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I. Introduction
(a) General

Let us consider propositional calculi which are axiomatically
characterised by a set of axioms and rules, as in Harrop [3],
pp. 273-4. Sets of matrices are often used to provide models for
these propositional calculi and these models are used to prove
the consistency of the propositional calculus, to show that cer-
tain wifs are non-theses of the propositional calculus and to
prove the independence of an axiom from the rest of the
axioms and the rules of the propositional calculus. This paper
provides some techniques for developing a computer program
to determine such matrix models. Hence I will be concerned
with the practical matter of finding sets of matrices and I
will be considering the sorts of propositional calculus one
might be likely to be dealing with when setting up systems of
modal logic, systems of entailment, etc., rather than consider-
ing propositional calculi in general.

The propositional variables will be taken as p, q, 1, s, t, ... .
The propositional calculus must have a rule of uniform substi-
tution or use axiom schemes. The matrix method requires this
because one must be able to substitute all the matrix values
for each propositional variable.

The consistency shown by the matrix model is usually in all
three senses, that is, absolute consistency, consistency in the
sense of Post and consistency with respect to negation (c.f. [4],
pp. 137-138). If one prescribes that not all matrix values are
designated then, if the set of matrices form a model of a propo-
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sitional calculus, then the propositional calculus will be con-
sistent in the sense of Post and absolutely consistent. If the
propositional calculus has a negation ~ and, for each designat-
ed value d, the d — position of the ~ — matrix contains an
undesignated value, then the propositional calculus will also
be consistent with respect to the negation ~. However, if a
designated value d is not taken by any valid wiff, then that
d — position of the ~ — matrix need not contain an undesig-
nated value. One should also note that the propositional cal-
culus can be consistent with respect to negation without this
condition on its negation matrix holding.

As in [4], pp. 132-136, independence of an axiom of a propo-
sitional calculus can be shown by using a matrix model. The
independent axiom must be invalid in the model while the
rest of the axioms are valid and the rules preserve validity. In
a similar way, matrix models can also show that a given wff is
not provable from the axioms and rules of a propositional cal-
culus. This enables one to pin down a propositional calculus
in that one can show that certain wifs are provable and others
not provable. This may be the best one can do if there is no
decision procedure available.

If C is a monadic connective, D is a dyadic connective, ()
and v, and vy are values in a matrix model then let us call the
value in the vy — position of the C — matrix, C (vy), and the
value in the (vy, vg) — position of the D — matrix, D (v, vy).

(b) Assumptions about Matrix Models.

Henceforth, let us assume that each matrix model has at least
one designated value, to ensure that there are some valid wifs,
and at least one undesignated value, to ensure consistency in
the sense of Post. Also let us disregard matrix models with a
designated value which is not taken by any valid wiff because
these models would have the same set of valid wifs as a

() I consider only monadic and dyadic connectives in this paper be-
cause I am only concerned with practical examples of propositional cal-
culi. However, most of what I have to say using monadic and dyadic
connectives will generalise to n-adic connectives,
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model with the appropriate designated value undesignated and
because the disregarding of such matrix models serves to cut
down the number of matrix models that need to be considered
for the purposes of showing consistency and independence.

The number of matrix models that need to be considered can
also be reduced by using two further methods of showing that
two matrix models have the same set of valid wffs, assuming
the wifs are the same for each model. These two methods are
due to Kalicki, [5], pp. 176-7.

(a) If it is possible to identify some groups of the designated
values of a matrix model M or some groups of its undesignated
values without creating any inconsistency in the matrices, then
M and M’ have the same set of valid wffs, where M’ is obtained
from M by the above identification and by the subsequent
omission of the unnecessarily repeated rows and columns of
M. In this case, the matrix model M is disregarded in favour
of the simpler model M'.

