REVERSAL IN BOOLEAN MINIMALIZATION

By Mitchell O. Locks

ABSTRACT

A computerizable Quine-type algorithm is presented for mi-
nimalizing Boolean polynomials. It differs from other minima-
lization methods by the fact that it incorporates a «reversal»
technique. Forward (minimalizing or polynomial reducing) se-
quences are alternated with reversal (partial expansion) se-
quences in a search or a unique minimal form. One of three
decisions results from each reversal sequence and subsequent
reduction: the minimal polynomial is unique; there are alter-
native minimal forms; or further reduction is possible.

The algorithm includes arrangement of terms, and the se-
quencing of steps and pairwise matching of terms in both the
forward mode and the reversal mode.

INTRODUCTION

Boolean polynomials are widely used in fields such as logic,
electrical engineering, fluid power mechanics and data struc-
tures to characterize logical circuits and sequences. Their
uses in statistics are limited to areas such as theoretical pro-
bability, pattern recognition and system reliability. These ap-
plications, however, appear to be growing.

A Boolean polynomial is for a binary-valued system, f, which
is a function of n binary-valued components x; i=1, ..., n,
not all necessarily independent of one another. The binary
values represent the presence (f; =1, or x; = 1) or absence
fi =10, or x; = 0) of a signal or characteristic which defines
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the system, or else the component. Three-valued logic is also
covered, in the sense that if f or x; is either zero or one, it is
specified; if it is not specified, then it is «free» to assume either
value. Thus, each component has three values, zero, one, or
unspecified (frequently called «don't care»).

The universal set u is the set of 2® binary n-vectors, each
vector denoting a different possible state of the system. A
Boolean polynomial represents a subset of u, called a latfice.
Each term (also called «minterm») is for a complete (i.e., in-
cluding both the g.l.b. and the lL.u.b.) subset, also called sub-
lattice, with m fixed-valued elements, m < n, common to all
of the 2»™ elements (binary n-vectors) in that subset. In
this discussion, «term,» «complete subset,» and «sublattice»
are used interchangeably where the meaning is clear from
the context, as well as «variable,» «component,» and «indi-
cator.»

It may appear at times that «polynomial» and «lattice» are
interchangeable, but this is not the case. A lattice is a set, and
a polynomial a way of representing the set. There can be many
polynomials for any given lattice. Indeed, the objective of
minimalization is to find the «best» or shortest polynomial out
of all alternatives available.

Minimalization describes a lattice with the smallest possible
number of terms, and the least average number of indicators
per term, Stated another way, this is the same as finding the
largest sublattices, none of them proper subsets of one another,
which completely cover the lattice. In digital logic circuits,
for example, minimalization results in the smallest hardware
requirement, in data retrieval the smallest search.

Historically, all of the significant work in minimalization of
Boolean polynomials emanates from a 1952 paper by Quine
[1]. Quine's technique has been modified by McCluskey [2],
who employed a decimal coding scheme on the binary-num-
ber equivalents of the terms. A number of texts in logical de-
sign, examples [3, 4, 5] describe the so-called Quine-McCluskey
technique, which is essentially the McCluskey modification.

In this paper, we do not employ the McCluskey modifica-
tion, but use instead a straightforward extension of the Quine
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method without any intervening decimal number equivalents.
However, rather than requiring a full extension of the poly-
nomial to its «developed form,» minimalization can be per-
formed on any polynomial without any expansion of terms
except that which is necessary for a «reversal» cycle.

Karnaugh maps [6] are geometrical equivalents of binary
systems of this type, and are frequently used to help explain
the minimalization process. However, these maps are limited.
A 4-by-4 map explains a 4-component system. As the size of
the system increases by n, the size of the map required in-
creases by 20,

The problem which limits the applicability of the method
as developed by Quine, and these modifications of it, is that it
is necessary to identify each and every element (n-vector) in
the lattice. Thus, the size of the lattice which can be mini-
malized is too limited. We believe that the logical design de-
partments of some computer manufacurers may well be at ware
of methods far superior to those described in the open litera-
ture, but tend to keep this information as trade secrets. Hen-
ce, the best known techniques probably have not been pu-
blished.

