ON W, -CATEGORICAL EXTRA-SPECIAL p-GROUPS

by Ulrich FeLeNER (Tiibingen)

Abstract: (") Let p be an odd prime. We shall prove in
this note, that the first-order theory T, of extra-special
p-groups G of exponent p is W,-categorical but not 8;-
categorical. We also show that these groups G have a
finite cyclic center of order p and that the first-order
theory of G/Z(G) is both W,-categorical and R;-categori-
cal | These groups G have several further interesting pro-
perties: they are nilpotent of class 2, they have many
maximal normal subgroups, Z(G) = G' = ®(G) and
they are FC-groups. We use these groups in order to
disprove some conjectures concerning categoricity of
non-abelian groups. We also state without proof some
further results concerning R,-categoricity of non-abelian
groups.

§ 1. Introduction

Let T be a theory formulated in some countable first-order
language L, and let m be an infinite cardinal number. Then T
is called categorical in power m (or: m-categorical) if any two
models 2 and B of T which are both of power m are iso-
morphic. If € is an arbitrary structure, then let Th(€) denote
the first-order theory of €. Thus Th(€) is the set of sentences
which are true in €. It would be desirable if some of the
most important mathematical structures € would have first-
order theories which are categorical in power m, where m
is the cardinality of €. As it is well known, the first-order
theory of JI = (IN, +,+,0,1) is not W,-categorical, and the
first-order theory of the field IR of real numbers is not cate-

R,
gorical in power 2 (here IN = {0,1,2,..} is the set of
positive integers). But on the contrary the first-order theory
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of the field of complex numbers C is categorical in power

g o (This fact follows from results of E. Steinitz and A.
Tarski).

There is a great difference between the techniques used to
investigate (i) W,-categoricity and (ii) categoricity in uncount-
able powers. In the study of W, -categorical theories the
theorem of Engeler, Ryll-Nardzewski and Svenonius plays a
dominant réle. In the study of theories categorical in un-
countable powers results and methods due to Baldwin, Lach-
lan, Morley and Shelah are fundamental.

In this paper we shall confine our attention to W,-categori-
city, and in particular to non-abelian groups, whose theories
are R ,-categorical. It is easily seen that an abelian group G
has an R,-categorical theory if and only if G is of bounded
order (see e.g. P. Eklof - E.R. Fisher [2] or G. Rosenstein [8]).
A classification of non-abelian groups whose theories are %,-
categorical is not yet known. In fact very little is known here
and the only existing contributions to this field are two papers
by J. G. Rosenstein [8], [9]. The aim of this paper is to state
some new results concerning non-abelian W®,-categorical
groups and to disprove some conjectures.

§ 2. W,-categorical FC-groups.

Let G be a multiplicatively written group. If g € G, then
Clg(g) ={x'gx;x € G} is the conjugate-class of g in G.
An element g of the Group G is called an FC-element, if
Clg(qg) is finite. Let FC;(G) denote the set of all FC-elements
of G, and let Z(G) be the center of G. Clearly g € Z(G) if
and only if Clg(g) consists of only one element: g € Z(G) «
Clg(g) = {g}. Since g € FC,(G) & "Clg(g) is finite”, one
usually calls FC,(G) the FC-center of G. R. Baer has shown that
FC,(G) is always a characteristic subgroup of G. In analogy
with the upper central series one defines (following F. Haimo)
the FC-series FCu(G) (for o an ordinal) as follows: if a is a
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limit ordinal, then FC (G) = U FC (G), and if « = v+ 1
o f<a §

then FC (G) = U FC1 (G/FCY(G}), where UX = {z; JyeX:
o
zey} is the union of X as usual. Let FCH(G) = E FCG(G).

where o runs through all ordinals, then FCH(G) is called the
FC-Hypercenter of G. In analogy to the case of the upper
central series one defines:

G is an FC-group iff G = FC,(G),

G is FC-nilpotent iff G = FC,(G) for some finite number n,

G is FC-hypercentral iff G = FCH(G).
Thus in an FC-group G all elements have finite conjugacy
classes. Let us call a group G an IC-group if Clg(g) is infinite
for every g € G with g # 1. Clearly G/FCH(G) is always an
IC-group. The letters IC stand for "infinite conjugacy-classes".
Let us mention that G is an FC-group iff G is a normal sub-

group in every Ultrapower Gm/J ]

The concept of a BFC-group was introduced by B.H. Neu-
mann. He calls a group G a BFC-group if there is a natural
number b such that for every g € G, Clg(g) has at most b
elements. Thus b is a bound for the cardinalities of all con-
jugacy-classes in G. Let G' be the commutator-subgroup of G.
B.H. Neumann showed that G is a BFC-group if and only if
G' is finite (see D. Robinson [7] p. 126).

