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This note continues [8], which introduced word-construc-
tions.

In section 1 we give an improved definition of word-con-
structions; it is essentially the same as that in [8], but the
new formulation is more model-theoretic. We also introduce
an associated functor, which seems to be important.

In section 2 we prove the main properties of word-construc-
tions: the uniform reduction theorem (Theorem 11), the effec-
tivity theorem (Theorem 13), the preservation theorem
(Theorem 14), and some categorical properties. Section 2.2
contains a small correction to the Theorem of [8].

In section 3 we prove a normal form theorem (Theorem
22) which characterises those functors which are naturally
isomorphic to the associated functors of existential or positive
existential word-constructions. The functors in question are
simply those which preserve filtered limits. The proof of the
normal form theorem is by way of left Kan extensions. Less
technically, this section is about the precise overlap between
newer (categorical) and older (syntactic) approaches to the
foundations of algebra.

Finally in section 4 we relate our work to other people's.
The local functors of Feferman [4] turn out to be associated
functors of existential word-constructions, so that the preser-
vation theorem for these functors is simply a weak form of
the preservation theorem for word-constructions. (At least
this holds good up to the level of generality which we have
pursued in this paper — for example we have ignored singular
cardinals.) The relationship to some functors defined by Eklof
[2], [3] proves more complex. We also relate word-construc-
tions to Gaifman's single-valued operations [7]. Answering two
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questions of Gaifman, we show that there are first-order ope-
rations which are not expressible as word-constructions.

I thank Paul Eklof, Solomon Feferman, Haim Gaifman and
P.J. Higgins for some valuable correspondence and preprints.
I also thank Paul Henrard and the Université Catholique de
Louvain for organising the very pleasant conference at which
some of these results were first presented.

1: Word-constructions and their associated functors

1.1, Generators and relations

Let =, Q be similarity types of siructures, with correspond-
ing languages L (X) etc. By a construction from Z lo Q,
oo N

we mean a map which takes some or all E-structures to
Q-structures. Word-constructions are a formalisation of the
intuitive notion of constructions by uniformly definable gene-
rators and relations. We shall define word-constructions in
section 1.3; sections 1.1 and 1.2 will cover some preliminaries
from logic.

By a presentation (more precisely, an Q-presentation) we
mean an ordered triple <Q', X, ®> where

Q' is a similarity type extending Q;

X is a set of closed terms of L(Q') the generators);

¢ is a set of atomic sentences of L(Q") (the relations).
The presentation <<Q', X, ®> defines an Q-structure B =
df <Q', X, ®>, possibly empty, as follows. Let X be the
closure of X under the function symbols of Q; individual con-
stants count as O-ary function symbols. Define a binary re-
lation ~ on X by

c~Tiff g = 1 ()

for each o,t € X. Then ~ is clearly an equivalence relation;
let 1~ be the equivalence class of 1, and let |B| be the set
of all equivalence classes 1t~ (1 € X).
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For each n-ary function symbol F of Q, define Fy: |B|*—
|B| by

B A and) = (B v 1 )

for each n-ary relation symbol R of Q, define Ry  |B|® by

<1:';,...,1:n> ERB iff @t:R‘tl...tn. (3)

It is easy to verify that Fy and Ry are well-defined.

B is defined to be the Q-structure with domain |B|, func-
tions Fg and relations Rz, We say that B is the Q-structure
df <Q', X, ®> presented by the presentation <<Q' X, ®>>.

LEMMA 1. With the above definitions, if @(vy, ..., v,) is an
atomic formula of L(Q), and v, ..., 1, € X, then

B |=cp[r:,..., r:] iff (I)t=q)(1:1,...,rn). (4)

Proof. We consider first the case where ¢ is an equation,
and we use induction on the number of occurrences of func-
tion symbols in q. If ¢ is "v; = v;", then (4) is (1). If ¢ is
"vi = F (o (Vg ...,vy))", then by induction hypothesis we have

B = (o(v,, ...,vn) = vnH)[r’:, ...,‘I.':, 0 (T -ems ru)"]
i © =0 (1 oo T) = 6 (Tor ey T). 5)

Since the right-hand side of (5) holds, so does the left. There-
fore

BEg [t;', e T

iff BIZV1 = F[VDH]) [11,...,tn,0(12,...,tn) |

iff 1= FBU(TS,...,Tn}
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iff v = F(o(5, ...t ))" by (2)
iff @ = (ty ... by (1).

The remaining cases are similar.
If ¢ is of form Rv; ... v, then (4) is (3). Finally if ¢ has form

—
Ral...ck we consider the formulae Rv; ... vy, Y, = G(V;)'

e
V=0 (vk].

[1

The property of Lemma 1 characterises df <Q', X, ®>> up to
isomorphism. We shall need this fact in a strong form, which
requires a broader setting, as follows.

By a homomorphism f: A — B of Q-structures, we mean a
map f: |A|— |B| which preserves atomic formulae from
A to B. In later sections Q may be a many-sorted similarity
type, in which case we require homomorphisms to respect the
sorts. If T is a theory in L(RQ), we write (Q, T)-Str for the cate-
gory whose objects are the Q-structures which are models of
T, and whose morphisms are the homomorphisms between
these models. In particular Q-Str is (Q, O)-Str, the category
of all Q-structures; O-Str is Sef, the category of sets. Note
that we allow the empty structure throughout, provided Q
has no individual constants.

By a strict universal Horn sentence we mean a sentence of
form Vvi... Vvi[gt A ... A gx—> ] where @ ..., qy are
atomic. Putting k = O, this includes universally quantified
equations. If T is a set of strict universal Horn sentences of
L(®), then (Q, T)-Str is called a quasivariety. A theorem of
Mal'cev ([12] Theorem 3, p. 419) characterises the quasiva-
rieties (R, T)-Str as the full subcategories of Q-Str which are
closed under isomorphism, substructures and reduced pro-
ducts (including the trivial product 1). In particular every
quasivariety is left complete; by the adjoint functor theorem
quasivarieties are right complete as well.
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Let (Q,T)-Str be a quasivariety. The Q-presentation
<Q', X, > defines an Q-structure B = df; <Q', X, &> by
exactly the same definition as above, except that (1), (3) res-
pectively are replaced by

c~1 iff O, TEo =1 (Nr
<r:,...,1::>ERB iff @,Tr:er...rn. (3)r

We define an <Q', X, ®>-structure in the category (@, T)-Str
to be a pair (A, *) where A is an object of (€, T)-Str and * is a
surjective map *: X — |A| such that for every atomic forrhula
-@(vy, ..., v;) of L(Q) and terms 1y, ..., 1, € X,

OTEQ(t, ...t = AEo[u* ... % (6)

THEOREM 2 (Dyck's Theorem). Let (R, T)-Str be a quasi-
variety, <Q', X, &> an Q-presentation, B = df; <Q', X, 0>
and ~:X—> |B| as above. Then

a. (B, ~) is an <Q', X, ®>-structure in (Q, T)-Str;

b. for every <Q', X, ®>-structure (A, *) in (Q, T)-Str, there
is a unique homomorphism f: B— A such that * = f~;
f is surjective.

Proof. a. We may assume that T is a set of strict universal
Horn sentences. Let ® be the set of all atomic sentences vy of
L(Q') such that ® T = y. Then B = df <Q', X, >, so that
(B, ~) satisfies (6) by Lemma 1. We must show also that
B T. Let Vv;[g(vi) = v (v4)] be a sentence of T. Since ~
is onto |B|, we can verify that B is a model of this sentence
by noting that for each t € X,

BEgll =2 0,TEe@W = 0TEy@ = BEyF] (7
by Lemma 1. A similar argument applies to all sentences of T.

b. ~ is onto |B|, and ¢~ = 1~ implies ®, TE=0 = t by
(1)1, hence o* = 1* by (6). Hence the condition * = f ~ de-
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fines a unique map f: |B| = |A|. f is surjective since * is.
‘We must show that f is a homomorphism. Suppose FB (r:'. T

T7) = o"; then ®,TkEFr..t =0 by (2) and (1), so
F,(r,* ...t,*) = ¢* by (6), and hence F, (f(z]), ..., (")) =

f (67). The argument for relation symbols is similar.

(]

Dyck's Theorem characterises (B, ~) up to isomorphism
as the initial <Q', X, ®>-structure in (Q, T)-Str. More im-
portant for us, Dyck's Theorem describes a canonical con-
struction for right limits in the category (R, T)-Str, as follows.

EXAMPLE 3: construction of right limits in quasivarieties.

Let (2, T)-Str be a quasivariety, D a small category and F: D —
(Q, T)-Str a functor. (We identify diagrams with functors.)

Let Q' be Q with an added individual constant ¢y, for each
object d of D and each element a € |Fd|. Let X be the set
of these added constants. Let ® be the union of the positive
diagrams in L(Q') of the structures Fd, together with all the
sentences

Caa = Cely) (y :d—e a morphism of D).

Since (Q, T)-Str is closed under substructures, Dyck's Theorem
asserts that (dfy <Q', X, ®>, ~) = Lim F. (We write Lim

—
for limit cones, and lim for limit objects.) We shall use this in
the proofs of Theorems 17 and 18 below.

In future we shall allow Q to be many-sorted; in this case

the set X of generators in an Q-presentation must be replaced
by a family (X5 The results of this section then

s asort of @

remain true, after some insignificant alterations.



A NORMAL FORM FOR ALGEBRAIC CONSTRUCTIONS II 435
1.2 Infinitary quasivarieties

Besides allowing the similarity types € to be many-sorted,
we may also extend the results of section 1.1 by allowing Q
to contain function and relation symbols of infinite arity. We
define the length of € to be the least cardinal x such that
every function or relation symbol of Q has arity <<=x.