In a forthcoming paper for the Notre Dame Journal of For-
mal Logic [7], Locks developed a set-theoretic explanation of
minimalization, including also an improved computerizable
version of the method, which makes a full expansion of the
polynomial unnecessary. This is achieved by incorporating
a «reversal» technique, a form of perturbation applied when-
ever the polynomial is irredundant, that is, no term is a proper
subset of any other term and no further reduction of the num-
ber of terms or indicators is visible. To test an irredundant
form for minimality, reversal partitions the largest or first
term into two complementary subsets. A mixing and match-
ing then takes place to determine if it is possible to simplify
by recombining the expanded terms with other subsets. At
each reversal, one of three decisions results: the original ir-
redundant form is also the unique minimal form, alternative
minimal forms are obtained, or else reduction continues.
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The earlier paper (i.e., the one still forthcoming) describes
applications of the reversal process including examples taken
from [1], but does not explicitly define the steps involved. In
this paper, the sequence of steps and alternatives taken is
described, somewhat in the form of a flow chart. We suspect
there may be a number of good ways of achieving reversal,
using heuristics or algorithms which remain yet to be dis-
covered.

BASIC CONCEPTS

TERMINOLOGY

A system f, f = 0, 1, is a binary-valued function of n binary-
valued indicators, x; = 0,1, i = 1, ..., n. The universal set u
has 2" elements (binary n-vectors), because for every com-
ponent there are two choices; these include the unique zero
element (0, ..., 0) and the unique one element (1, ..., 1). There

are 2" lattices (subsets) of u, because for every lattice, every
element (n-vector) is either included or not included. At the
extremes, we have the unique null (empty) set &, the lattice
with no elements, and its complement, u.

Every lattice in u can be characterized as the «inclusive-or»
union of a collection of complete subsets, also called sublatti-
ces, frequently in a variety of ways. A sublattice is identified
by m fixed binary-valued indicators, m < n, common to all
elements in that set, with the remaining n — m indicators all
being free to assume either value, zero or one.

A complete subset includes both its g.1.b., with all free
indicators zero, and its lu.b., with all free indicators unity.
There are other descriptions. A complete subset is a kind of
free Boolean algebra (Halmos [8]), with a unique zero element,
the g.1.b., a unique one element, the Lu.b., subject to compon-
ent-by-component rules of Boolean addition (0 +0 = 0;
0+1=1+1=1), multiplication (0.0 =0.1=0;1.1 = 1)
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and inversion (I = 0; 0 = 1) for the free components only,
but not the fixed-valued ones.

In [9], Locks proves that there are 3" complete subsets of u.
This can be rationalized as follows. There are three choices
for every one of the n components: fixed zero, fixed one, or
free. Since a sublattice can be viewed as a set generated by
the intersection of a subset of these components, there are 3*
ways of developing sublattices. The proof in Reference [9]
is based on an actual count of the number of sublattices. The
alternative rational explanation in this paragraph was sug-
gested to the author by J. Chinal in a personal conversation.

The terms of a Boolean polynomial are its sublattices, that
is, each term is the logical product or intersection of a subset
of indicators representing fixed-valued components. The poly-
nomial is the inclusive or union or join of these terms. A
polynomial, however, is in general not a unique representa-
tion of a lattice. At one extreme is a full element-by-element
listing, such as in a truth table, where every single element
is accounted for. The other extreme, which is the desired one,
is the minimalized form in which the lattice is described with
the smallest number of terms (i.e., the largest possible sub-
sets), and hence, also the smallest number of indicators.

THE MODIFIED QUINE ALGORITHM

The modified Quine algorithm for Boolean polynomial mi-
nimalization is described in a paper by Locks [7], to be pu-
blished in the Notre Dame Journal of Formal Logic. It inclu-
des three different types of reduction, and the reversal test for
uniqueness. That paper included examples of applications, ta-
ken mostly from the examples in [1]. This section summarizes
that paper. In the sequel in the following section we present
an algorithmic description of the reversal process, together
with examples of how it works, adapted from the examples in
Zissos and Duncan [10].
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THE THREE TYPES OF MINIMALIZATION OPERATIONS

Minimalization includes three operations. For identification
purposes, in the sequel we shall call them type-1, type-2, and
type-3, respectively.

A type-1 operation is the deletion of a redundant sublattice,
which is a proper subset of another set already in the lattice,
for example

abVa=a.

The set «a» includes «ab» as a proper subset. If the value is
fixed, say a = 1, then any element with a = 1 is already a
member of the set, regardless of the value of b.