If the first-order theory of the group G is W,-categorical,
then G is uniformly locally finite, i.e. there is a function
f:IN— IN such that every finite subset T C G of cardinality
n generates a subgroup of cardinality < f(n). We denote by
Grp(T) the subgroup of G generated by the subset T. Clearly
Grp(T) need not be a normal subgroup of G, and moreover a
finite subset T of G need not be contained in a finite normal
subgroup of G. But if we assume, that G is an FC-group, then
the W,-categoricity of Th(G) implies that every finite subset
T € G of cardinality n is contained in a finite normal sub-
group N < G of cardinality at most f(d ‘' n), where d is the
cardinality of G' (notice that an FC-group G with W8, -cate-
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gorical theory is necessarily a BFC-group, so that G' is finite).
Hence if Th(G) is W,-categorical, then G is locally finite, and
if G is moreover FC, then G is locally normal. It is this fact
which allows us to say something about the structure of R,-
categorical FC-Groups.

We state here without proofs the following results. The
proofs will appear elsewhere.

THEOREM 1: Let G be an arbitrary group such that Th(G)
is W,-categorical. Then the FC-Hypercenter of G is FC-nil-
potent: FCH(G) = FC,(G) for some n € IN, and FC(G) is a
BFC-group. Moreover all groups FC;(G) (for i € IN) are defin-
able characteristic subgroups of G.

THEOREM 2: Let G be an FC-nilpotent group such that Th(G)
is W,-categorical. Then there is a finite normal series {1} =
H, £H; £...£H, = G (i.e. H; DG for all i < m) such that
for all j with 1 < j £ m : Hy/H;_, is the direct sum of an abelian
group A; and a finite group F;. Moreover all groups H; are
definable characteristic subgroups of G.

Theorem 2 has a number of corrollaries. We mention only
the following one:

Corollary: Let G be an FC-group such that Th(G) is R,-cate-
gorical.

(i) If G is locally nilpotent, then G is nilpotent.

(ii) If G is an Engel-group, then G is nilpotent.
(iii) If G satisfies the normalizer-condition, then G is nilpotent,
(iv) If G is locally solvable, then G is solvable.

(v) If the exponent of G is a prime number, then G is solvable.
(vi) If G has no elements of order 2, then G is solvable.

§ 3. Description of the groups G(p, )

Let G be an arbitrary group. If the center Z(G) has finite
Index in G, ie. [G:Z(G)] < R, then G is finite (see R. Baer
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[1] p. 396, theorem 4). Hence, if G/Z(G) is finite, then G is a
BFC-group. We mentioned in section 2 that if Th(G) is R,-
categorical and if G is an FC-group, then G is a BFC-group.
It had been conjectured, that from the assumption "G is an
FC-group such that Th(G) is W,-categorical” it might be pos-
sible even to conclude that G/Z(G) is finite (**. If this would
be the case, then one could perhaps obtain a complete classi-
fication of all FC-groups having an ®,-categorical theorfy by
using some results and methods contained in J.G. Rosenstein's
paper [8]. However, in the sequel we shall disprove the
above mentioned conjecture. We do this by construct-
ing a certain p-group of nilpotency class 2 which is an
W,-categorical FC-group with finite center. We shall prove
a slightly more general result which says that, if p is an odd
prime and G an extra-special p-group of exponent p, then the
theory of G is R,-categorical.

Notation. Let a, b, c, ... be distinct symbols. A word in the
symbols a, b, ¢, ... is a finite sequence W = x;xX:%3...x, where
each of the x; (for 1 i < k) is one of the symbols a, a, b,
b=, ¢, ¢, ... If &, b, ¢, ...are distinct symbols and if W; (for
iel, where I is any index-set) are words in the symbols
a, b, c, ..., then Grp{a, b,c,...; Vie I (W; = 1)} denotes the
Group H which is generated by the elements a, b, c, ... and
has W; = 1 (for i € 1) as defining relations (or: relators) (In
Magnus-Karras-Solitar [5] p. 4-23, however the notation
H = (a,b,c,...;W;(i€]) is used).

be a prime-number. Then G(p, <) denotes the group which
has the following presentation:

Definition. Let < be a linear ordering on the set S and let p

G, <) = Grp{a,b;ieS & VieS@ =b =1 &
a'b; = bjra) & VieSVjesS(i<j=b;'b, = a'b; by}

We define ordinal numbers « in the sense of J. von Neumann.
We then have 0 = &, 1 = {@Z} = {0},..., n+1 = {0,1,
2,...,n},...and n + 1 is a linearly ordered set: if x, vEn-+1,
then x <y & x € y. It is convenient to use the following no-
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tation: if a is an ordinal number, then
G(p, @) = G(p, =), where < is the wellordering on a.