(b) If matrix models M and M’ are such that

(i) M’ has n values and M has (n + k) alues, where k > 0
and M and M’ have n values in common,

(if) v is a designated value of M iff v is a designated value

of M’ or v is one of the extra k values of M,

(iii) if v; and v, are both values of M' and C and D are
monadic and dyadic connectives respectively, then C
(v4) in model M is the same value as in model M' and
D (vy, vo) in model M is the same value as in model M’,

(iv) if vy or vy is a value not in M’ and C and D are monadic

and dyadic connectives respectively, then C (v;) and
D (vy, vg) are both values not in M,

then M and M' have the same set of valid wifs. In this case,
the matrix model M is disregarded in favour of the simpler
model M'. An example of two such matrix models occurs in [2].
Halldén introduces a 3 — valued logic with the values, truth,
falsity and nonsense, where both truth and nonsense are de-
signated. His logic has the properties of M with 3 values and
2 — valued propositional calculus has the properties of M'.
Hence, for any wif A of the 2 — valued propositional calculus,
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A is valid in Halldén's 3 — valued logic iff A is valid in the 2
— valued propositional calculus.

(c) Weak and Strong Models.

In order for a set of matrices to be a matrix model M of a
propositional calculus P, as well as all the axioms of P being
valid in M, the rules of P must preserve validity in M. Harrop,
in [3], p. 275, calls such a model M, a «finite weak model of P»,
and such rules as «weakly satisfied in M». If, for each rule of
P, if one associates a value with each wif-scheme in the rule
and if the premises of the rule all take designated values then
the conclusion of the rule also takes a designated value, then
Harrop calls such a model, a «finite strong model of P», and
such rules as «strongly satisfied in the model». It is clear that
every finite strong model is a finite weak model. Harrop also
indicates that every derived rule of P is weakly (strongly)
satisfied in every weak (strong) model of P. For the purpose
of finding matrix models, I will be mainly concerned with
strong models because these are more intuitive models in that
they mirror the intended interpretation more accurately than a
model which is not a strong one. Also, the conditions imposed
by a rule on the matrices of a strong model are more clear cut
and facilitate the finding of such models by using a computer.
It is only when one cannot find an appropriate strong model
that one need look for models that are not strong.

To obtain an example of a condition imposed on a matrix of
a strong model by a rule, consider a propositional calculus with
a connective — such that - A, - A—=B= 1 B is a rule.
Hence, for any designated value d and d,, and for any value v,
such that — (d, v) = d;, the value v will be designated. There-
fore, if v is undesignated, then d; would be undesignated, given
that d remains designated and — (d, v) = d;. That is, for all
designated values d and all undesignated values u, — (d, u)
is undesignated.

Another example can be obtained by considering a propo-
sitional calculus with a connective & and a rule - A, - B=
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+ A & B. Then, for all designated values d; and dg, & (d;, dy)
will be designated.

(d) A Result about Rules Sirongly Satisfied in a Model.

If M is a strong matrix model of a propositional calculus P,
then the condition imposed on M by a rule +~ Ay, ...,  Jp =
+ B of P is the same as that imposed by an axiom A; & ... &
A, D B, where

(i) each distinct wff-scheme in 4, ..., J,, B is replaced
by a distinct propositional variable to obtain Aj, ...,
A,, B, respectively,

(ii) for all designated values d and d;, and undesignated
values u and uy, & (d, d;) is designated, & (d, u) is
undesignated, & (u, d) is undesignated, & (u, u;) is un-
designated, o (d, d,) is designated, > (d, u) is un-
designated, o (u, d) is designated and > (u, u) is
designated,

and (iii) if connectives satisfying the property (ii) are not al-
ready present in P, the connectives & and o, satis-
fying (ii) would have to be added to P.

This is so, because A; & ... & A, D B is valid iff, for all assign-
ments of values to the propositional variables in A, ..., A,, B,
if Ay, ..., A, all take designated values then B takes a design-
ated value, i.e. for all assignments of values to the wff-schemes
in Ay, ..., Ay B, if Ay, ..., A, all take designated values then
P takes a designated value, i.e. Ay ..., - A= B is
strongly satisfied in the strong model M.

(e) Equivalence of Values of a Strong Model.