A type-2 operation merges (joins ?) two complementary sub-
lattices which differ only in the value of a single indicator,
for example

abc V abc = ab.

This also says that the sublattice witha = 1 and b = 1 can
be partitioned into two subsets, with ¢ = 1 and ¢ = 0, res-
pectively. In the reversal method, when an irredundant form
is obtained, to test it for uniqueness one term is partitioned
into two subsets by reversing the type-2 operation, and these
are recombined with other terms if it is possible to do so.

A type-3 operation is the elimination of a redundant indi-
cator, for example

abc V at = ab V ac.
This is proved as follows:

abc V at = abc V ab€ V abc _
= (abc V abt) V (abT V abg)
= ab V aC.

A type-3 operation reduces by one the number of indicators in
a longer term for which there is a complementary sublattice
which is a subset of a shorter term .This is done when the
longer term has the same indicators as the shorter term, and
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the same values, except for one which is complemented. The
complemented indicator is deleted in the longer term.

REVERSAL

Reversal is employed when one of the three types of mini-
malization can no longer be applied, to test by a search pro-
cess for alternative ways of forming sublattices. It is initiated
by expanding a term into two complementary subsets, and
then trying to recombine these with other terms. Expansion is
continued with other terms, if necessary, until a decision can
be reached. There are three possible decisions:

1. The original form is the unique minimal form
2. There are alternative minimal forms
3. Minimalization can he continued.

In order to computerize reversal, it is necessary to develop
an algorithm which can work efficiently on a wide variety of
problems. A new general algorithm of this type is described
in the following section. In this section, we show an example
of reversal, in the context of a problem with a known answer,
so that a smaller number of steps are required than would be
needed in an algorithmic solution.

Since each reversal is initiated by expanding a single term
into complementary subsets, it is better to do so first on the
longer terms (smaller sets) than the shorter ones. Having more
indicators than the shorter terms, there are more possibilities
of recombining with other sets before the size of the poly-
nomial becomes very large. Therefore, we recommend that
the polynomial be rearranged so that the longer terms come
first.

Example 1
This example is taken from [1], p. 528. For the polynomial
pqr V pr V pgs V Pr V pars,
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rearrange in order of the size of the term, as follows,
Pars V par V pgs V pf V Pr.

No type-1 or type-2 operations can be performed, so that it
is necessary to use only type-3 at the outset.
The first term combines with the fifth term to yield

pars V pr = pas V pr.
The second term combines with the fourth,
pqr V pr = pq V pT.
The polynomial thus simplifies to
PasV pq V pgs V pr V Br.
A type-1 operation deletes the third term since
Pq V pgs = pa.
This yields one of the four alternative minimal forms
PG Vpq V pr V pr. (1)

It is not possible to simplify any further by using either a
type-1, type-2, or type-3 operation. To obtain the other three
minimal forms, reverse by first expanding the first term of
Equation (1). This yields

pars V pars V pq V pr V pr.
Since pqrs is a subset of pr it is deleted by a type-1 operation.
Continue reversing by expanding pq to obtain

Pars V par V pf V pr. (2)

Note that pqr was deleted by a type-1 operation, since it is a
subset of pr. By combining both the first and second terms of
Equation (2) with the third by type-3 operations, we obtain
the minimal form

Gfs V pq V'pr V pr. (3)
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By combining both the first and second terms with the fourth,
obtain

Pas VqrV pr V pr. (4)

Finally, by combining the first term with the third and the
second with the fourth, we have

G5 VaqrV prV pr. %)

Equations (1), (3), (4) and (5) are the four alternative minimal
forms for this problem.

AN ALGORITHM FOR MINIMALIZATION AND REVERSAL

In the foregoing, an example was shown of a reversal-type
of minimalization solution with a known answer. The number
of reversal steps was considerably smaller than what would be
needed if the result is not known, as is usually the case, and
if one were to build a computer program to search for a solu-
tion. In this section we develop an algorithmic solution, in-
cluding arranging terms, and the sequencing of operations and
decisions in both the forward (minimalizing) and reversal
modes.

This algorithm has not yet been computer tested. It seems
to work adequately for hand methods, as is shown by the
examples in the sequel.