LEMMA 1: Let < be a linear ordering on the set S and let
p be a prime-number. Then G(p, <) is a group of exponent p.

Proof. Since i<{j implies bjb; = abb;, every element g
G (p, =) can be written in the following "normal form': (!

g = akbin;(o) .b?;(l) b?;(n),
such that i, <i; <<ip <...<<i, 0Zk<p and 0 S m(v) <p
for 0 < v < n. Since x° = 1, we may therefore write every
element g of G(p, <) in the following form:
= ak. mdi)

g a igs L
where k and all the m(i) are natural numbers and the formal
product is understood to be in the ordering given by <. The
product of two elements g; and g, of G(p, <) can then easily
be described as follows: suppose that

g = av+ J1 pmd y g = a’ ' II br}(i)

ies i ies 1

where u, v, m(i), n(i) <p, then

. utv+e m(i)+n(i)

(*) g1:92 = a RIS '

where v = X §* and ‘6_ = 2 m(j) 'n@i) and d* is the
iesS 1 1 i<j :

least integer such that 0 ga; <p and 6;“ is congruent to
ﬁi modulo p. The formula (*) is nothing else than an iterated

application of the rule i<lj= b‘j’l(j) » B = aEQImQ) "B 'b;“(”.
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From the formula (*) it follows easily that g¢ = a° = 1
for all g = G(p, £) since all the exponents appearing in the
normal form of g? are congruent 0 modulo p, Q.E.D.

LEMMA 2: Let < be a linear ordering on the set S and let p
be a prime- -number. Put G = G(p, =). Then G = {a";0=n
<<p} € Z(G). Hence G is nilpotent of class 2. Moreover G is
locally finite. (%)

Proof. Consider the commutator [b;, bj] = b; ' b; ' b;b;. Since
bib; = a'bb; withn = 1 if j<<i,and n = p—1 if i<]j, it
follows that [b;, b;] = a® for some ne IN, 0 < n<p. From
the wellknown commutator identities (see e.g. W.R. Scott [10]
p. 56, in particular identity (iv) and (v)) it follows that for all
g: and g: in G = G (p, £) we have: [g;, gs] = a* for some
ke N, 0 <k <p. Thus G' is contained in the cyclic group
{a";0 = n<p}. It is clear, that a belongs to the center of G.
Hence G' € Z(G) and so G = {1}. This means that G is nil-
potent of class 2 (i.e. metabelian). Since G' is finite, G is a
BFC-group. By lemma 1 both groups, G' and G/G' have expo-
nent p (if they are not trivial). But both groups are abelian and
therefore uniformly locally finite, Hence G is uniformly locally
finite (compare: D. Robinson [7] p. 35, Theorem 1.45), Q.E.D.

Notice that, if p = 2 or p = 3, then the locally finiteness
of G = G(p, £) follows directly from lemma 1, since then
Burnside's problem has a positive solution (see [7] p. 35). In
the case p > 5 we need the nilpotency of G = G(p, <) to
conclude that G is locally finite. In the next two lemmata we
describe the center of the groups G(p, =). We show that only
in the case when =< is a linear ordering on the finite set S,
where S has an odd number of elements, the center of G(p, <)
differs from {a";0 < n <p}, provided that p # 2.

LEMMA 3: Let < be a linear ordering on the infinite set S
and let p be a prime-number. If p = 2, then G(p, £) is abe-
lian. If p 2 3, then Z(G(p, =)) = G = {a*;0<n<p}.

Proof. If p = 2, then g = 1 for every g € G(2, <) by lem-
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ma 1. Hence g = g' and therefore gige = (gig))™" =
g;lg:‘ = ge0:. Thus G(2, £) is abelian.

Let us assume now that p = 3, and put G = G(p, ). Ob-
viously a is in the center of G and hence {at;0 < t<<p}C
Z(G). In order to prove the converse we choose g = Z(G) ar-
bitrarily. We write g in its normal form:

g =3 ak . b{n(l) . b;n(g) L blm(n)

1
1 2
n

where i; <i;<<... <1i,. We assume that 0 < m(v) <p for
all 1 Sv<n. Since S is infinite, there exists j €S such
that j & {iy, ..., iy}. But < is a linear ordering on S and hence

there exists p € IN such that 0 < p < n and:
I 5wl << s i
1 i TR ob | n

Case 1: p = 0. Then j<<i;<<...<<i, According to the rule
j<i = b b = ab b we obtain:
v iy joiy

k = m(l) m(n) n
gbj = a ab,- bil b‘i » where 1 = = 1 m{v)
n =

But g € Z(G), and hence gbj = big = akb bm®, .b;“‘“’. This

j :1 .
implies that t = 0 (mod. p). But also gb;1 = balg and hence

'Ez m(v) = 0 (mod. p). We conclude that my = 0 (mod. p),
N=

a contradiction.