Let a propositional calculus P have a connective — and have
the following theses and rule:
(@) p—>p
(i) p>gq—>.gq—=>r—>.p-—>r
(iii) p—>gq—>.1—>p—>.1r—>q
(iv) For all monadic connectives C,
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either p—>gq—. Cp—>Cq
or p—>qg—. Cq—Cp.

(v) For all dyadic connectives D, excepting —,
either p—>q—>.pDr—qgDr,
or p—>q—.qDr—=pDr,
and either p—>q—.rDp—>rDgq
or p—>q—>.rDgq—=rDp.
(vi) - A, -mA—>B= B.
[The wifs in (ii), (iii), (iv) and (v) can also be in rule form,]

Let the values v; and v, of a strong model M of P be called
equivalent, symbolised as vy <> v, iff — (vy, Vo) and — (va, Vi)
are both designated. Since p — p is valid in M, for all values
v, = (v, v) is designated and < is a reflexive relation. Clearly,
by the definition, <> is a symmetric relation. Since p—>q—.
q—>r—.p—ris valid in M and M is a strong model, for all
values vy, ve and vg, if = (vy, Vi) is designated then, if — (vs, v3)
is designated then — (v, vy) is designated, and also, if — (v3,
vg) is designated then, if — (v, vy) is designated then — (vg, vy)
is designated. Hence <> is a transitive relation and an equival-
ence relation. The set of values of M can be divided up to
form equivalence classes using the equivalence relation <.
Note that a designated value cannot be equivalent to an un-
designated value.

Let A (py ..., pn) be a wif and assign values vy, ..., v, to each
of its propositional variables py, ..., pn, respectively. Let the
wif A take a value v'. If any of the values v, ..., v, are replaced
by an equivalent value then the value taken by A will be
equivalent to v'. The proof of this is by induction the num-
ber of connectives in A. Using (ii), if v; <> vy then — (v, v3) ©
—> (vg, vg), and, using (iii), if vy <> vy then — (vy, vy) €& — (v, V).
Using (iv), if v; <> vy then C (v4) < C (vg), for each monadic
connective C. Using (v), if v; <> vp then D (v, v3) < D (vy, V)
and D (vs, v4) © D (v, vg), for all dyadic connectives D.

Hence, one can form a strong model M’, by replacing each
equivalence class of values of M by a single value and de-
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signating those values that correspond to equivalence classes
of designated values, such that each matrix of M' can be con-
sistently determined and such that M and M’ have the same set
of valid wffs. Hence, without loss of generality, one can dis-
regard such matrix models M in favour of such matrix models
M'. One can, then assume that no two values are equivalent
and also that if A— B and B— A are both valid then, for each
valuation of their variables, A and B both take the same value.

Let P be a propositional calculus with theses (i) to (v) and
rule (vi), as above. Let M’ be a strong matrix model of P with
no two values equivalent. Let the values of M' be 1, 2, ..., n.
Then, if p&p—p? and p—>p & p are theses of P, & (v, v) = v,
for all values v. If p—> ~ ~ p and ~ ~ p—>p are both theses
of P, then ~(~ (v)) = v, for all values v, and there is a one-one
correspondence between values v and their negations ~ (v). If
+ A, - ~ A= Bis a (derived) rule then, for all designated
values d, ~(d) is undesignated. If pvp—p is a thesis of P,
then, for all undesignated values u, v (u, u) is undesignated. If,
as wellas pvp—>p, pv ~ p is also a thesis of P, then, for all
undesignated values u, ~ (u) # u. (%

Thus, combining these results, for any propositional calculus
with theses (i) to (v) above, the rule (vi), the theses p—> ~ ~ o
~ ~p—=>Dp, PVPp—>p, pv ~p, and the rule - A, - ~ A=
+ B, the only matrices that need to be tested for strong models
of this system have an even number of values, 2n, and a
negation ~ such that ~ (v) =2n +1—v, wherev=1,...,2n
The designated values are 1, ...,d, where 1 < d <n.

