-re-
solvent of Ej\; and Eskg, then there is a substitution A' and an
expression Ey' such that E;' is an mv-resolvent of E; and E,
and Eg = Ealj\.'.
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Proof: Suppose Xy, ..., X3, are all the variables of E; and
Xg1, ..., Xgy are all the variables of E;, We may assume that %
has a substitution for each variable in E;, A; has a substitution
for each variable in E;, and that neither has substitutions for
any other variables. If not, we can always add identity substi-
tutions over the needed variables and eliminate the unused
substitutions. Each substitution may then be represented as
follows:

l’l = { (tlll xll): ceep (tlmr xim) }
he = {(tet, Xa1), -+, (tonr X2 }

where the t's are terms. We may represent E; by E,' V E;" and
E; by E)' V Ey". We know there is a substitution 1, and a
change of variables substitution © such that E; = E;'Ajd V
E;'A:01g, and E,"Ady and E;"A:01, are disjunctions of comple-
mentary sets of J-literals. We define two substitutions as
follows:

6. = {(x1m+1rx21)r seey (x1m+m x2n)}
lEr = {(tEIr X1 m+1); ---.('tzm X1m+n)}

Then E:0'%:'0 = Eghe®. We know A, is composed of two sets
of substitutions, A’ and 1,". The substitutions in 1, are for
variables in EjA; and those in A, are for variables not in
Eid;. Therefore, Ejhly' = Eihdg and Eghy®hy' = Esde®). Let
M = Mk’ and let A" = A'OL". Then A" and %" do not
make substitutions ove any of the same variables. Consider
AY = MU A

Ell' == Elll" = Ell];uol s E17L1.i\.0
EOAW* = E;O'h" = E@'A'ON" = Ely@l)'' = EpheOly

Thus we know that A* is a unifying substitution for E;” and
E;"@®'. Let 1*; be the chosen simplest such substitution. Then
we know Eg' = E;'\*, V E;’@'A* is an mv-resolvent of E; and
E;. Further, since A%, is the simplest substitution, there is a
substitution A’ such that A*¢A’ = A*. But then Eg'A' = E;. Q.E.D.

Theorem 21: Let K be any non-empty set of substitutions.
If E e MVR*(K(C)), for some integer n and set of clauses C,
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then there is a substitution A’ and an expression E' such that
E'e MVR?(C) and E = E'}"

Proof: By induction on n. If n = 0, the case is trivial. For
the induction step, suppose E € MVR**(K(C)), where n = 0.
If E € MVR*K(C)), the desired result is an immediate conse-
quence of the induction hypothesis. Thus suppose E is a re-
solvent of E; and E;, both members of MVR*(K(C)). By the in-
duction hypothesis, there are expressions E;' and E;’ and
substitutions A" and %' such that E; = E'A;' and E; = Eg'he',
where E,' and E;' are both members of MVR?(C). Then by
Theorem 20, there is an expression E' and a substitution A’
such that E' is an mv-resolvent of E," and E;' and E'\' = E.
Thus E' € MVR*+!{(C). Q.ED.

Theorem 22: Let K be any non-empty set of substitutions
and C any set of clauses of J-literals. If e € MVR2(K(C)), for
some n, then e € MVR?(C).

Proof: If e € MVR*(K(C)), then by Theorem 21, there is an
expression E' and a substitution A’ such that E'A’ = e and such
that E' € MVR?(C). But no substitution can make a non-empty
clause into an empty one, so E' = e, QED.

Theorem 23: Let E be any closed expression, and let E' be
the universal prenex J conjunctive normal form of E. Let C
be the set of clauses obtained from E'. Then E is unsatisfiable
if and only if for some n, e € MVR?*(C).

Proof: First suppose E is unsatisfiable. Then by Theorems 8,
10, and 15, E' is unsatisfiable. By Theorem 14, there is a finite
non-empty set of substitutions K such that K(C) is sententially
unsatisfiable. Then by Theorem 19, for some n, e € MVR2(K
(C)). By Theorem 22, e € MVR?(C).

On the other hand, suppose e € MVR*(C) for some n. By
Theorem 18, there is a non-empty finite set of substitutions
K such that K(C) is sententially unsatisfiable. By Theorem 14,
E' is unsatisfiable. By Theorems 8, 10, and 15, E is unsatisfiable,
Q.ED.