Case 2: n #* 0. In this case we consider gb; = b;g and
gb = b g in order to conclude m(y) = 0 (mod. p) in a
u B

similar way as above. Thus we get a contradiction also in
case 2.

We conclude that necessarily m(v) = 0 (mod. p) for all
1<v<n Hence g = at This shows that Z(G) = {a‘;
0=t<p}, QED.
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LEMMA 4: Let p be a prime-number and 2<ne IN.Ifp=>3
and if n is even, then Z(G(p,n)) = {at;0=t<p}l.

Proof. According to our convention G(p,n) = G(p, =), where
< is the natural linear ordering onn = {0,1,...,n—1}. Sup-
pose there exists an element z & Z(G(p, n)), z = a* b2 - p2® -

bmtff:l), such that 0 S m(v) <p for all v<<n and 0 <<m(u)

< p for at least one number p. If there exists a number j with
0 £ j<n such that m(j) = 0 then it follows as in the proof
of lemma 3 that z & Z(G(p, n)), a contradiction to our assump-

m(v)

tion. Hence if z = ak+ II bv = Z(G(p,n)) and m(u) = 0

v<n

(mod. p) for some p < n, then m(v) = 0 (mod. p) for all v<<n.
Since i<{j implies b;b; = ab;b; and also bjb; = aP~! ' b;b;,

k al(o) m(o) m(n—1)
we obtain: z'b, = a -a *b, b, ‘et bpog , where
o(0) = = (m(v). Further b,-z = a" ' by - b™* ... . pRa-t

1<v<n

Since z = Z(G(p,n)), we obtain b,*z = z'b, and hence
0(0) = 0 modulo p. More generally z*b, = b,z (for 0<r
<n) yields the following congruences:

n—I1

afr) = (p—1). (vz.rm(v))-i- v=§;+1 m(v) = 0 (mod. p).

Hence o(r + 1) —o(r) = (p—1 'm(1)—m(r+ 1) = 0 (mod.
p). This implies p(r + 1) + m(r) = 0 (mod. p) for all 0 = r <
n. But n is odd, and therefore:

d(0) (m1) + m2)) + ... + (mn—3) + m@n—2)) +
m(n— 1)

=0+0+..+0+mmn—1).
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Hence o(0) = 0 (mod. p) implies m(n—1) = 0 (mod. p), a
contradiction. Thus all elements of the center have the form
at for some t = IN, Q.E.D.

The notions of special p-groups and extra-special p-groups
are due to P. Hall and G. Higman (see Hall-Higman [4] p. 15).
Let G be a finite or infinite group. Then ®(G) is the Frattini-
subgroup of G (see B.H. Neumann [6]). If H is a finite or in-
finite p-group, then H is called special, if either H is element-
ary abelian or H is nilpotent of class 2 and H' = Z(H) = ®(H)
is elementary abelian. A p-group H is called extra-special if
H is special and H' is cyclic of order p. The reader may find
information on finite extra-special p-groups in Gorenstein [3]
pp. 183-208, Huppert ("Endliche Gruppen I", Berlin 1967) and
L. Dornhoff ("Group representation theory, part A", New
York 1971).

LEMMA 5: Let p be an odd prime and < a linear ordering on
the non-empty set S. If the cardinality of S is not a finite odd
number, then G(p, =) is an extra-special p-group.

Proof. 1t follows from lemma 1 that G(p, g) is a p-group of
exponent p. Lemma 2 shows that the commutator-subgroup
of G(p, =) is cyclic of order p. Lemmata 3 and 4 say, that Z(G)
= G', where C = G(p, ). Further, by lemma 2 G is nilpotent
of class 2. It remains to show that Z(G) = ®(G). Since G is
nilpotent, we have G' = {a';0 < t<{p} € ®(G) (see e.g. W.R.
Scott [10] p. 160). For the converse choose g & ®(G),
g = a* b« ... - b2™, where i < 1, <..<i,0<m<p
n n

forall 1 < v </n, and assume thatn > 1. Define E = {b;;j € S
& j # ij}. Since m(1) = 0 modulo p, clearly E U {g} generates
G = G(p, =), but G is not generated by E alone. Thus
g & ®(G), a contradiction. This shows, that all elements of
®(G) are of the form a' for some t € IN, QE.D.