The number of possible matrix models can usually be re-
duced using permutations of the designated values and also of
the undesignated values, such that there is no change in the set
of valid wffs. If ~ (v) = 2n 4+ 1 — v, where the values v range
through 1,...,2n, then any permutation of the designated
values completely determines the appropriate permutation of
the undesigned values which are negations of the permuted
designated values.

(*) Assume that the appropriate connectives are in P.
(*) This result is due to G. Fitzhardinge.
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(f) An Example.

Let us now consider an example to illustrate the foregoing
theory. Angell, in [1], axiomatises a propositional calculus P,
and shows that it is consistent by using a 4-valued strong ma-
trix model. Consistency needs to be shown for this system be-
cause it cannot be interpreted in the 2-valued propositional
calculus, in any obvious way.

The axioms and rules for P,; are given on pp. 328-9 of [1],
and the theorems and derived rules that I will need are given
on pp. 329-334. Angell shows that all the theses of 2-valued pro-
positional calculus are derivable in P4;. Let us now determine
what conditions can be placed on strong matrix models of P
(assuming that there is at least one) by the axioms, rules, theses
and derived rules of P,;.

Since - A, - B= +~ A&B () is a rule, for all designated
values d; and dy, & (dy, ds) is designated. Since - A, - A D
B = B is a derived rule, for all designated values d and all
undesignated values u, D (d, u) is undesignated. Since p&q
D p is a theorem, for all undesignated values u and all values
v, & (u, v) is undesignated. Since q&p D p&q is a theorem,
for all values v and all undesignated values u, & (v, u) is un-
designated. Since + A, - ~ A= B is a derived rule, for
all designated values d, ~ (d) is undesignated.

Theses (i) to (v) and rule (vi) of the previous section all hold
for = and hence one can assume that no two values in the
matrix model are equivalent. Also, since - A, - A— B = B,
for all designated values d and all undesignated values u, —
(d, u) is undesignated. Since - p—> ~ ~pand - ~ ~ p—p,
~(~(v)) = v, for all values v. Since ~ (p—>q)— (~ q— ~ p)
and + (~ q— ~p)=> (P—>q), = (v, Vo) = => (~(Vs), ~ (v1)),
for all values v; and v,. Since - p&q—>q&p and + q&p—>
P&q, & (vy, Vo) = & (v, vy), for all values v; and vs.

Since ~ p—>p, = (v, v) is designated, for all values v. Since
-~ (@P—=>~p) ~(=(v, ~(v) is designated and hence —»
(vi ~ (v)) is undesignated and takes a value u such that ~ (u)

(*) I will use "~ for Angell's '—' and ‘&' for Angell's '.".
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is designated, for all values v.

There is no way of using the fact that all the theses of 2-
valued propositional calculus are derivable in P,; to show that,
for all undesignated values u, ~ (u) is designated. The reason
is that there are matrix models of 2-valued propositional calcu-
lus where there are undesignated values u such that ~ (u) is
undesignated. Such a matrix model is the product matrix model
of the two-valued model of propositional calculus with itself,
as in [6], pp. 115-6. Here, only the value 'l is designated while
the values '2', '3' and '4' are undesignated, ~ (2) = 3 and
~ (3) = 2.

Let us consider 4-valued matrices with 2 values designated.
This seems the next best after 2-valued matrices with 1 value
designated, which cannot be used to form a model of P,;.
Let the wvalues be '1', '2', ‘3" and '4' and let '1' and '2' be
designated. Then the ~ -matrix must be:

~

*1 | 4
*2 13
3|2
4 {1

Hence, for all undesignated values u, ~ (u) is designated and
~ (v) = 5—w, for all values v. Also —> (v{, v5) = — (5— Vs,
5—wv,) for all values v; and vs, which means there is sym-
metry across the cross-diagonal of the — — matrix. Also
— (v, 5—v) is undesignated for all values v, which means
that the values along the cross-diagonal of the — — matrix
are all undesignated.