Let % be a regular cardinal and Q a similarity type of length
< %. By a =-strict universal Horn sentence of L(Q), we mean
a sentence of form V {v:v eI} [A ®— ], where I is a set
of <<x variables, ® is a set of <\x atomic formulae of L(R),
and ¢ is an atomic formula of L(Q). Categories of form
(R, T)-Str, where T is a set of w-strict universal Horn senten-
ces of L(R2), will be called #-quasivarieties. The results of sec-
tion 1.1 hold for x-quasivarieties, after the appropriate nota-
tional changes.

With » and Q as above, let ® be a set of atomic sentences
of L(Q) and T a set of x-strict universal Horn sentences of
L(R). Consider the infinitary natural deduction calculus C
which has:

Axioms (i) 6 = ¢ where ¢ is a closed term of L(R2)
(i) @ where ¢ is a sentence in @

m(oa)u<a o =t (@<

Rules (iii)

B ) o
¢ =1
(iv)

T=0

e @<w

P

where A ¢ —> 1 is an instance
a<p a

of a sentence € T
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We say @, T + v if there is a proof of ¢ in C.

THEOREM 4. Let %, ® T be as above. Then for every
atomic sentence 1y of L(Q), ®, T + y iff ®, T = .

Proof. Let X be the set of all individual constants of Q.
We may define B' = df <Q, X, ®> just as af, <@, X, o>,

but with ~ in place of k= in [I)T. (3)T. Replacing semantics

by syntax in the proof of Lemma 1, we can show that for every

— —>
atomic formula ¢(v) of L(Q) and sequence t of terms in X,

— —
B o[t ]iff T (7). 8)

The syntactic version of Theorem 2(a) shows B' = T. Hence if
®,TEvy, then B' =1y, so ®, T+ ¢ by (8). The converse is
proved as usual, by induction on the length of proofs.

(]

COROLLARY 5 (Strong compactness: cf. Stominski [17] IV
(2.10)) In the above situation, if ® Ty then there are
®y € ® and To S T, both of cardinality <<=, such that ®,,
To F .

Proof. Every proof in the calculus C has <<=* nodes.

(1

1.3. Word-constructions

Let » be a regular cardinal. Let =, Q be similarity types of
length < %, possibly many-sorted. A x-word-construction T’
from £ to Q is defined to be an ordered quadruple <X, Q,
(') I'> such that there is a similarity type Q'

s a sort of Q'

of length < » which extends Q, and

(1) for each sort s of Q,I"™ is a function whose domain is
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a set of terms of L(Q') with variables from L(Z); for

each term 1 € dom I'%, I'® is a formula of L  (Z) whose
T [=o )

free variables are among those in 1;

(2) I'**is a function whose domain is a set of atomic for-
mulae of L(Q2') with variables from L(Z); for each atomic
formula ¢ € dom I'*Y, F';t is a formula of LWM(E) whose

free variables all occur in g.

If I' is a »-word-construction as above, and A is a X-struc-
ture, then we define the Q-structure I'(A) to be df<<Q",
(X9) ®> where

s a sort of Q'

Q" is Q" with the elements of |A| added as new
individual constants,

- —
X* = {r(a):r € dom I"S,AI=I‘i[a]}. ©)

- —
® = {p(a):p e dom I'', AET%[a]l}.
P P

I' thus defines a construction A > I'(A) from = to Q; for bre-
vity we may also refer to this construction as I'.

Word-construction means: w-word-construction for some
regular cardinal x. Note that if %, A are regular cardinals and
<}, then every x-word-construction is also a A-word-con-
struction.

EXAMPLE 6. Let F be the function which takes each inte-
gral domain R to its field of fractions F(R). We express F as
an w-word-construction as follows. ¥ and Q shall both be one-
sorted similarity types, with function symbols + and . of
arity 2, and O of arity O. Q' shall have the extra 2-ary func-
tion symbol <,>. Labelling the one sort in Q as sort O, we put

1-‘O<v Vi =u Vi * O
Or V1
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It =g Vo.Vs = Vi.Va A vy +
<vog, Vi = <vy, V3>
OA vy F O

At =
Vo V>t <vy v = vy v

(Vo.vs T vo.vi).v5 = (vi.vg) . V4 A
Vi -+ OAvs = OAvy; = O

s = a
<vg, Vim> . <vg, V3> = <vy, V5o
(Vo.Vg).V5:(VI.Vg).V,;/\Vl#:OAV3¢O/\V5¢O

At =4 vo = O.
<V0, V1> = 0O SS9

It is often better to construe the field of fractions construction
as a map taking each integral domain R to the morphism

i:R— F(R) (10)

where i is the canonical embedding. This morphism can be
construed in turn as a two-sorted structure: sort O carries
F(R), sort 1 carries R, and i is a function from sort 1 to sort O.
I' is easily amended so that I'(R) is the morphism (10); it suffi-
ces to add to €' the function symbols +*, .*, O* of sort 1,
and the funciion symbol j from sort 1 to sort O, together with
the formulae

Flv =a Vo = Vo
0

F‘:: Fry = v Ede0+V1 = Vg
0 1 = Vg

By " _ =a Vo.V1 = Vg
Vo. Vi &= Vg

F‘:‘: = iy =a Vo = O
0 =

) = <ui T WA 20
o) — 1r V2
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Hodges [9] gives other worked examples of word-construc-
tions, including the construction taking each ordered field to

its real closure, and the construction taking each valued field
to its henselisation.

1.4 The associated functor

Every word-construction I' from = to Q gives rise to func-
tors, as follows.

If A is a subcategory of Z-Str, we define AI‘ to be the sub-
category of A whose objects are those of A, and whose mor-

phisms are those morphisms f: A — B of A which preserve all

the formulae I'* and I'** from A to B.
T P

Let f: A— B be a morphism of AI" ‘Write QJ’;, X;, tI)A for

the items of (9) occurring in the definition of I'(A); likewise
-—
Q, X8, ® for I'(B). For each r € domI™ and a in |A],
we have
— —
AEI®[a] = BEI®[fa]
T T
—> —
so that if t(a) EX;, then t(fa) e X;. Thus { induces a
= I - -

map f: X5 —> X}, viz. f(r(a)) = t(fa) for each r, a as above.
— - = —
Similarly f induces a map f; CDA—)(DB, viz. f(p(a)) = o(fa)

%
for each ¢ € domI'** and a in |A|. If o,rEXl and o ~,0
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then ® ko = 7; hence @ k= f(o) = f(r) and so T(o) ~ ).

Define I'(f) : [T(A)| = |T'(B)| by
L) ™4) = (™

By Lemma 1, I'(f) is a homomorphism, I'(f) : I'(A) — I'(B).
It f: A—>B and g: B— C are morphisms of AF, then the

composed map gf: A— C is also a morphism of AI" and we
have

I(gf) (™4 = (gf)~¢ = (g(f))~°
= I'(g) (f)™® = I'(g).T(H™*

Also if 1, is the identity morphism, 1,: A — A, then clearly
rMmy=1_.
S r'(4)

Hence the maps A > I'(A), f > I'(f) form a functor from
E-Strr to Q-Str; we call this the associated functor of T.

When there is no danger of confusion, we shall call this func-
tor itself I'. The functor I': Ar—> Q-Str defined above is sim-

ply the restriction to AI‘ of the associated functor.

The associated functor yields a neat device for showing that

certain constructions cannot be expressed as word-construc-
tions.

THEOREM 7. Let I' be a word-construction from I to Q,
such that for each Z-structure A, I'(A) contains a canonical
copy of A. Then the associated functor I': E-Strr — Q-Str is

faithful.

Proof. Suppose f: A— B is a morphism of E—Strr. By ca-
nonicality we have a commutative diagram
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f
|A| — |B|

Na "B

\L \L

IT(A) | T > |[T'(B)|

where ny, ng are injections. Hence f is recoverable from I'(f)
as ngl JI() N,

(]

Automorphisms preserve all formulae; hence if ' is as in
Theorem 7 and A is a Z-structure, then the associated functor
I' embeds the automorphism group of A in that of I'(A).

EXAMPLE 8. There is no word-construction I' such that
for each field A, I'(A) is the embedding e,: A— A of A into
its algebraic closure A. For suppose otherwise, and let A be
the field Q(X, Y, Z), where X, Y, Z are independent transcen-
dentals. A has an automorphism of order 3; by Theorem 7, so
has I'(A) and hence so has A. But a well-known theorem of
Artin and Schreier says that no algebraically closed field can
have an automorphism of finite order > 2.

A similar but slightly more careful argument shows that
there is no word-construction I' such that for each field A,
I'(A) is a field isomorphic to the algebraic closure of A.

How is AP related to A ?

EXAMPLE 9. There is no functor sending each group G
to its centre Z(G). Nevertheless there is such an w-word-con-
struction I'; the generator part of I is
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F?{ =gt VV; Vo.Vy = Vyp.Vo.
o]

GPI‘ has as morphisms the group homomorphisms f: G— H such

that £(Z(G)) € Z(H).
We call a formula ¢ of L (Z) positive existential (EI:' for
OO %

short) if ¢ is in the smallest set of formulae of L (Z) con-
CO%

taining the atomic formulae and closed under conjunction, dis-
junction and existential quantification; ¢ is called existential
(3,) if it lies in the smallest set containing the atomic and
negated atomic formulae and closed under conjunction, dis-
junction and existential quantification.

The word-construction I' is said to be 31+ (resp. 3 ) if all

the formulae I'°, I"‘;* are 3} (resp. 3 ) formulae.
T

If A is a subcategory of 2-Str, then we write A, for the
subcategory of A whose objects are those of A and whose
morphisms are those morphisms of A which are embeddings.

THEOREM 10. Let I' be a word-construction from X to Q,
and A a subcategory of Z-Str. Then:

a. if T is 3:', then AI‘ = A;

b, if T" is 34 then (Ae)r = A,

Proof. Homomorphisms preserve positive existential for-
mulae, while embeddings preserve existential formulae.

[]

What is perhaps more striking is that a partial converse of
Theorem 10 is also true, up to natural isomorphism of func-
tors, for a wide range of A including Z-Sir itself. This follows
at once from the Normal Form theorem to be proved below
(Theorem 22).
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2: Properties of word-constructions

2.1 Reduction of definable properties

The following theorem describes the central property of
word-constructions.