Lemma 5 shows, that if < is a linear ordering on the coun-
tably infinite set S, and if p is a prime, p # 2, then G(p, £)
is the union of an ascending sequence of finite extraspecial



ON w,-CATEGORICAL EXTRA-SPECIAL p-GROUPS 417

S and let Hy be the subgroup of G(p, <) generated by {bit;

t<<2k}. Then by lemma 5 all the groups Hy (for k = 1) are
extra-special, and H; S H. € ..., G(p, £) = U H,. Finite
k

extraspecial groups are the central product of copies of
G(p, 2). Taking all these facts together we are able to show
in the next section, that Th(G(p, <)) is W,-categorical.

We note that if n is odd and if p is a prime, then G(p, n) is
not an extra-special p-group. In fact G(p, 1) is isomorphic to
Z(p) @ Z(p), where Z(p) is the cyclic group of order p. If n => 3
and if n is odd, then {a';0 =<t <p} is a proper subset of the
center of G(p, n). In fact, according to our convention (see § 3),
G(p, n) is generated by {a,b;;i € n}. Let o(i) be 1 if i is odd,
and let o(i) be p—1 if i is even. Then the following element

=1 g(i)

i=o0 i

belongs to the center of G(p,n), but is different from all
powers of a. Hence, if G = G(p, n), then G' = Z(G) and G is
not extra-special.

§ 4. The W,-categoricity of the groups G(p, =).

Let p be a prime-number, p # 2. If H is a finite extra-special
p-group and if the exponent of H is p, then H has cardinality
p!** for some integer r € IN, r = 1. Moreover for each inte-
ger r€IN, r = 1, there is one and only one extra-special p-
group H such that H has exponent p and cardinality p!+
(see e.g. Gorenstein [3] p. 204). The following Lemma is im-
plicitely contained in Gorenstein [3]. Notice that in the argu-
ment below, the groups A, have to be finite, since otherwise
we do not know how to prove that H = A, Cy(A,), B, =
A* +C (A* ), where B = C_(A* ). However the

n+1 Bn n+1 n+1 Bn n+1
groups B, need not be finite. This is the reason, why we can
prove Lemma 6 not only for finite groups H but also for coun-
tably finite groups.
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LEMMA 6: Let p be a prime, p # 2, and let H be a non-
abelian, at most countable group such that H has exponent
p. H = Z(H) is cyclic and H/Z(H) is elementary abelian.
Then there exists a chain of normal subgroups A, (1=<n € IN) :
AIC...CACA,1S...such that H = U{A;;1<neE ow}
and each A, is an extra-special p-group.

Proof. Since H is either finite or countably-infinite, we may
enumerate the elements of H (possibly with repetitions). Thus
H = {h;;ie IN}, where h; = h; with i # j is possible. Let
i, be the least positive integer such that hi & Z(H). Put x =

o

hi . Hence there exists y= H such that z = [x,y] #+= 1,
0
where [x, y] is the commutator of x and y. Let A, be the sub-
group of H which is generated by {x, y, z}. Clearly H = Z(H)
implies H* = {1} and hence H is nilpotent. Since H has a
finite exponent, H is locally finite (see D. Robinson [7] p. 35).
Hence A, is a finite p-group. p-groups of cardinality p? are
abelian. Hence A, must have at least p? elements. But 1 == z =
[x, v] = H', and as H' is a cyclic group of order p, H' is ge-
nerated by z. Thus H'CA’ . But A;CH and therefore A; CH"

This shows that H' = A'l. Thus AI/A; = A,/H' is a subgroup

of the elementary abelian p-group H/H'. Thus A,/A; has car-

dinality p® Since A; has cardinality p it follows that A; has

cardinality p% This implies that A; is an extra-special p-group
of exponent p. Thus Z(H) = H' = A‘1 = Z(A;). From H' <

A; € H it follows that A, is a normal subgroup of H.

Let B; be the centralizer () of A; in H, B; = Cg(A)). It
follows that H = A;'B;, = {ab;a= A, and b = B;} (use
Gorenstein [3], p. 195, lemma 4.6). We show that B; has similar
properties as H. If f = Z(B,), then f € B, = Cy(A;) and so
fg = gf for all g € A;. Hence it follows from H = A, B,
that f € Z(H). Thus Z(B;) S Z(H). But z = [x,y] € H = Z(A))
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implies z = Cy(A;)) = By; from ze H = ZH) it follows
therefore z € Z(B,). But Z(H) is generated by z. Hence Z(H) =
Z(B,) is cyclic.

If B, #+ Z(B,), then there are u € B; and v € B; such that
w = [u,v] * 1. Hence w € E’fI and w € H'. But H' is cyclic

and therefore generated by w. From B'1 C H' it follows hence
that H' = B'l. Altogether we have shown that B'1 =H =

Z(H) = Z(By), thus B! = Z(B;). Further B/Z(B)) = B/Z(H)

is a subgroup of the elementary abelian subgroup H/Z(H).
Thus By/Z(B;) too is elementary abelian.