Such matrix models of P,y will have the following form,
using ‘d" or 'u’ to show that a matrix place is occupied by a

~ & 1 2 3 4 - 1 2 3 4
*1 14 *1 d d u u *1 d u u
*2 13 *2 d d u u *2 d u u
3 |12 3 u u u u 3 u d

4 1 4 u u u u 4 u d
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designated value or by an undesignated value, respectively.
There is symmetry of values across the main diagonal of the
&-matrix and symmetry of values across the cross-diagonal of
the — — matrix.

Next I will consider various ways of filling in 'd’ 's and 'u’'s
into the vacant positions of the — — matrix.

a) Let = (4, 2) be undesignated. Then, by symmetry, —
(3, 1) is undesignated. Hence, for all undesignated values u
and designated values d,—> (u,d) is undesignated. Consider
Angell's axiom 7, i.e. (p—>q) = ~ (p & ~ q), with p taking an
undesignated value u and with q taking a designated value d.
Then ~ (p & ~ q) takes a designated value while p — q takes
an undesignated value. Hence (p—>q)— ~ (p & ~ q) takes
an undesignated value and such a set of matrices cannot form
a model of P,;. Hence ~ (4,2) must be a designated value.

(b) Let — (4, 2) be designated. Then, by symmetry, — (3, 1)
is designated.

(i) Let — (2, 1) be designated. Consider axiom 1, i.e. (q—>1)
— ((p—> q) = (p — 1)), with p taking the value 4, q taking the
value 2 and r taking the value 1. Since — (2, 1) is designated,
= (—(4,2), = (4, 1)) must be designated. Since — (4, 2) is de-
signated, — (4, 1) is designated. But — (4, 1) is undesignated
and hence — (2,1) must be undesignated. By symmetry, — (4,3)
is undesignated.

(if) Let — (1, 2) be designated. Consider axiom 1, i.e. (q—71)
—((p—>q) — (p—1)), with p taking the value 3, q taking
the value 1 and r taking the value 2. Since — (1, 2) is desig-
ated, = (—=>(3,1),— (3,2)) is designated. Since — (3,1) is
designated — (3, 2) is designated. But — (3, 2) is undesignated
and hence — (1, 2) is undesignated. By symmetry, — (3, 4) is

undesignated.
The — — matrix can now be filled in as follows:
— | 1 2 3 4
*1 d u u u
*2 u d u u
3 d u d u
4 u d u d
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Note that no two values are equivalent.

The total number of sets of matrices that the computer
needs to consider for models of P, is now 2%, i.e. approxima-
tely 10% or one million. This number of possibilities can easily
be handled by a computer and saves one working out a
possible matrix model by hit and miss methods which involve
a lot of tedious checking of axioms.

Il1. The Working of the Computer Program

Consider a propositional calculus P, with certain axioms,
rules and theorems that are to be checked for wvalidity,
invalidity or preservation of wvalidity in wvarious sets of
matrices, One only checks for invalidity of a wff when de-
termining whether it cannot be derived from the axioms and
rules of P. The computer can only check strong matrix models
of P and the rules to be checked are always put into the form
of a wff, as in section (d) of the Introduction, and the appro-
priate connectives & and o are added if not available in P.
The axioms, rules and theorems of P that are checked are
carefully determined so as to make the computer time as short
as need be. However, the computer can be used to find matrix
models that are not strong, but independent methods must be
used to show that the sets of matrices found by the computer
are indeed weak matrix models.

The range of values for each matrix position is read into
the computer and it increments these to obtain all the sets of
matrices to be considered. These ranges of values have to be
determined by doing similar preliminary work to that done in
section (f) of the Introduction.

(a) Conditions Imposed on the Matrices

There are two types of conditions that can be imposed on a
particular set of matrices established by incrementation as
above. These conditions are checked before any of the axioms,
rules or theorems are checked.
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The first type of condition is called an equivalence condi-
tion, and this ensures that a certain position of a cer-
tain matrix contains the same value as another posi-
tion of the same or another matrix. In the example in
section (f) of the Introduction, & (v, vo) = & (v3, vy), for all
values v; and vy, and this can be ensured by six equivalence
conditions, viz. the ones ensuring & (1,2) = & (2,1),& (1,3) =
&(3,1),&(1,4) = &(4,1),&(2,3) = &(3,2),& (2,4 = &(4,2)
and & (3,4) = & (4, 3). Thus equivalence conditions can take
account of symmetry in a matrix, which is not accounted for
in the ranges of values read in for each matrix position.