THEOREM 11 (Uniform reduction theorem). Let x be a
regular cardinal and T' a w-word-construction from X to Q.

r
Then for every sentence ¢ of L (Q) there is a sentence g
oOoN

of L (Z) such that for every Y-structure A,
ocox%

r
TNA) =g iff AEg .

Proof. Let Q' be as in section 1.3. For simplicity assume
Z, Q, Q' are one-sorted, with the single sort O. Let Tm be
the smallest set of terms of L(Q') which contains every t € dom
I'° and is closed under the function symbols of Q and under
change of variables from Low(Z). LOOM(E] is assumed to have

variables v (@ <<=x); we introduce new double-indexed vari-
[
a —
ables VB during the proof. If we write A =1y [a], we imply
1} [+
that any free occurrence of vﬂ in ¢ is matched by a term aﬁ

4
of the sequence a. We write FV(1), FV(g) for the set of
variables occurring free in 1, @.

For each formula ¢ of L  (Q) and each map w: FV(¢) = Tm
ooN

r
we shall define a formula ¢, of L () so that
COoX
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a

r
(1) every free variable of ¢, is of form v[3 where v &
a

FV(¢g) and Vg € FV(w(v ));

(2) for each Z-structure A and each appropriately indexed

— —
a in |A[, define b if possible as a sequéence of ele-
ments of |['(A)| whose a-th term (v, €EFV() is

a
(@, ,...)~, where w(v ) is t(v_,...); then
ﬁl o ﬁ1

) r - — —
AEg [a] iff: b is well-defined and I'(A) = @ [b].

w

The definition is by induction on the complexity of ¢, simul-
taneously for all w: FV(p) = Tm.

First, let Exr[w) be the formula

AN LT
v €domw o term of L(Q), Y ot (vY )
o — Y
wilVv e 1
(v,) = ol (v.),

t & domI' for each y
¥

—a

where v is the sequence of variables got from the sequence
Y

—
v by replacing each \A by the double-indexed wvariable
¥

o
v . Then
)
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—
AE EXI‘ (w) [a] iff for each v & dom w, if w(v ) is a term
o a

‘I:(VB v «..), then r(ag )T e T

1 1

-
iff b is well-defined.

Case a: g atomic. We write g, for the formula derived from ¢
by replacing each free occurrence of v in ¢ by an occurrence
o

of w[va) in which every occurrence of vﬂ is replaced by the
o
double-indexed variable V[i' We write Fm for the set of all

formulae got from formulae € dom I'*' by substituting arbi-
trary double-indexed variables for the free variables.
‘We put

T
P =a EXF (w) A

w

V = AN i
— —> Pafy )
FmQ{wu(uu)=a<ﬁ}l=fpw. u ——

b << w,
y € dom I'* for all a<<®
o

> —
where I'M (u ) is I‘;‘“;‘ with the variables u substituted for the
3P a o

o

-
corresponding variables of ¢y and u consists of all the free
«

—_
variables of the I‘i‘ (u ) which are not free in ¢,. Note that
o

o

we can restrict to 8 <<« by Corollary 5.

Case b: ¢ is —y. We put
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I r
¢ =a EXI‘(W)/\“"NJ )

W w

Case c: ¢ is/\fb. We put

r /\ r
P =a L I

w WE‘D w

Case d: ¢ is d{v :v e I}y. We put
o o

r I
Q =g \/ 3_11:(1|J )

w

x: I—=Tm

— o r

where u consists of the variables v _ free in with
X ] wlUx

v 1.
o

r
This completes the definition of ¢, as required. The theorem

r r
follows, when ¢ is a sentence, by taking ¢ to be qq.

T
Note that ¢ in the proof above has very much the same

w

r
structure as ¢; in particular ¢, 1is always a formula of

L (Z). We infer that if I' is a x-word-construction from X
(=l

to Q, and A, A' are Z-structures such that A = A’, then
COK
I'(A) = T'(A’). We shall sharpen this in section 2.4, by cal-
ool A
r

culating a bound on the complexity of ¢, in terms of ‘that
of .

2.2 Effectivity

Jensen and Karp [10] introduced Prim functions, partly as
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a tool for studying the syntax and semantics of infinitary lan-
guages. These functions are exactly what we need for classify-
ing the maps involved in word-constructions. When we say

—_
that a map b > f(b) is Prim (X ), we mean that there is a
—_
Prim (X ) function F such that F(b) = f(b) for all relevant b;

—
we extend [10] by allowing X to contain O-ary functions.

A relation is said to be Prim (;5) when its characteristic
function is. Jensen and Karp [10] list various Prim functions
and relations; we shall need a few more, and we leave most
of the checking to the reader. The functions and relations in
the following lemma are by no means the only ones we shall
use, but they are typical.

LEMMA 12. Let » be a regular cardinal, and Q a similarity
type of length < x. Define:

—_
Ro(A g, a) =4 A is an Q-structure, ¢ a formula of L~ (Q),
ooH
—_—

-
a a valuation for ¢ in A, and A = ¢ (a).
Fi (X) =g the closure of the set X of terms under the
function symbols of Q.

ﬁ
Fo (@, X) =g the set of all atomic sentences r( 1) where
r is equality or a relation symbol occur-

_)
ring in the formulge ® of L.  (Q), and =
COHn

is a sequence of terms from X.

Ry (2, T,y) =q @U{wy} is a set of atomic sentences of
L(?), T is a w-strict universal Horn theory
in me(Q), and @, T = .

Then Rg, ¥y, Fy, Ry are Prim (v, Q, £P< ).

%
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Proof. Ry, is a standard exercise. For F; we define

- =
G(f,y) = {terms f(1): v a sequence of terms € vy},

H(x,a) = xU U {G(f, H(x,p)) : f a function symbol of Q,
B al
Fi(X) = H(X, »).

F; follows readily. For Ry we use the fact (= Theorem 4) that
®, T = y iff ¢ has a proof P from ®, T in the calculus /. P is
then a partially ordered set of atomic sentences from the set
zZ = F@UTU{y}L{reTC@®UTU({y} : vis a term of
me(Q) }). indexed, say, by ordinals <<x. We therefore have

®TEy iff (3PP _ (2X% X (zX«) [Pis a proof of
'
D, T+ vyl
[]

THEOREM 13 (Effectivity theorem). Let x be a regular car-
dinal, and T' a »-word-construcfion from X to Q. Then both

r
maps A P I1'(A) and ¢ ¢ are Prim (x, F,£P< ).
*

Proof. This is a matter of coding up the definitions of sec-
tions 1.1, 1.3 and 2.1; we sketch a possible route, First, the

r
map ¢ > (¢w )w of Theorem 11 is defined by a primitive recur-

sion on the complexity of ¢, and (using Lemma 12) all the
clauses are Prim (», X, Q,£P< ). It is perhaps convenient to
"

translate the double-indexed variables into single-indexed ones
by means of a Prim pairing function on ordinals.

r
It follows at once that the map ¢ > ¢ on sentences is

Prim (x, T, EP< ). We turn to the map A > I'(A).
k]

Let A be a Z-structure. Then for each formula I'* of T', we
T

have
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- -
{a e |A| :Al:I‘i[a]} =
— —
{a e (FV(I™) X |A]):Ro(A,T*, a)},
<% T T

where Ry is as in Lemma 12. Hence -X* in (9) is a Prim (%, I,
EP{ ) function of A. Q" in (9) is a Prim (I") function of A. To
o ;

construct I'(A) from X% and ", it suffices to determine the set
— — - -
¥ = {<y-t>:¢(v) atomic, tfrom X, 'A) =y [t]}

+
(Cf. Lemma 1.) Given v, T, we can define the set of functions

—
w:FV(y) > Tm and a € |A| (for each v & FV(y)) such
11

—_
that for each a,t 1is the closed term (w(v ))(a). Then for
o o a

each such w,

— r —»
FAa) E 7] i AEyyll(a) ] (11)

T
by the proof of Theorem 11. Now the set of such vy, is a

Prim (x, I, _<P< M) function of w,_'r). A, and the right-hand side
of (11) is independent of the choice of w, E)u. Hence the right-
hand side of (11) is a Prim (x, I, £P< n) relation in 1, _r), A.
It follows that ¥ is a Prim (x, T, .CP< n] function of A as required.

[1

Theorems 11 and 13 combine to yield the Theorem of [8].
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Correction to [8]. In the Theorem of [8] I had "Prim (w, I,
EP< )" in place of "Prim (%, I, EP{ ). Since I have been
Y "

unable to reconstruct the device which led to the stronger
result, I withdraw to the weaker one. No applications men-
tioned in [8] are disrupted.

2.3 Preservation of equivalence

Theorems 11 and 13 and their proofs yield a preservation
theorem for word-constructions. To aid comparison with Fefer-
man's local functors [4], we cast this in a strong form which
mentions quantifier-rank.

The quantifier-rank qr(g) of a formula ¢ of L is defined
oo

as follows, by induction on the complexity of ¢:

qr(e) = O when ¢ is atomic
qr(—e) = qr(g)

qr(A®) = sup{qr(e) :@p € ®}
(and similarly for disjunction)

gr(I{v:velly) = qr(g) + 1 (and similarly for V).

o

We write L? for the fragment of L;L got by restricting to
% b4

formulae of quantifier-rank < a.

The quantifier-rank qr(I') of the word-construction I' is de-
fined to be

sup {qr(I*):I" in I'} U (sup{qr(l";‘] : At in T'} + 1),
T T 14

THEOREM 14 (Preservation theorem). Let x be a regular
cardinal, I' a x-word-construction from = to Q, M a transitive
Prim (x, T, EP< )-closed set, and « an ordinal such that qr(I)

A

[1 3
+a=a Put L( =L (NM and
COR
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o

LQ) =L (2 N M. Then for all T-structures A, A’,

COn

a. if A = A' then I'(A) = (A
L(Z) L(Q)
b. if e A— A' is an L(Z)-elementary embedding, then
I'(e) : T'(A) —=T(A") is L(Q)-elementary.