Now we are in a position, to define A,.
If By = Z(By), then H = A,, and we put A, = A,, and more
generally A, = A; for all 1 <ne N,
If By = Z(B4), then B, satisfies the same requirements as H
does. Hence, if i; is the least positive integer, such that

hi € B; and hi & Z(B,) then there is an element r € B; such
1 1

that s = [hi I #*= 1. We let A; be the subgroup of B; ge-
1

nerated by {s,r, hi }. As in the case of A, it follows that A‘;
1

is an extra-special p-group of cardinality p® Putting B; =

C, (A;), it follows as above, that B, = Az Bz Put As =
1

A -A;’. As A, is the central product of A; and A;‘, where

both, A; and A;, are extra-special p-groups of power p? and

exponent p, it follows that A, is an extra-special p-group of
cardinality p® and of exponent p.

Continuing this argument, we obtain the desired chain of
normal subgroups A,, each being extra-special. It follows
from the choice of the elements hi, that H is the union over

all these groups A, (for 1 < n € IN). QED.
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COROLLARY: Let p be a prime, p * 2, and let H be a non-
abelian at most countable group such that H has exponent p,
H' = Z(H) is cyclic and H/Z(H) is elementary abelian. Let
D; and D, be finite subgroups of H such that both, D, and D,
be finite subgroups of H such that both, D; and D, are extra-
special. If D; and D, are equipotent, then every isomorphism
¢ from D; onto D; can be extended to an automorphism of H.

Proof. As it was shown in Lemma 6, H = D, - Cy(D,;) and also
H = D2 Cy(D2). Clearly, if H = D; = Dy we do not have
anything to prove. Assume that H % D,. Then also H # D,.
Put E; = Cy(D,) and Ezs = Cy(D;). It was shown in Lemma 6
that E; and E; satisfy the same requirements as H does. Hence
E, is the union of extra-special p-groups A, (1 < n € IN) and
similarly Es is the union of extra-special p-groups A: 1=

n € IN). Here each A, and each A* is the central product of

copies of M(p), where M(p) is the extra-special p-group of
exponent p and cardinality p? (thus M(p) = G(p, 2)). In parti-
cular, the construction of the groups A, and A: was done in

such a way, that A,,; = A, M(p) and A,,, = A, M(p)

(the product here is always a central product). We may there-
fore construct an isomorphism vy from E; onto E; as follows:
since A; = M(p) = A;‘, let y; be any isomorphism from

A, onto Ay such that the restriction of vy, to the center of
A, coincides with the restriction of ¢ to the center of D, (here
¢:D;—D, is the given isomorphism. Notice that Z(Dy) =

Z(Dy) = Z(Ey)) = Z(A,) = Z(Ey) = Z(Ay) forall 1<ne IN).
Since A; A, :M(p) = M(p) : M(p), As* = M(p) : M(p), and
more generally A, = M(p)", A,: = M(p)", we can extend 1y

step by steps to isomorphisms v, from A, onto AJ. If ¢ is the
"limit" of these 1, 's, that is ¢y = U {y,; 1 < n e IN}, then
1y maps E; isomorphically onto E;. Further vy and ¢ coincide
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on Z(D;). We obtain an isomorphism @ : H— H which extends
¢ as follows. If x € H, then x = d‘e for some d € D, and
some e € E;. Define ¢ by the stipulation g(x) = ¢(d).y(e).
The definition does not depend on the particular choice of d
and e. Namely, if x = d'e = u'veH = D,'E; with
d ueD, and e, veEE, thenu'-d = v:e! D, N Cyx(Dy),
and hence u'+'d = v-e!'eZ(D). Thus @) ¢d) =
¢+ d) = y(v-e™) = y(v) ~y(e)~"! and hence g(d) - y(e) =

@(u) : p(v). Thus ¢ is well-defined, Q.E.D.

LEMMA 7: Let p be a fixed prime, p #+ 2, and let G and H
be two countably-infinite extra-special p-groups such that
both, G and H have exponent p. Then G and H are isomor-
phic.