The second type of condition is called an if-then condition,
and this ensures that, if a certain position of a certain matrix
contains a certain range of values, then certain other positions
of the same matrix or other matrices contain certain ranges
of values. This condition is much more flexible than the equi-
valence condition. In the above example, one can show,
using ~ (p—>q)—> (p&r—>q&r), that, if &(3,1) = 3 then
&(1,1) = 1 and if & (3,1) = 4 then & (1,1) = 2. This can be
ensured by two if-then conditions where the ranges of values
consist of one value only and where there is only one «then»
per «if». If-then conditions can also be used to ensure the con-
sequences of trying out a value or a range of values in a cer-
tain matrix position.

After determining the ranges of values for each matrix po-
sition, the equivalence conditions and if-then conditions, one
should weed out any wifs to be checked that are made re-
dundant by any of these conditions.

(b) Grouping of Wifs and the Use of Cases

Two further refinements can be made to cut down the com-
puter time. Consider the set W of wiffs of P that are to be
checked. W can be divided up into mutually exclusive groups
Wi (i = 1,2, ..) such that in each group only members of a
certain subset C; (i = 1,2, ...) of the set C of all connectives
in P appear and each member of C; appears at least once in
Wi. Also, when checking the wffs of a particular group,
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several cases may be considered so that several sets of ran-
ges of values for the matrix positions can be read into the
computer, '

Each group W; of wffs is checked for validity (or invalidity)
in the sets of matrices, independently of the wffs in other
groups, so that the only matrices the computer needs to con-
sider are those for the connectives in C;. For ease of calcula-
tion, consider the case of two groups W; and W, and two
corresponding sets of connectives C; and C; such that C; o
Cs and C; = C. Also, let there be no conditions imposed on
the matrices that affect both a matrix for a connective in C
and a matrix for a connective in C— C;. Let the number of
possible sets of matrices for the connectives in C; be N; and
the number of possible sets of matrices for the connectives
in C be N. If the number of possible sets of matrices for the
connectives in C—C; is D; then N = N;D,. Let the number
of sets of matrices that all the wffs in W; are valid (or invalid)
in be M;. Then, for group W,, the number of sets of matrices
for the computer to sift through = M;D,. The total number of
sets of matrices for the computer to sift through = N; + M;D,

M M 1
= ND;+—.N = N(—+—1). M, is likely to be

N; : N; Dy

much smaller than N; because many of the N; possible sets
of matrices will be rejected by the wiffs in Wy. Depending on
the conditions on the matrices for the connectives in C — C;,

M. 1
D, is likely to be large. In most cases N ( -+ ——I-)—) will be
1 1
. M, 1
much smaller than N, and in almost all cases N ( +—)

Ny D,
will be less than N. Hence computer time will be saved by
such grouping of the wfifs.

There is a choice, for the sets of matrices that all the wifs
in a group are valid (or invalid) in, of either storing them on
disk (°) so that they can be incremented from there for another

(®) Magnetic tape can be used instead of disks, if available.
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group, or branching to another group as soon as each set of
matrices is found so that it can be tested further in conjunc-
tion with the new connectives of that group and branching
back to the original group afterwards. This choice gives rise
to various methods of proceeding and the user of the program
can indicate in the data fed into the computer which method
he prefers. Also, whether all possible groupings of wffs are
used or not is up to the user to decide by means of the data.