Proof. We refer to the proof of Theorem 11. Let p be a
formula of L  (Q); then by induction on the complexity of ¢,
[= el

r
qr(ew ) < qr(l') + qr(g). It follows that if ¢ is a formula of

o I o

L (Q), then ¢, is a formula of L  (Z). By Theorem 13, M
o0 H

oo %

r
is closed under the map ¢ | (¢+)w; hence if ¢ is a formula

T
of L(R2), then ¢, is a formula of L(Z). The theorem follows at
once.

(]
For example, if * = w then EP< is a Prim (x) function; if
W

furthermore I' is recursively definable, then M can be any
Prim-closed set containing w. We then get the languages LA
w

(» > w) by taking M to be the set H(k) of sets hereditarily of
cardinality <<k; likewise by taking M to be any countable
admissible set containing w, we get the countable admissible
languages of Barwise.

The connection between the effectivity of A > T'(A) and
the preservation result seems to be more than accidental:
Nadel ([14] Theorem 2) shows that a construction which is
Z,-definable from a hereditarily countable parameter and pre-

serves isomorphism also preserves =
oo w

EXAMPLE 15. The following word-construction consists of
atomic formulae, and fails to preserve equivalence for one-
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quantifier formulae:

FU = Vo = vy
Vo

rae = Svo=v;
SVO = Ny

At = Vp=vp
Svp = Svy

Let A, A’ be respectively the natural numbers and the inte-

gers, with S interpreted as the successor function. By the

back-and-forth criterion, A is LLO -equivalent to A'. But I'(A)
w

has two elements, while T'(A') has only one, so that only
I'(A") satisfies Vvov; vo = vy

2.4 Closure under composition

THEOREM 16. Let %, be a regular cardinal, T' a x-word-
construction from Z to Q, and A a x-word-construction from Q
to E. Then there is a composite x-word-construction A .T" from
Z to E, such that for each E-structure A, (A.T) (A) = A(l'(A))
naturally. The composition map (A,T) > A.T" is Prim (x,

E?< M].

Proof. Let Q' (resp. E') be the similarity type got from Q
(resp. E) by adding the extra symbols of I' (resp. A). We assu-
me for simplicity that all these similarity types are one-sorted,
and that Q' and E' have no symbols in common. Let £* be the
union of Q' and E'. Let Tmrbe the closure of dom I'° under

the function symbols of Q and under change of variables.

For each term v of L(E*) and each atomic formula ¢ of L(E*),
we put
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r
(A.D1)° sdf\/ (A%)w (?J.

T

¢ € dom AY,

w: EFV(o) = TmI"

T is U{W(Va))a

(A.T)A Edf\/ (AMY) F(E))
‘p ,lp w ]

P € dom A},
w: FV(y) —>Tmr,

p is yw(v ))
o o
— o
where u is the sequence of variables whose term u[3 is v

8’
(We may omit those formulae where the disjunction is empty).

[

2.5 Limits as word-constructions

Let D be a small category and @ a similarity type; for sim-
plicity we assume 2 is one-sorted. We define Q7 to be the
following many-sorted similarity type. QP has a sort Q¢ for
each object d of D; Q% is a copy of Q. For each morphism x:
d—e of D, QP has a l-ary function symbol M, from sort Q1
to sort Qe

Let F: D— Q-Str be a functor. We can represent F as a
single structure A, as follows. For each object d of D, the
Qd-th sort of A is Fd; for each morphism x: d —e of D, M, is
interpreted in A as Fx: |Fd| — |Fe|. Then A is an QP-struc-
ture which encodes F. Sometimes (as in Theorem 17 below)
it is technically necessary to make the sorts of a many-sorted
structure pairwise disjoint. In this case Fd in A must be
replaced by an isomorphic copy of Fd, and A represents F
only up to natural isomorphism of functors; we call such a
structure A a disjoint representation of F,
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THEOREM 17. Let D be a small category, » a regular car-
dinal and  a similarity type of length <=. Then

a. there is a n-word-construction limp from QP to @ such
%
that if the QP-structure A is a disjoint representation of
of F: D— Q-Str, then limp(A) = lim(F);
— —

b. the same with lim for lim, assuming D has <<x objecis.
— —

Proof. a. Invoking Example 3 above, we take I' = lim, to
—_

be as follows:

[ =4 v = v (v a variable of sort Q4, d an object of D)
v
Mt =4 ¢ (p an atomic formula in sort Q9,
d an object of D)
[PAt =g M(v) = w (x:d—e a morphism of D, v a
vV=w

variable of sort Q4, w a variable
of sort Q2¢)

Then (I'(A),~) is the required right limit cone.
b. We use the product-equaliser construction of left limits.
Enumerate the objects of D as d (¢ <<p) for some u <<%, and
a

introduce the p-ary function symbol {, whose a-th slot is of
d

o
sort @ . Then define I' = lim, as follows:
—
A _
N at Mx(va) v[j
C(v)

x:d —-d  a
o P
morphism of D

N
(Co( Vo) Ca( Vi),...) =g @(Vo, Vi, -..)

o<
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-9
for every atomic formula ¢ of L(Q), where v is (v‘i), v:, i)y
The required left limit cone is (I'(A)m) where M, :T'(A) —>
-
(d -th sort of A) is the map {(a)” Ha .
[} o

(]

If F, F' are functors from D to Q-Str, with disjoint represen-
tations A, A’ respectively, and &:F— F is a natural transfor-
mation, then £ induces a homomorphism €: A — A'. The word-

constructions lim, and limp, defined in the proof above are
- «—

both 3, so by Theorem 10, limp(g): limp(A) — limp(A') and
— — -

limp(§): limp(A) = limp(A') are both defined. They are of
« P pa

course the morphisms induced by the limit property.

3: Functors and word-constructions
3.1 Left Kan extensions
‘We aim to characterise the associated functors of 3 1+ word-

constructions as those functors which preserve filtered right
limits. This is possible because Kan extensions (which, to
quote Mac Lane [11] p. 244, 'subsume all the other fundamen-
tal concepts of category theory’) can under certain conditions
be encoded as word-constructions.

We begin by reviewing comma categories and left Kan
extensions; for more details see Chapter X of Mac Lane [11]
or Chapter 17 of Schubert [16].

Let A be any category, D a small category and I a functor
from D to A. For each object A of A, the comma category I/A
is defined to have as objects the morphisms z of A of form
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z: Id - A (d an object of D) indexed by d. The morphisms of
I/A, say from z: Id —> A to y: Ile— A, are the commutative dia-
grams of form

Id

Z
\ A x: d=e in D) (12)

Ie indexed by x

There is a projection functor Q}\: I/A — D, which takes z:
Id— A to d and (12) to x. If D is a subcategory of A and I is

the inclusion, we write D/A for I/A and Qi for Qi.

If I: D— A and G: D— B are functors, a left Kan extension
of G along I is a functor F: A— B together with a natural
transformation n: G — FI such that for every functor H: A — B,
the map

BA(F, H) — B?(G, HI), ¢ > tIn

is a bijection.

From the definition it follows at once that if Fy, F; are left
Kan extensions of G along I, then F, is naturally isomorphic
to F;. We shall often consider the case when D is a subcate-
gory of A and I is the inclusion; in this case we talk of the left
Kan extension of G along D, and we write F|D for FIL

A sufficient condition for the left Kan extension to exist is

as follows. For each object A of A, GQT\ is a functor from I/A
to B. Suppose lim GQi exists for each A. Then G has a left
—

Kan extension F along I, such that FA = lim GQf\for all A,

%
If x: A— B is a morphism of A, then x induces Fx: FA — FB
functorially through the right limit cones. Mac Lane [11] re-
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fers to left Kan extensions constructed in this way as point-

wise left Kan extensions. Clearly they exist when B is right
complete, for instance if B is a quasivariety.

THEOREM 18. a. In the diagram of functors

F

[ov]

A
Il\

D

assume X, Q are of length < % (x regular), A is a full subcate-
gory of X-Sir, B is a w-quasivariety = (R, T)-Str, D is small,
every Z-structure Id (d in D) has a set of << x generators, and
F is a left Kan extension of G along 1. Then F is naturally iso-
morphic to the restriction to A of the associated functor of an
H;f #-word-construction I' from £ to Q; I is a Prim (x, 9( u)

function of 1, G.

b. The same, with =-Str, for 2-Str and 3, for 3.

Proof. a. It suffices to define a »-word-construction I’
whose associated functor, restricted to A, is a left Kan exten-
sion of G along I, since the universal property of Kan exten-
sions then guarantees that I' on A is naturally isomorphic to
F. We follow Dyck's Theorem, constructing the pointwise Kan
extension.

Assume for simplicity that ¥ and Q are one-sorted, with
the single sort O. For each object e of D and each map
f: a— |Ie| with a <x and im f a set of generators of Ie as
Z-structure, and each b € |Ge|, we introduce the new func-
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tion symbol Gy, of arity a; Q' is Q with the T}, added. The in-

—
tention of the definitions below is that Zib[a) will be a
generator of I'A iff there is a homomorphism h: Ie — A such

_+
that hfB = aﬂ for each f <<, and in this case Efe,h(a) en-

codes h: le— A as object of I/A, together with the element
b € |Gel.
We define I' as follows:

FO - = /\ -
o) "o ¢ (V)

Qv ) an atomic formula of

U PT

L(Z) such that Ie = qJ[fﬁ]ﬁ s

rat o 3?'/\
Y : b},
{cPc: ¢ <3 TEY, a<<bd
0 <<w,
9 atomic formulae of L(Q)
[ \/ ro, -
¢ atomic formula of L(Q), <y G (V)
s " —> ﬁ
¢, 1s o (G, (V]]ﬁ<y.
B
G ‘b
e P lgls <y
0 0
'y - AT, =
Vv \/ . - -5 Ts( V) Ceo( W)
@ is TS (v) = T (w)
o » 8,¢

x :d—e a morphism of D,
Gx(b) = ¢
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A/\ vy = o(w)ll,

¢ a term of L(Z),

; >
x(f) = o(g,)

—

for each atomic formula vy of L(Q'), where u is the sequence

of all variables occurring free in the ¢ but not in y. Note
o

that we rely on Corollary 5 for the bound on 8.
b. The proof is the same, except that now the comma cate-
gory objects are the embeddings h: Ie— A. Hence we simply

replace 'atomic formula’ in the definition of e — by

Cen(Vv)
'atomic or negated atomic formula'. This converts I' from an
3:' »-word-construction to an 31 x-word-construction.