Proof. By the definition G' = Z(G) where G' is cyclic. Clearly
G/®(G) is elementary abelian (to see this use theorem 7.3.4 in
W.R. Scott [10] p. 160 and notice that Scott uses the finiteness
of G only to conclude that G is nilpotent. But in our case G
is already nilpotent). But ®(G) = G' = Z(G) and so G/Z(G)
Is elementary-abelian. Similarly H/Z(H) is elementary abelian.
By lemma 6 G is the union of an ascending chain of finite nor-
mal subgroups A, (for 1 < n & IN) such that A, is an extra-
special p-group of cardinality p'+?". Similarly H is the union
of an ascending chain of extra-special p-groups D, (for 1
n & IN) where D, has cardinality p!*2, A, and D, have expon-
ent p and are hence isomorphic. Let ¢, be an isomorphism from
A, onto D,. We define a sequence of mappings o, from A,
onto D, as follows. Put ¢; = ¢;. Suppose that o, maps A, iso-
morphically onto D,. Then g,.i(A,) = K, is a subgroup of
D,,1 and D, and K, are isomorphic subgroups. In fact, if 1,
denotes the restriction () of g,.; to A,

Tn = an+1rAn = {(X, y)ix € A, and Pns1(X) = v}

1

then ¢ (! (K )) = D . By the corollary to lemma 6, ¢ o 1!
n ' n n n n n
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can be extended to an automorphism a,,; of D,,;. Define

o as follows: ¢ =a 09
n+1 1

Clearly o extends
n+1 n+ n+1

n+1’

oy. It follows from G = U {A,;1<neIN}and H = U {D,;
1=neIN} that 8 = U {0,;1<n e IN} is an isomorphism
from G onto H, Q.E.D.
COROLLARY 1: Let H be a countably-infinite extra-special
p-group such that H has exponent p. Then H is isomorphic
with G(p, w).

This follows immediately from lemma 5 and lemma 6. No-
tice that w is as usual the first infinite ordinal; thus w = IN.

COROLLARY 2: Let S; and S; be countably-infinite sets and
let < be a linear ordering on S; and <€ a linear ordering on
Se. Then the groups G(p, <) and G(p, <) are isomorphic. (%)

THEOREM 3: Let p be a prime and let T, be the first-order
theory of G(p, w). Then T, is W,-categorical.

Proof. T, = Th(G(p, w)), i.e. T, is the set of all sentences for-
mulated in the first-order language of group-theory, which are
true in the group G(p, w). We have to show that when H is a
countably-infinite model of T, then H = G(p,w). In fact
H = T, means, that H and G(p, ) are elementary equivalent:
H = G(p,w). Put G = G(p,w). The center of H is clearly
first-order definable. Since Z(G) is cyclic of order p. it follows
from H = G, that also Z(H) is cyclic of order p. Further
GE VxVy (x 'y 'xy € Z(G)). Thus H = G implies H' C
Z(H). On the other hand G' = Z(G), that is G satisfies the sen-
tence dx3y (1 *+ x'yxy), and hence the same is true in
H. Thus H' # {1}. But H' € Z(H) and Z(H) is cyclic. Thus
H' = Z(H). G/Z(G) is an infinite elementary abelian p-group.
Since Z(G) is first-order definable, the property that G/Z(G) is
elementary abelian can be described by an infinite set of
first-order sentences (see J.G. Rosenstein [8] p. 441) (here we
have only to express that G/Z(G) is infinite, that G/Z(G) is
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abelian and that every element of G/Z(G) has order p). It
follows from H = G that H satisfies the same set of senten-
ces. Hence also H/Z(H) = H/H' is elementary abelian. Thus
H is extra-special and corollary 1 implies that H and G are
isomorphic, Q.E.D,

The set Ty has a recursive set of axioms, which we describe
now. Notice that we do not refer to the Frattini-subgroup
®(H), since ®(H) is in general not first-order definable. We
refer instead to the factor-group H/Z(H).

DEFINITION. For a prime p, p * 2, let ¥, be the set which
consists of the following axioms:
(i) the axioms for group theory,

p
(i) Ix,... Ix, /X\ (x * x)A /X\ Vylyxi = xy) A
i i'="1

i¥+]

1
(iii) VxVyVz (zx'y'xy = xlylxyz),
(iv) I3x3Iy (1 = x 'y 'xy),
(v) Vx(xr = 1),
(vi) for every 1 <<k = IN the following sentence:

Axy 0 Axy ( M (Vz(Vyzy = vz) =% # zx,-)])
i#j

P
A Vz(Vylzy = yz) = \X/ % e z))
i = 1

Axiom (ii) says that the center is a cyclic group of order p.
Axiom (iii) says that the derived group is contained in the
center and (i) says that the derived group is not trivial. Hen-
ce (ii), (iii) and (iv) imply that the center coincides with the
derived group. Axiom (vi) says that the factor group modulo
the center is infinite. We should perhaps say, that /X\ is a

b
symbol for conjunction. Thus /Y\1 ®; is the same as ¢; A O,
1=

A ...\ @, (where A means "and"). Since all the axioms (i), ...,
(vi) are true in G(p, w), he set ¥, is consistent. If H is a model
of %, then H is an infinite group (this follows from (i) and
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(vi): take z = 1), Z(H) = H' is cyclic of order p (by (i), (ii),