One method would involve the use of no disk storage at all.
If Wi, Wy, ..., W, are the groups in order and C; C,, ..., C,
are the corresponding sets of connectives then C; c C; < Cy
c ... € C, = C, because as each set of matrices satisfying the
wifs in W; is found, the computer branches to the next group
so that the set of matrices can be tested further in conjunction
with other connectives, i.e. with the connectives in C;,; — C;.
This is a practical method with few compications and has the
advantage that it may lead to a quick solution if one of the
first sets of matrices obtained satisfying the wffs of W, turns
out to be part of a set of matrices satisfying all the wifs.

Another method would involve the use of disk storage but
with no two groups of wiffs with properly intersecting sets of
connectives. If W;, Wi,1, Wj.s are three groups in order and
C;, Ci.1 Ci,e are the corresponding sets of connectives such
that Ci nc., = & and C{ U Ci...i c Cug. then the sets of
matrices satisfying the wifs of W; and the sets of matrices
satisfying the wiffs of W;,; can both be stored on disk and
can be incremented from there for group Wi, along with the
matrices for any other connectives that might belong to C;, .
The sets of matrices satisfying the wffs of W; must be stored
on disk, but when a set of matrices satisfying the wfs of
Wi, is found the computer can branch to the group Wi,s
for further testing, instead of storing these sets of matrices
on disk.

If W; and W;,, are two groups in order and C; and C;,; are
the corresponding sets of connectives such that C; c C;,y,
then the sets of matrices satisfying the wffs of W; can be
stored on disk and incremented for group W;,; but it is not
necessary to store the matrices on disk in this case.
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A third method would involve the use of disk storage with
two groups of wifs with properly intersecting sets of con-
nectives. If W;, Wi, ;, Wi, are three groups in order and C;,
Ci+1, Ci,o are the corresponding sets of connectives such that
Ci n C“.l + @, Ci——Ci+1 + Q, Cj+_|—Ci * @ and Ci U
Ci.1 = Ci,s then the sets of matrices satisfying the wifs of
W; and the sets of matrices satisfying the wifs of W;,; must
both be stored on disk () and then the computer matches up
the common connectives to form sets of matrices for all the
connectives in C;,; and increments them for the group Wj,,.
Note that no extra connectives may be present in C;,; that are
not present in C; or C;, .

If a group of wifs contains some connectives whose matrices
are determined from the ranges of values for each matrix
position and optional equivalence or if-then conditions then,
if these ranges of values and conditions can be reduced to a
number of sets of ranges of values and conditions so that the
number of sets of matrices the computer has to consider is
reduced, then each of these sets of ranges of values and con-
ditions can be treated separately in a loop for cases, which is
inside the loop for groups of wffs. To simplify the program-
ming, one can specify that there be only one case for groups
of wifs where the sets of matrices satisfying them are brought
forward into the next group for further testing .

IIl, The Computer Program in more Detail

(a) General

The range of problems one can tackle on the computer de-
pends largely on the speed of the computer and the extent to
which one uses conditions on the matrices and uses grouping
of the wifs to be checked. However, I have written a program
in the SPS language for the IBM 1620 (Model II) computer,

(*) A program could be constructed where the sets of matrices satisfying
the wifs of W;, are not stored on disk or where C; U C; ; < Cj, g but
the programming is simplified by the above stipulations.
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one of the earlier and slower computers. A wider range of
problems could be tackled using a faster computer than this
one.

SPS is a machine language but with each statement on a
separate card, each machine operation or definition alphabe-
tically symbolised, and each machine core address that is
required alphabetically symbolised or referred to numerically.
SPS also has some error messages to facilitate the debugging
of the program and allows indirect addressing, which enables
one to perform calculations on the core addresses and gives
one more control in determining where instructions and data
are to be put in the machine core.

My program actually consists of two programs, called AX-
CORE and MATMOD, respectively. AXCORE reads in the
wifs to be checked and places in the top end of the machine
core a piece of program, which is the most efficient routine
for checking the wifs for validity (or invalidity) in a set of
matrices. The reason why this routine must be so efficient is
that it is inside all the loops of the program which increment
sets of matrices. MATMOD consists of everything else needed
in the program and branches to and from the piece of program
written by AXCORE, whenever a set of matrices is ready for
testing against the wffs and whenever the testing is completed,
respectively.