(1

3.2 Filtered limits

We assemble some technicalities needed for the normal form
theorem. .

Let » be a regular cardinal, C a small category. We say that
C is w-filtered when

(1) for every family {c :a<<p} of objects of C, with
o
n <<=, there is an object d of C together with morphisms

X :c —=d;
o [V

(2) for every pair of objects c, d of C, and family {(x :c—
a

d) :a<<u} of morphisms of C, with u<=x, there is a
morphism y: d—>e of C such that yx = YXB for all
o

o, p<p.
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If C is x-filtered, then a functor F: C— B is called a x-filtered
diagram, and its right limit is called a x-filtered limit.

Examples are found as follows.
Let X be a similarity type of length < ». We say that a

3-structure A is x-presented if A has form df <X X, ® >,
where X is a set of individual constants not in X, £ comes
from £ by adding these constants, and |X|, |®| <=x. We say
A is u-generated under the same conditions but without the
restriction on |®|. A subcategory A of 2-Str will be called
x-presented (resp. x-generated) when every object of A is
u-presented (resp. x-generated). A category D is said to be a
representative w-presented (resp. representative w-generated)
subcategory of A if D is a small, full, x-presented (resp. x-ge-
nerated) subcategory of A containing at least one represen-
tative of each isomorphism type of x-presented (resp. x-gener-
ated) object of A.

There is a Prim (%, .CP<n) map which takes each similarity

type £ of length < » to a representative x-presented subcate-
gory of Z-Str, and another Prim (x, ..‘?< ) map which finds a
n

representative x-generated subcategory of =-Str,.

LEMMA 19. a. Let = be a regular cardinal and £ a simi-
larity type of length < x. If D is a representative w-presented
subcategory of 2-Str, then for each object A of Z-Str, the com-
ma category D/A is w-filtered and A = l_i_r;u Qi.

b. The same, with 'x-presented’ and ‘E-Str' replaced by
'v-generated’ and 'Z-Str,’.

Proof. a. To show property (1) of x-filtered categories, it
suffices to check that D has coproducts of families of cardi-
nality <x. Since % is regular, this follows easily from the
definition of D and the construction of coproducts by Dyck's
Theorem (Example 3). To show property (2) it suffices to
check that every family {(yu:Dl—eDg):a<p} of fewer

than » morphisms in D has a coequaliser in D. Such a coequa-
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liser can be found as follows: take a set of << generators of

Dy, and add to the relations of some presentation of D, the

equations needed to identify y (x) with YB (x), for each gener-
o

ator x of D; and each o, § <.
We form a right cone (A, n) for Qi by putting n, = x for

each object x: D—> A of D/A. It is well-known and readily
verified that (A, w) is a right limit cone.

b. Up to isomorphism, the objects of D/A are the inclusions
y: D € A of »-generated substructures of A. Since x is regular,
the union of fewer than » x-generated substructures of A is a
x-generated substructure of A, so that (1) holds. (2) is trivial
since embeddings are monomorphisms. The right limit of Qi

is built as in part a.

[]

The limit formula in Lemma 19 will now help us to show

that our definition of 'x-presented’ agrees with the categorical

definition on p. 63 of Gabriel and Ulmer [6]; our definition of

‘v-generated’ also agrees with theirs if the category in ques-
tion is Z-Str,,

LEMMA 20. a. Let » be a regular cardinal and 3 a simil-
arity type of length < x. Then a Z-structure A is x-presented
iff the functor B > 2-Str (A, B) from E-Str to Set preserves
w-filtered limits.

b. The same, with 'w-presented’ and 'E-Str' replaced by
‘v-generated’ and 'X-Sir,’,

Proof. a. First suppose that A is x-presented, and let F:
C — 2-Sir be a x-filtered diagram. Use Dyck's Theorem as in

Example 3 to construct a right limit of F as (B, ~) = (df < X',
X, ® >, ~). We must show that every homomorphism f: A — B
factors through some Fd, d an object of C. For this, choose a
set {.act ta<<p} of <=x generators of A, and for each a <p

pick a closed term 1 € X such that fla ) = © ~. Then the map
a [+ o

a >t carries the positive diagram of A to a set of <=

o o
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atomic sentences true in B. By Corollary 5 and Example 3, the-
se atomic sentences are entailed by a set W of < atomic sen-
tences of the following two forms:

i. sentences from the positive diagrams of the structures
Fd, where d are objects of C;

ii. sentences "'cq, = Cery@w Where y: d— e is a morphism
of C.

Using the fact that C is z-filtered, we may assume without
loss that W is part of the positive diagram of some one struc-
ture Fd; property (2) of x-filtered categories is needed to make
the sentences ii. true in Fd. There is then a homomorphism
g: A — Fd which takes each a to the element of Fd named

by t , and we havef = ~ .qg.
a

Next we must show that if f: A— B factors in two ways as

W/

Fd,
g1
f
A
\
Fd,

then there are morphisms y;: d;— e and ys: ds— e of C such
Fyi.g1 = Fy:.gs Using the same generators of A as before,
we consider the equations

(o << ).

C = C
‘:11 'glau d2 .gzaa

These equations come out true in B, whence an argument like
that above finds suitable morphisms vy, va.
Bearing in mind the form of x-filtered limits in Sef, we have



A NORMAL FORM FOR ALGEBRAIC CONSTRUCTIONS II 463

proved that X-Str(A,-) preserves x-filtered limits when A is
x-presented. Conversely assume that 2-Str(A,-) preserves x-fil-
tered limits, where A is some S-structure. Let D be a represen-
tative x-presented subcategory of =-Sir. By Lemma 19, A =

lim Qi is a =-filtered limit. Since X-Str(A,-) preserves this
..9

limit, the identity 1,: A— A factors through some object of D.
Hence A is a retract of a x-presented structure, and so A is
itself x-presented.

b. The proof is similar but a little easier.

(1

We shall need to know how formulae are preserved in x-fil-
tered limits; this prompts the following definitions. A formula
¢ of L (%) will be described as x-presenting if ¢ has the

Co %

form
AV
du wy (13)

a<p

where each ¢ is a conjunction of << atomic formulae; ¢
(13

will be described as »-generating if @ has the form (13) where
each ¢y is a conjunction of any number of atomic or negated
0]

atomic formulae,

LEMMA 21. a. Let » be a regular cardinal and = a simil-
arity type of length < «, and let F: C— 2-Str be a u-filtered
diagram with right limit (A,w). Then for every x-presenting

—.)
formula ¢ of L (Z) and every a in |A],
o0 o

i —
A = ¢[a] iff for some object ¢ of C and some b in |Fc|,

- — -
n(b) = a and Fcl=g¢[b].
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b. The same, with "»-generating’ and "E-Str,” in place of
"w-presenting’” and "Z-Str".

Proof. a. Right to left follows at once from the fact that
@is 3 ;“ and hence is preserved by homomorphisms. It suffices

to prove left to right in the case where ¢ is a conjunction of
fewer than x atomic formulae. The left-hand side then says
in effect that there is a certain homomorphism f: B— A with
B x-presented. By Lemma 20 the functor =-Str(B,-) preserves
u-filtered limits, so that f factors through some w,; this is the
right-hand side.

b. Similar.

3.3 The normal form theorem

The following theorem characterises those functors which
can be expressed as associated functors of ':'I;f or EI1 word-

constructions; word-constructions thus provide a syntactic
normal form for the functors in question.

We say a x-word-construction I' from X to Q is presenting
(resp. generaling) if every formula I'®, T'** of I" is x-present-
T9

ing (resp. x-generating). Note that a word-construction is
3 1+ (resp. 3 1) iff up to logical equivalence it is x-presenting

(resp. »-generating) for all large enough ». On the other hand
Example 23 will describe an 31+ w-word-construction which

is not a presenting w-word-construction.

THEOREM 22 (Normal form theorem). a. Let x be a re-
gular cardinal, £ and Q similarity types of length < %, and F
a functor from 2-Str to Q-Str. Then the following are equival-
ent:
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(1) For every representative x-presented subcategory D
of =-Str, F is a left Kan extension of F|D along D.

(2) For some x-presented small subcategory D of 2-Str, F
is a left Kan extension of F|D along D.

(3) F is naturally isomorphic to the associated functor of
a presenting »-word-construction from X to Q.

(4) F preserves x-filtered limits.

Proof of a. (1) = (2) is trivial.

(2) = (3). Let D be as in (2). We apply Theorem 18(a) with

A = Z-Str, B = Q-Str, I. D € A, G = F|D. Consider the for-
0 -
mulae in the proof of Theorem 18(a). The formulae F'l;fb (v)

are already of form (13), and since the objects in D are x-pre-
sented, we may take the conjunctions to consist of fewer than

% atomic formulae. The formulae 1"‘:: are logically equivalent

to x-presenting formulae, since any formula

EWA \/ 1
" «<?d p<u P
o
can be paraphrased as

V 37 N\

f:8>U ., a<?d

e<d a

X5(a)°

flo) < " for
each a

(3) = (4). Let I' be a presenting #-word-construction from
2 to Q with associated functor I': =-Sir — Q-Str. Let C be a
n-filtered small category, G: C— =-Str a functor, and (A, n) a
right limit of G in =-Str. We must show that (['A, ') is a
right limit of I'G in Q-Str. Let (B, () be a right cone for I'G.
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We define f: |['A| — |B| as follows, using notation from sec-
tion 1.3.