Theorem 23 establishes the soundness and completeness of
the mv-resolution principle. Note that no specific values for
M or S were used at any stage of our development. Thus the
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procedure works for the entire class of languages under con-
sideration,

4. Applications

Like the two-valued resolution principle, the mv-resolution
principle is designed to test whether or not a given expres-
sion is satisfiable. But because of the J operators, the mv-re-
solution principle can be applied to a very wide class of prob-
lems. Let E and E' be any two expessions and k and k' be any
two subsets of {1,..., M}. Then we may test assertions of the
type «If E takes a value from k, then E' must take a value
from k'». We test such assertions by applying the mv-resolu-
tion principle to the expression

2 Ji(E) & £ J;(E)

iek jéEk'

More complicated assertions may also be tested. For exam-
ple, consider «E' must always take a value greater than or
equal to that taken by E». This statement could be tested by
applying mv-resolution to the formula

M i—t
E (JiE) & T Ji(EY)
=2 j=1
Instead of «greater than or equal to» we could have any de-
cideable condition relating the semantic values of E and E'.
By treating sets of expressions as some function of their
components, where that function is expressible in the syntax,
we may test statements asserting relations between a set of
expressions and a single expression, or assertions of relations-
hips among several sets of expressions. For example, «If the
expressions in A are satisfied, then so is expression E» would
be tested by testing the formula

M 5—1

T 50l E)&3I JE)
i=S Ee€A j=1
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As another example, the statement «If the largest value of
any formula in A; is k; and the smallest value of any formula
in Ay is kg, then some formula in A must take value ks» could
be tested by testing the formula

Je (B E) &I (II E) & I Ji(Ey
1 E €A 2 EyeA, ixky EgeA,

The «trick» in all of these cases is to determine under what
conditions the given assertion would be false; these condi-
tions are then expressed by a formula in the syntax, and that
formula is tested for satisfiability using the mv-resolution prin-
ciple. If the formula is unsatisfiable, the given assertion is
correct; otherwise it is incorrect.

One may reasonably ask if there are any circumstances
which require a multi-valued analysis. It is well known that
probability assertions do not fit into the types of languages
here discussed. However, another possible candidate is the
analysis of decideability statements. For a given proposition,
we may ask if it is decideable and true, decideable and false,
or undecideable, Thus it initially seems that a three-valued
analysis may be appropriate. We could assign 1 to «decideable
and false», 2 to «undecideable», and 3 to «decideable and true».
However, consider P V — P. We know that regardless of the
value of P, this expression is always true, and hence should
be decideable and true. But on our proposed analysis, if P
takes value 2 (undecideable) then PV — P takes value 2
(undecideable). Hence the analysis does not seem to work for
the decideability of statements. (All alternative assignements
of values to the three categories «decideable and false», «un-
decideable», and «decideable and true» face similar difficul-
ties.)

If we shift our attention from statements to machines, the
above approach can be fruitful. Suppose we have a set of
«elementary decision machines» (edm's), which we will desig-
nate by DJ;. Each machine DJ; has j input lines; the i is merely

an index. For a given set of inputs, machine DJ; may do one
of three things: (i) stop and output 0; (ii) run on forever with
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no output; or (iii) stop and output 1. Each edm may be thought
to correspond to some condition on (or assertion about) the
inputs; output 0 corresponds to «decideable and false», failure
to stop corresponds to «undecideable», and output 1 corres-
ponds to «decideable and true». Thus we sharply distinguish
between no output and output of 0.

Suppose we may connect our edm's by threshold-like ele-
ments which correspond to &, V, and —. The &-gate has two
inputs; it outputs 0 if at least one 0 input is received and out-
puts 1 if two 1 inputs are received. The V-gate has two in-
puts; it outputs 1 if at least one 1 input is received and out-
puts 0 if two O inputs are received. The — -gate has a single
input; it outputs 1 if a 0 input is received and outputs 0 if a
1 input is received. In all other cases, the gates have no out-
put. Consider circuits composed of edm’'s and such gates such
that the edm's receive input only from sources external to
the circuit. Such circuits may be analyzed using the approach
suggested above. We would assign «output 0» the value 1,
«no output» the value 2, and «output 1» the value 3. Again
consider a circuit whose equation is of the form PV — P. If
the component P has no output, then the entire circuit would
have no output. This is in exact correspondence with our lo-
gical analysis. Such circuits may be a useful approach to
pattern recognition based on local feature analyzers.

University of Victoria Charles G. Morgan
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