Any language used for this program should preferably be a
machine language with mnemonics and with indirect address-
ing. If a language such as Fortran is used, the program would
be less efficient and hence the range of problems it could
tackle would be smaller.

(b) Flow Chart of the Program

The following is a flow chart of the program, which leaves
out most of the detail but contains the main loops.

START

Read in the wiffs
for A XCORE
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Execution of A XCORE

Read in data to determine
whether wifs are to be
valid or invalid

Read in data concerning
the numbers of values

Initial setting for the
number of values

Read in data concerning
the numbers of
designated values

Initial setting for the
number of designated values

Read in all data
relevant to

grouping

Initial setting for the
group number

Initial setting for
the case number

Read in the ranges of
values for each matrix
position
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Read in the data for
equivalence conditions

Read in the data for
the if-then conditions

Initial setting for the values
given to each matrix position

Are the
equivalence
No conditions
satisfied ?

Yes
Are the
if-then
No conditions
satisfied ?

Yes

Routine for checking the wifs
against the set of matrices

Is each Yes Is the
wif valid appropriate
(or invalid) in control card
the set of present ?
matrices ?
Yes
No No

Print the set
of matrices
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Increment the values
given to each matrix No
position

Increment the
case number No

Increment the
last group No

Increment the number
of designated values No

Increment the number
of values No

Is this
the last setting

for the values given

to each matrix
position ?

Yes

Is this
the last case
number ?

Yes

Is this the
group number
number ?

Yes
Is this the
last number
of designated
values ?

Yes

Is this the
last number
of values ?

Yes

END

251



252 ROSS T. BRADY

Note that there is no account taken of branching from one
group to another due to sets of matrices satisfying the wifs
of one group being tested further in the next group. Also,
when asking whether each wif is valid (or invalid) in the set
of matrices, this is asked of each wff in turn and as soon as
one wif is found not to be valid (or invalid) then the computer
branches to ask whether this is the last setting for the values
given to each matrix position.

(c) Control Cards, Program Switches and Error Messages

Use of control cards, program switches and error messages
is optional and they are added for the sake of convenience,
and for ease of correcting any errors in the data.

The following are suggestions for control cards. One con-
trol card could cause the printing of why each set of matrices
satisfying all the other conditions did not satisfy one of the
wifs. Another could determine whether to print the sets of
matrices satisfied by all the wifs of a group, or not. Another
could determine whether to stop after printing the first ma-
trix which satisfies all the wffs, or not. Each of these control
cards could alternatively be replaced by appropriate data, but
it depends on convenience which is preferable.,

The following are suggestions for program switches. Switch
3 could be used to print out why the set of matrices the
computer is now dealing with does not satisfy one of the wffs
provided it satisfies all the other conditions. This switch would
only be effective when the control card which does not cau-
se the above printing is present. Switch 2, if on, could cause
the printing of the set of matrices being considered at the
time, followed by the computer stopping. If switches 1 and 2
are on simultaneously, the computer could then branch to
monitor control instead of stopping after the printing.

The following are suggestions for error messages, which
would be printed out if there is one of a number of possible
mistakes in the data read in to the computer. For the AXCORE
data, one could have the message, WRONG SYMBOL IN
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AXIOM NO. xx, followed by the computer branching to
monitor control, if such a wrong symbol appears. Also, one
could have the message, AXIOM NO. xx IS ILL-FORMED,
followed by the computer branching to monitor control, if
such an axiom is ill-formed.

One can put into the MATMOD data certain data checks in
the various loops to ensure that no data has been missed or
that no excess data has been added. Appropriate error mes-
sages would be needed if such an error arises. The computer
could then go on to the next number of designated values.
There are also various other possible error messages which
can be used to show that there has been a wrong sumbol
used in a piece of data or that none of the allowable alter-
natives in a piece of data are present. Usually, the computer
would then go on to the next number of designated values.

La Trobe University Ross T. Brady
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