—)
I'A is generated as Q-structure by the elements t(a)”

- —
where tedomI*, a is in |A|, and A E=TI"[a]. Consider
T

b 4
one such t(a)”. Since I' is presenting, Lemma 21(a) implies
._)
that there is an object ¢ of C with b in |Gc| such that

— - — —
ne(b) = a and Gc=I*[b], so -r[b]eX“Gc. We put
T

- _ -
f(z(a)”) = Ce(x(b)7).

- -
To justify this definition, suppose 1(a)™ = o(a')™; then
— —>
®,F1(a) = o(a’) by Lemma 1. Using Corollary 5 and
- =
Lemma 21 again, we find an object e of C with d, d' in |Ge|
- - - - —
such that ne(d) = a, mn(d) = a and @g kE=1(d) =
-—p
o(d’). Since C is =-filtered we may choose e so that there is

— — -
x: c—>e in C such that Gx(b) = d and ¢(d") EXEQ. By

assumption on , L, = .. Gx, so

- — — =
L(t(b)7) = C(I'Gx.t(b)7) = L(Gxr(b))~

- - -
= L(t(Gx. b)7) = L(r(d)7) = Lelo(d)7).
This shows that the definition of f is sound. Similar argu-

_)
ments show that f may be extended from the generators t(a)~

to the whole of |[T'A|, so as to form a homomorphism f:
I'A—B.
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By the definition of f, if c is an object of C and y € |I'Gc|,
then

Le(y) = fL'(ne) (v)- (14)

(14) says that f is a morphism of cones, f: (['A, I'm) = (B, ©).
Also (14) determines f uniquely, because (by Lemma 20(a))
|TA| is the union of the images of the I'(y,). Thus there is a
unique morphism of cones from (I'A, I'y) to (B, ¥).

(4) = (1). Assume (4), and let D be a representative x-pre-
sented subcategory of X-Str. By Lemma 19(a), if A is any
Z-structure, then A = lin Q” and this is a x-filtered limit.

Hence FA = lim FQP by the assumption on F, and lim FQ? =
— A — A

lim (F|D)Qi. This tells us that F is the pointwise left Kan ex-
—_

tension of F|D along D.
[]

THEOREM 22. b. Let x be a regular cardinal, £ and Q simi-
larity types of length < x, and F a functor from =-Str, to Q-Str.
Then the following are equivalent:

(1) For every representative »-generated subcategory D of
2-Sir,, F is a left Kan extension of F|D along D.

(2) For some -generated small subcategory D of 2-Str,, F
is a left Kan extension of E|D along D.

(3) F is naturally isomorphic to the associated functor of
a generating x-word-construction from X to Q, restricted
to 2-Str,.

(4) F preserves x-filtered limits.

Proof of b. Just as a.

[]

Of course the entailments (2) = (4) in Theorem 22 can be

proved more directly; see § 14 of Gabriel and Ulmer [6] for the
‘'part a.' version.
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EXAMPLE 23: a functor F: 2-Str — Q-Sir such that F|=-Str,
preserves w-filtered limits but F fails to preserve o-filtered
limits. Take £ and Q to be the same one-sorted similarity type
with 1-ary functions f, g and individual constant O. 1 is the
terminal Q-structure whose sole element is O. F is defined on
3-structures A by:

A if for some n = O, g(f*(O)) # (O)
F(A) = in A
1 otherwise.

If F(A) = A, F(B) = B and x: A— B, then put Fx = x. Fx
elsewhere is defined to be the unique morphism to the terminal
object. For each o < w, let A be the object df <X, O, {gf*O =
o
ffO:n<<a}>,andx :A — A 1 the unique homomorphism
a a a

when a <<w. Then A = lim A , an o-filtered limit, but

w —oa<oa
FA =1 =% A = lim FA .Fis associated to an 3+ generat-
® ® —_ o 1

ing w-word-construction.

3.4 Extensions

Our normal form theorem was stated only for functors de-
fined on =-Str or =-Str,. But clearly it also applies to functors
defined on some smaller category, provided they can be ex-
tended in some appropriate way. There is a very natural suf-
ficient condition for this to hold, as follows.

Let A be a full subcategory for Z-Sir (resp. of =-Str,), and
I the inclusion functor. A small subcategory D of A will be
said to be pointwise dense in A if for every object A of A,
IA = lim IQ7?.

— A

THEOREM 24. a. Let » be a regular cardinal, ¥ and Q si-
milarity types of length < x», D a pointwise dense small x-pre-
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sented subcategory of the full subcategory A of Z-Str, and F:
A — Q-Str a functor which preserves all the right limits lim Qi ;
hﬁ

Then F is the restriction to A of a functor G: Z-Str — Q-Sir
which preserves x-filtered limits.

b. The same, with 'x-generated’ and '=-Str,’ in place of
'w-presented’ and 'Z-Str’.

Proof. a. Since Q-Str is right complete, F|D has a point-
wise left Kan extension G: Z-Str — Q-Str along the inclusion
of D in 2-Str. By definition of G, GA = 1i_r>n FQi for each

object A of A, while FA = lim FQ? by assumption. Hence
%
G can be taken to be an extension of F. The rest is by (2) = (4)
in Theorem 22.
b. Similar.

[]

Theorem 24 applies in the following situations — we omit
the proof, which is an encore of Lemma 19,

THEOREM 25. Let » be a regular cardinal, £ a similarity
type of length < u.

a. If A is a x-quasivariety (2, T)-Str and D is a representative
w-presented subcategory of A, then for each object A of A, the
comma category D/A is »-filtered, and D is pointwise dense in
A.

b. If A is a full subcalegory of Z-Str, which is closed under
substructures, and D is a representalive x-generated subcate-
gory of A, then for each object A of A, the comma category
D/A is x-filtered, and D is pointwise dense in A

[]

Thus every functor between quasivarieties which preserves
w-filtered limits is (up to natural isomorphism) the associated
functor of an H;f w-word-constructon. This includes all left

adjoints between quasivarieties, since( by the Eckmann-Hilton
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theorem) they preserve all right limits. We have here taken on
trust the well-known fact that w-filtered limits are created in
the quasivariety (Q, T)-Str from Q-Str.

We turn to some closure conditions.

THEOREM 26. Let » be a regular cardinal, @ a similarity
type of length < %, and A a category. Then the class of functors
F: A— Q-Str which preserve x-filtered limits is closed under
right limits, and under left limits of diagrams with <x
objects.

Proof. Let G: C— Q-Str' be a diagram of functors which
preserve x-filtered limits, and let lim G: A — Q-Str be given.
—

Let F: D— A be a «-filtered diagram. By assumption,
G, (lim F) = lim G/ for each object ¢ of C and for any
— -

right limit lim F of F. We have a bifunctor from C X D to
—

Q-Str, namely < c¢,d> p> G.F(d). Then

lim G.lim F
— —
= lim¢(G,lim F) by pointwise construction of limits
— -
= lim,.limg G,F(d) by assumption on G,
- =
= limg.lim, G,F(d) by commutativity of right limits
- -

= lim; (lim G)F(d) by pointwise construction
- -

= lim (limG.F).
- -

Hence lim G preserves the right limit of F when this exists.
-

For left limits of diagrams with <« objects, the proof is the
same, except that the commutativity of right limits is replaced
by
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lim, . limg G,F(d) = limg.lim, G,F(d).
“— — - <«

The argument for this is just like the familiar case x = o,
Q-Str = Set.

EXAMPLE 27. (Cf. Eklof [3] Corollary 4.5) Let » be a regular
cardinal, A a x-quasivariety, and F: A — A a subfunctor of the
identity which preserves x-filtered limits. We may define in-
ductively

o B
Fo = i tity, F = N F(F ).
identity ﬁ<r1( )

Using Theorem 26, every Fu (e <=u) preserves x-filtered limits,
and so by Theorems 25 and 24 extends to some functor G:
Z-Str — Z-Str which preserves x-filtered limits. The normal
form theorem associates G to a presenting x-word-construction.
Examples ready to hand are torsion radicals on noetherian
rings.

Clearly the class of functors which preserve z-filtered limits
is closed under composition. Composition is in general not de-
fined for functors of form F: 2-Str, — Q-Sir; even where there

is a natural composition, it need not preserve x-filtered limits
in X-Str,.

EXAMPLE 28. Let F: 3-Str —-Q-Str be as in Example 23, so
that F|Z-Str, preserves w-filtered limits, Let £ be I with the
added 2-ary function symbol h. Define G: E-Str — 2-Str on ob-
jects by

GA = reduct to X of A/C, where C is the congruence on A
generated by the pairs <la, b> such that Jc¢ h(a, ¢)
= b.

This definition induces a map Gx: GA — GB for each morphism
x: A — B of E-Str, and hence a functor G: E-Str — 2-Str which
preserves w-filtered limits. In particular G|E-Str.,, preserves

w-filtered limits. Let ' come from Z by adding the countably
many new individual constants xq, Xy, ...; for each a < w de-
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fine a E-structure B by the E-presentation
o

Ba = df <&, {x,:n<a}, {h(@f"O, x,) = 20:n<a}
U {h(x,x) = O:n<<a}>.

Definey :B —B to be the unique homomorphism taking
o @ a+1

eachx™ inB tox™ in B , for each a < w. Then lim B
) a n a+1 —e <0 a
= B is an w-filtered limit in =-Str,, and im GB = lim A =
o) — a — o

= A = GB . But then lim FGB =+ FGB by Example 23.
® W —_ a ()

(I believe the question answered here was raised by Eklof in
conversation with Sabbagh.)