SEQUENCING OPERATIONS IN THE FORWARD
(MINIMALIZATION) MODE

The three types of operations are performed in the same se-
quence in which they are numbered, type-1 first, type-2 sec-
ond and type-3 third. Since any type-2 or type-3 operation
results in a larger set (shorter term) which one of the other
terms could be a subset of, the cycle starts over again with
a type-1 operation whenever all type-2 operations, or else
all type-3 operations are completed. If no simplification is per-
formed on a given cycle, the next step is a reversal.
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ARRANGEMENT OF TERMS AND PAIRWISE MATCHINGS

Terms are arranged in order of size, longer terms (smaller
sets) first. The more indicators a term has relative to the other
terms of the polynomial, the more chances there are that it
or its descendants will vanish by a type-1 operation. This can
be particularly significant in reversal, because splitting the
longer terms first cuts down the potential number of pairwise
reverse-type-2 splittings, and therefore, also the size of the
polynomial.

There could be some strategic points where it might be
advisable to resequence the terms.

With terms arranged according to size, simplifications are
the result of pairwise matchings front to back. That is, the
first (longest) term is compared with the last (shortest) term
first, then with the next to the last, second from the last, etc.;
then the second term is compared with the last, next to the
last, etc.; etc.

If all terms are of the same size, the terms with the most
frequently used indicator should be bunched together at the
beginning. It is very likely that this indicator would not
vanish in further simplification, and increase the number of
chances to form terms including this indicator, out of other
sets.

REVERSAL SEQUENCE

When operating in the reversal mode, the number of indi-
cators in some of the terms, and the number of terms, are both
increasing. Since these increases result from reverse-type-2
operations, in order not to get the original polynomial back
again, terms having the same parent are not recombined by a
type-2 operation.

During reversal, there are both reversal operations (i.e., re-
verse-type-2) and forward operations. Forward type-1 opera-
tions are always performed in either the forward or reversal
mode to keep the size of the polynomial as small as possible.
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Forward type-2 operations are performed with terms having
different parents only. A type-3 operation is not performed
until after a forward type-2 of this kind. Either type-2 or type-
3 can be performed at the very end of the reversal cycle after
expanding the last term.

In reversing the term «ab» in ab V d, the reversal steps are

abc V abé V d
= abcd V abcd V d.

Since the maximum number of indicators have been account-
ed for, and since all terms are clearly partitioned (i.e., no
two terms have any elements in common), we simplify in the
forward mode to obtain

abd Vd = ab Vd.

EXAMPLES

Examples 2, 3, and 4 are all adapted from Zissos and Dun-
can [10], pp. 177-179. Explanations are included as needed.
Since all additions in the sequel are logical, the arithmetic
plus (+) sign is used in place of logical «or» (V).

Example 2. Minimalize AB + AC + BD + CD

Since all terms have the same size and since D is the most
frequently appearing fixed indicator, the polynomial is re-
arranged so that all terms including a D come at the beginning.
Also note that no type-1, -2, or -3 operations are possible, so
that it is necessary to reverse at the outset,

BD + CD + AB + AC
ABD + ABD + CD + AB + AC (reversal)
ABCD + ABCD + CD + AB + AC (reversal)
ABCD + ABCD + ABCD + ABCD + ABCD
+ AB + AC (reversal)

= ABD + ABD + ABCD + AB + AC (type-2)
= AD + ABD + ABD + AB + AC (type-3)
= AD+ AD + AB + AC (type-2)

D + A8+t BC (type-2)
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Note that the forward type-2 operation at the fourth step
(combining terms from different parents) initiated breaking
down the polynomial so that the remaining simplifications
could be made.

Example 3
ACD + ABD + AB + AC
= ABCD + ABD + AB + AC (reversal)
= ABCD + ABCD + AB + AC (reversal)
= BCD + AB + AC (type-2)
Example 4
AC+ AB+AC+ AB_
= ABC -+ AB + AC + AB (reversal)
= ABC + ABC + ABC + AC + AB (reversal)
= AC+ ABC+ AC+ AB (type-2)
= AC+ ABC + ABC + AB (reversal)
= AC+BC+ AB (type-2)

The alternative minimal form is obtained by continuing the:
reversal

ABC + ABC + BC + AB (reversal)
= ABC + ABC + ABC + ABC + AB (reversal)
= AB + ABC + ABC + AB (type-2)
= AB + ABC + ABC + ABC + ABC (reversal)
= AB+BC+ AC (type-2)

CONCLUSION

The method appears to give satisfactory results for a variety
of problems. Further computer experimentation would be
desirable.

Oklahoma State University Mitchell O. Locks
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