3.5 Functions of several structures

One can define an o-ary construction from (= )ﬁ - to Q
I @

to be a function which takes some or all a-tuples <A|3>t3 -~

(where each A is a 2 -structure) to an Q-structure F(A ) .
B p Bp<a

An example is the construction II which takes <Aﬂ>ﬁ é
[}

to the disjoint sum Hﬂ P Aﬁ, a many-sorted structure; we
1)

we write HB - Eﬂ for the similarity type of the disjoint sum.
a 3

Natural homomorphisms can be defined which make [ a func-
tor from the product category U (Z -Str) to U > -Str.
B<a B p<a p

The world is not improved by attempts to define a-ary word-
constructions; they are ugly, and everything they do is done
better by composing 1-ary word-constructions with 1. For
this reason we confine ourselves to discussing IT .
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THEOREM 29. Let x be a regular cardinal, o an ordinal, and
for each f < a let Eﬁ be a similarity type of length < . Then

the functor 11 preserves all right and left limits, and its restric-
tion to objects is a Prim function. For each formula ¢ of
L (U 2 ) there are, for each f<<a, sequences
o f<a fp

p
<gp > of formulae of L (2 ) such that for every se-
Yy v<3d con B

e
quence <A > of structures and sequences a from |A |,
B B<a a o
o A 2, itf f < there is p<
B < Brztp[aﬁ]ﬁ<a iff for every vy ere is f<a

f —>
such that A =y [a ].
B v B

The ordinal % is < 3 ‘
| TC(e) | *

Proof. The statement about ¢ is proved by induction on the
complexity of ¢. Cf. the similar theorem of Malitz on products,
Theorem 2.1 of [13].

[]

It follows, as in Theorem 14, thatIl preserves LA -equival-
"

ence when 1 is a strongly inaccessible cardinal = «. This is a
theorem of Malitz [13], who shows that it cannot be improved.

4: Related work
4.1 Feferman's »-local funciors

Solomon Feferman ([4] section 3.2) defines local functors as
follows. Let x be any cardinal > 1, and let X and Q be similarity
types (of any length), and A a full subcategory of Z-Sir,. Then
a functor F: A — Q-Sir is said to be x-local if
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i. A is closed under substructures;
ii. F preserves <;
iii. if A is an object of A and Z a set of << x elements of FA,
then Z € |FB| for some x-generated substructure B of A.

Feferman's 'main preservation theorem' (his Theorem 6) states
that every x-local functor preserves =;, and <, for every lan-
a

guage L = L
oo %

In two ways Feferman's definitions are broader than ours: he
allows x to be singular, and he puts no restriction on the num-
ber of variables occurring in a term or free in a formula. It looks
as if our methods should generalise in these two ways, but
messily.

Suppose F: A — Q-Str is x-local and that £ and Q have length
< %, and that % is regular. By ii. and iii., F preserves x-filtered
limits. Hence by Theorems 25(b) and 24(b), F extends to a func-
tor G: =-Str, — Q-Str which preserves x-filtered limits. The nor-
mal form theorem, Theorem 22(b), says that G is (up to natural
isomorphism) associated to a generating x-word-construction.
Feferman's 'main preservation theorem' (for infinite a) then
follows from our preservation theorem, Theorem 14,

Feferman's proof — by a back-and-forth argument — is in-
finitely more pleasant than ours. So there is some point in
remarking that our uniform reduction and effectivity theorems
give a lot more information about Feferman's functors, and this
further information seems at the moment to be beyond the
range of back-and-forth methods.

Feferman also defines »-local functors of many structures,
and proves the same preservation theorem for these as for
l-ary functors. Using section 3.5 above, we can capture this
generalisation by our methods too. But there seems little point
in doing this. I know no interesting facts about x-local functors
of many structures which are not best proved by Feferman's
method in company with Theorem 1 of Benda [1]. Olin [15] has
examples to show how products of modules may fail to pre-
serve infinitary equivalence.
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Gabriel Sabbagh (unpublished, but reported in Eklof [3]) ob-
served that if we are not interested in small quantifier-rank a,
we can replace ii. and iii. in the definition of 'x-local’ by the
assumption that F preserves x-filtered limits (of embeddings).
The functors which Sabbagh thus defined are essentially those
of Theorem 22(b). Example 15 shows that these functors may
fail to satisfy Feferman's theorem for small a.

Feferman remarks that «The general notion of x-local functor
seems not to have been considered in category theory» ([4]
p. 74). In the light of our treatment above, this might be a little
unfair to Kan, Isbell, Lambek, Gabriel, Ulmer. Nevertheless
Feferman must take full credit for establishing the connection
with infinitary logic.

4.2 Classes of functors defined by Eklof

In two papers [2] and [3], Paul Eklof has extended Feferman's
ideas in two ways.

In [2], Eklof makes the following definitions. U, is the cate-
gory whose objects are the algebraically closed fields of cha-
racteristic p and infinite transcendence degree, with embed-
dings for morphisms; p is O or a prime. A functor F: U, —»
Q-Str is called w-local if F preserves embeddings and w-filtered
limits. Eklof proves by a neat back-and-forth argument that if
F is w-local then FA g FB for all objects A, B of U,.

Eklof says twice that his theorem is a special case of Fefer-
man's preservation theorem in [4]. I think Eklof is too modest;
the resemblance between his result and Feferman's is only
skin-deep. In support of this remark we prove:

THEOREM 30. Let £ be such that U, is a subcategory of
2-Str,. Then there is an w-local functor F: U, — Q-Str (in Eklof's
sense) which is not naturally isomorphic to I'| U, for the asso-
ciated functor I" of any w-word-construction from 2 to Q.

Proof. Let k be the prime field of characteristic p, k the
algebraic closure of k, and G the Galois group Gal(k/k). For
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each element g of G, let L, € Aut(G) be left multiplication by
g. By global Choice, pick for each object A of U, an embedding
ex: k— A. For each embedding x: A — B which is in U, de-
fine g(x) € G by commutativity of the diagram

€y
— A

24
X

w| ——— =
-2

—> B
€p

Define F: U, — Set by putting FA = |G| for each object A,
and Fx = Ly for each morphism x. Then F is w-local.

Let I' be any w-word-construction with associated functor
r: E-St.rr—> Set. We assert that F is not naturally isomorphic

to I'|U;. For suppose n: F—TI'|U, is a natural isomorphism.
—_
Take any object A of U, and pick any element t(a)~ of |TA|

—
such that r € domTI© and A =1°[a]. Since I' is an w-word-
T

Y

construction, a can be assumed finite. If x is an automorphism
. _; _) el é o~

of A which pointwise fixes a, then I'x(r(a)™) = t(Xa)~ =

—>
t(a)”, so that (via n) Ly and g(x) must be identities. But
clearly A has automorphisms which pointwise fix the finite

-
sequence a and yet move some algebraic elements. This con-

tradiction proves our assertion.

[]

Thus it seems that Eklof's theorem in [2] is strictly incom-
parable both with our work and with Feferman's.

We turn to Eklof's paper [3]. In this note Eklof defines a
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further class of functors, the (x, ©°)-local functors. This class
includes those of Theorem 22(b) (with the same %), and is
closed under right limits, under left limits of diagrams with
<x objects, and under composition. He shows that all functors
in this class preserve Loo x-equivalence. Note that the functors

of Theorem 22(b) have all these properties except closure under
composition (cf. Example 28).

Using Theorems 22(b), 17 and 16, the class of associated
functors of 3, x-word-constructions also has the properties of
Eklof's class (and more besides). It is natural to ask what the
relationship is between this class and Eklof's. I confine myself
to brief and oversimplified remarks because the situation is
not yet entirely clear.

3 »-word-constructions do not in general preserve x-filtered
limits (Example 23). But they do if we restrict the morphisms of
the domain category. More precisely, call the fragment L of

L transitive if L contains all subformulae of formulae in L.
0O %

If A is a subcategory of 2-Str and L a transitive fragment of
L (X), write A, for the subcategory of A whose objects are
Con

those of A, and whose morphisms are those of A which preserve
all formulae of L. For example, A, is precisely ALO (5.‘.).

o %

REMARK 31. If ' is a »-word-construction from = to Q,
and L a transitive fragment of L  (X) which contains all for-
o0 K

mulae I'*, 't and their negations, then I': =-Str, — Q-Sir
T

preserves x-filtered limits.
The essential point here is that the Tarski-Vaught theorem
on elementary chains extends to u-filtered limits in 2-Stry.
We may now add to £ a new relation symbol ch for each

formula ¢ of L, to get an enlarged similarity type Z;. If we
interpret R as ¢ in every object of Z-Stry, the result is a func-
P
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tor Morley: Z-Str, — Z.-Str, known as Morleyisation. Morley

is an embedding; it preserves x-filtered limits, and its image is

a full subcategory of Z;-Str. Translating ¢ into R , the x-word-
¥

construction I' in Remark 31 can be rendered into a presenting
w-word-construction I'y from 2, to Q with all formulae atomic,
and we have a commutative diagram of functors

E-StI'L
r
Morley Q-Str (15)
I'y
y
ZL-S ir

o
Now start again at the other end. Let L be L  (Z), and
oo %

define F: 2-Str,— Q-Str to be (x, o)-local if F|2-Str; is equal
to G.Morley for some functor G: ¥.-Str — Q-Str which preser-
ves embeddings and u-filtered limits. We make the following
observations.

(1) The associated functor of any 3; x-word-construction
from X to Q is (x, o)-local whenever all formulae of I" are in
o

L (). This follows from (15).
OoQ %

(2) If F is (x, a)-local, say F|X-Str;, = G.Morley; then G is
associated to a presenting x-word-construction I"' by the nor-
mal form theorem, so that formulae vy of L(Q) are reduced to

r
formulae vy of L(Zy) by the uniform reduction theorem (Theo-

r
rem 11). Replacing R in ¢y by ¢, we find formulae ¥ of
P
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L(Z) which are equivalent to wr on all objects in the image
of Morley. Thus F preserves L'-equivalence for every 'rea-
sonable’ infinitary language L' 2 L, just as in the preservation
theorem (Theorem 14). In particular, (x, a)-local functors pre-
serve = .
(==} ]
(3) Suppose F: Z-Str,—> Q-Str is (x, o)-local and F': Q-Str,—>
E-Str is (x, B)-local. Then a fortiori F is (x, a + B)-local ,and so
we have a commutative diagram

Z-Str a +p

L
==
F
Morley Q-Str
/
2 a+p-Str
L

o0 K

where G is associated to a presenting x-word-construction
with all formulae atomic. Using the uniform reduction theo-
rem (sharpened a little if § is small), we may show that the
image of G lies in Q-StrLB . Incorporating the assumption

(==l 2

on F', we thus have a commutative aiagram

F F
X-Str u+ﬂ QStrﬁ—-—-\- =-Str
0036
Morley Morley
2 a + B-Str -Str
OOJ(. Oo.x

where F'FF = G'Morley.G.Morley, and G'.Morley.G preserves
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x-filtered limits, Thus F'F is (x, « + f)-local. We infer that the
class of functors which are (x, a)-local for some a is closed
under composition.

(4) The class of (x, a)-local functors from X to Q is closed
under all the same limits as the class of functors
G: ELG -Str — Q-Str which preserve embeddings and x-fil-

OO X
tered limits; cf. Theorem 26.

(5) Without loss we could assume that a (x, a)-local functor
is only defined on the category 3-Str;, mentioned in the defi-
nition. Note that this restricted functor may be extendable in

more than one way to a functor defined on the whole of
2-Str.

4.3 Gaifman's single-valued operations

Gaifman [7] defines a single-valued operation from = to Q
to be a pair of theories (T;, Ts) — possibly higher-order —
such that if A is a Z-structure and A = T; then

(1) there is a composite structure (A, B, r) such that B is an
Q-structure and r is a collection of functions and rela-
tions, and (A, B, 1) &= Ty;

(2) if (A, B, 1) and (A, B',1') are as in (1), then (A, B, 1) =,
(A, B, ).

We shall call a single-valued operation (Ty, Ts) a Gaifman
operation; it is a first-order operation when T; and T, are
first-order theories, an L operation when T; and T; are
wlm
theories in L  , etc.
[.01(1)

Feferman remarked (in correspondence) that word-construc-
tions are a special case of Gaifman operations. A precise sta-
tement follows.
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THEOREM 32. Let » be a regular cardinal and I" a »-word-

construction from X to Q. Then there is an L Gaifman
Co A

operation (O, TP} such that every Z-structure A can be com-

pleted to a model (A,I'(A), 14) of Tr' The map I [-—) Tr is
Prim (x, @ ).
<%

Proof. Assume X and Q2 are one-sorted. Then (A, I'(A), 14)
will be a two-sorted structure with A in the first sort and
I'(A) in the second; call these sorts £ and @ respectively. We
shall use v for variables of sort X, and x, y for variables of
sort Q. For each term 1 € domI'° we introduce a relation
symbol R_c.

TF shall consist of the sentences

— -
1) Vv3 xR (v,x) (rt € domI'?)

<1
2) va

¢ an g-ary term of L(Q),
(r.) from dom I'°
PB<a

- -
/\ 3R oy

p<e p

3{YB=5<G}[X =o(y)A

— — -
3) Vv[EIxRt(v,x)eI‘O(v]] (rt € dom I'?)

8 V{Tfﬁ:a<a}V{xﬁ:ﬁ<a}[/\ R {\_r)ﬁ,xﬁ) >

f<a P

— r »
[p(x) © g9 (V) 1l (p an a-ary atomic formula of
B L(R), -rﬁe dom I'° for each

B<a)
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where in 4), w: FV(p) > dom I'? is such that w(xﬂ] = tﬁ for

IV B g
each f<a, and in g4 (Vv ) the variable x of @, is
B'f<a Y

e d
replaced by the y-th variable in the sequence vﬂ. These sen-

tences suffice to define I'(A) up to isomorphism-over A.

(1

In particular if £ and @ are countable, I' is recursively de-

fined, and L is L L, ore countable admissible language (not
0

L ), then I' can be expressed as an L Gaifman operation, and
ww

Theorem 11 (uniform reduction) follows from Feferman's
many-sorted interpolation theorem as in [7]; see also Feferman
[5]. No similar argument is known for languages stronger

than L . (There are grounds for hope: Isbell [19] extends an
(1)10)

algebraic consequence of Beth's theorem to varieties in arbi-
trary L , by an argument with free structures.)
Co %

In a recent preprint [18], Gaifman states some conjectures
and results about the relationship between first-order Gaifman
operations and w-word-constructions. In place of many-sorted
structures he now uses reducts of one-sorted structures; the
reader will have no difficulty in translating. We quote:

"Let Lo, L; be countable first-order languages such that
Lo < L;. Let P(v) be one-place predicate in L; and nct in
Lo. If M is a model for L; let MP be the submodel whose
universe is {x : M = P(x)} and let MP|L, be its reduct to
Lo. Finally, let T be a theory in L;. We are interested in
characterizing the following property of T:

() ¥ Mi=T, i = 1,2, and MP|Lo = MP|Ly = My, then

M; is isomorphic to My over M,."
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Next Gaifman introduces the notion of a defining schema.
"This schema, say D, consists of (i) a function associating
with every k-place predicate R(vy, ..., vi) of L; a formula

- -
CPR(X;,...,. Xk) of Ly, where Xi = Xyt oo Xim and n>0
is fixed (including the case where R(vy, vo) is v; = wvy)

and (ii) a formula v (TA), v) of Ly, where _u> = Wz seei Ugs

Now let My = MP|L% We say that M is defined in. M, by D
"“if there is a function I, defined for n-tuples of members
of My such that {I(xy, ..., Xy) : Xy, ..., Xn € Mp} is the uni-
verse of M and

- - — -
(@ MERI(xX),...1(x4) & Mo E qg (X4, ..., %) for all
predicates of L; (including the equality).

- -
(b) ForallyeM, I(x) = y & MoEvy(x y)."

Gaifman next introduces the following property of T:

(1) There is a defining schema D such that, for every M,
MET = M is defined in MP|L; by D.

He conjectures:

(A) (1) & @).

We remark that (1) immediately implies that the map
Mo—>M (for models M of T) can be expressed as an
w-word-construction with first-order formulae. Gaifman can
show that certain strengthenings of (I) (e.g. that M is always
rigid over MP in addition to (I)) do imply corresponding
strengthenings of (1). Shelah has a similar result (unpublished)
for Lw o Also (1) implies (I) easily.

1

However, Gaifman's conjecture (A) is false in general. We
prove this by following the analogy with Theorem 7 above.

Let M be a model of T, and suppose M is defined in M, by
the defining schema D. Let f be an automorphism of M, We
define a map f°: |M| = |M]| by
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PI(xy, ..., X)) = I(fxy, ..., £x,).

Since equality is included in clause (a), f” is a well-defined
map; also by clause (a), f is an automorphism of M. By clause

..+
(b), if x, y are in M, then

— — -
I(x) =y iff MoEvwy(xy) iff MokEwy(Ex fy) iff
—)
P(Ix) = fy.

Since I is surjective, it follows that f’y = fy for all y € [My].
Thus f° extends f. Also we see easily that the map f > fP
is a homomorphism from the automorphism group of M, to
that of M. Hence every automorphism of M, extends to an
automorphism of M of the same order.

EXAMPLE 33: a counterexample to conjecture (A). We
define T as follows. Ly has no non-logical symbols. Besides
P(v), L; has binary relation symbols R, S. T says:

There are exactly six elements, of which exactly two
satisfy P.

If the elements satisfying P are x, y, and the others are
a, b, ¢, d, then the positive diagram of any model of T
has form "Px, Py, Sxa, Sxb, Syc, Syd, Rac, Rcb, Rbd, Rda".
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Obviously T satisfies (I). To show that (1) fails in T, it suffices
to find a model M of T and an automorphism f of My which
cannot be extended to an automorphism of M of the same
order. Let M be as pictured above, and let f be the automor-
phism of Mg which transposes x and y. Then f has order 2,
whereas any extension of f to an automorphism of the whole
of M has order 4.

In fact this argument shows that the Gaifman operation ex-
pressed by T cannot be expressed as a »-word-constrtction
for any cardinal x.

A slight extension of Example 33 gives us a counterexample
to another conjecture of Gaifman in the same preprint [18].
Gaifman says that M is defined in My from parameters by D
if the formulae g of D are allowed to have additional free
variables, to be taken over by parameters in the model. His
conjecture (A*) is that (1*) and (I*) are equivalent, where
(1*) and (I*) are:

(1*) There are finitely many defining schemas Dy, ..., D
such that whenever M = T then M is definable in MF|L,
from parameters by some D;.

(I*) For every model M, for L, there are at most W, +
card(Mp) models M which are non-isomorphic over M
such that MP|Lp = My and M E T.

EXAMPLE 34: a counterexample to conjecture (A*). We
define T as in example 33, with the following alterations. Lo
has an extra binary relation symbol E; T says that E is an
equivalence relation whose equivalence classes each have
just six elements, and each equivalence class is exactly like
a model of the theory of Example 33. T thus defined satisfies
(I), so clearly it satisfies the weaker condition (I*). If M is a

-—
model of T which is defined in My from parameters p by a
defining schema D, then (by an argument like that above) any

—_
automorphism of Mgy which peointwise fixes p must extend
to an automorphism of M of the same order. We thus find a
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counterexample by taking an M with infinitely many equi-
valence classes, and applying the argument of Example 33 to
an equivalence class not containing any of the finitely many

o
parameters p.
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ADDED IN PROOE:

1. Word-constructions can be seen as a generalisation to
infinitary languages of the «defining schemas» of Gaifman (cf.
para. 4.3 above). Gaifman's notion is the earlier by two years.

2. Since seeing Example 33 above, Gaifman has suggested
a revised and slightly more complicated version of his con-
jecture (A) which allows the formulae gg to refer to a linear
ordering of M.

3. As hoped on p. 129 above, we now have a many-sorted
interpolation theorem for larger infinitary languages; it is
restricted to Horn formulae. Details will appear elsewhere,