(iii) and (iv)), H has exponent p (by (v)), and by (vi) H/Z(H) is

infinite. But H/Z(H) is a homomorphic image of H, where H

has exponent p. Thus H/Z(H) has exponent p. But as H =

Z(H), and H/H' is always abelian, H/H(Z) is an elementary

abelian p-group. Thus if H = X, and H is countably infinite,

then (since obviously H' = ®(H) follows) by corollary 1 to
lemma 7, H and G(p, ») are isomorphic. In particular H and

G(p, w) are elementarily equivalent. Thus ¥, axiomatizes T,,

and %, is a complete theory. Clearly T, is not finitely axio-

matizable (any finite subset of I, has a finite model, G(p, n)

for some n = IN). T, is clearly decidable.

Theorem 3 has the following consequence: ()

(*) From the assumption, that G is a nilpotent p-group of
exponent p, such that G' is cyclic of order p (and hence a
BFC-group) and categorical in W, we cannot conclude
that the center of G is infinite.

The groups G(p, ), where p is an odd prime, may also serve

to disprove another conjecture concerning categoricity in R;.

We shall show in the next section, that T, = Th(G(p, w)) is

not stable and hence not W,-categorical. But clearly

G(p, w)/Z(G(p, w)) is categorical in power ®, and ®,. Hence

we conclude:

(**) From the assumption that a nilpotent p-group G is the

central-extension of a finite group by an W,-categorical
group one cannot conclude, that G is W,;-categorical.

§ 5. The groups G(p, w) are not Wi-categorical.

M. Morley showed that a countable W;-categorical theory
T is totally-transcendental, and hence w-stable. A general
theory for stable and unstable theories has been developed
by S. Shelah. The theory T is unstable, if for every infinite
cardinal A we have that T is not A-stable.

LEMMA 8: For every odd prime p, T, = Th(G(p, w)) is un-
stable.
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Proof. Put G = G(p, w). According to the definition, G is ge-
nerated by {a, b;;i = w}. In particular i <j implies bjb; =
abb; = bbja (since a € Z(G)). Hence i < j implies [b;, b] =
a. Let W(u, v, x, v) be the following formula (of the first-order
language of group theory):

Y v,x,v) < [xu =v =1y

For i € o let a; denote the ordered pair of b; apd a, thus
0; = {(b;a). We write ¥(n; 0;) instead of W(b;, a, b;, a). We
claim that

VieoVieo(GE Y (0, 0q))  i<j).

In fact, if i<<j, then [b;,b;] = a is true in G, and hence
¥(b;, a,b;, a) holds in G.

In order to prove the converse, assume that G=%¥(b;, a, b;, a).
< is the usual linear ordering on w. Hence either i = j, or
i<<j or j<<i. Clearly i is different from j since otherwise
a = 1 would follow, a contradiction. Assume that j <<i. Then
as we have seen above: a = [b;, b;]. But [b;, b;] = [b;, b;jJ™,
and Gk[b;, b;] = a would imply a = a', a contradiction.
Thus we have proved our claim.

But now from S. Shelah [11], theorem 2.13, it follows that
T, = Th(G) is unstable, Q.E.D.

THEOREM 4: The theory T, = Th(G(2, 0)) is W,-categorical
and W,-categorical (and hence categorical in all infinite pow-
ers). If p is an odd prime, then T, = Th(G(p, w)) is R,-cate-
gorical but not Wi-categorical; however Th(G(p, w)/Z(G(p, w)))
is W,-categorical and ®;-categorical.

Proof. G(2,w) and G(p, w)/Z(G(p, w)) are elementary abelian
q-groups (with ¢ = 2 or ¢ = p). It is well known that such
groups are categorical in all infinite powers m. Since cate-
goricity in W; implies A-stability for all infinite cardinals A,
the claim follows from lemma 8 and theorem 3, Q.E.D.

In theorem 4 a rather amazing fact in stated: there are groups
G such that Th(G) is not W,-categorical, but for some finite
cyclic normal subgroups D, Th(G/D) is R;-categorical !

The groups G(p, =) can be considered as symplectic spaces
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over the finite Galois-field F, of p elements (namely, if x and
y are in G(p, £), then put f(x,y) = k € F, iff [x,y] = a¥).
If one adopts this point of view, then lemma 6 and its corol-
lary can also be proved by applying some results and methods
of E. Witt.

An abelian group A is W,-categorical iff A is the direct sum
of finitely many vectorspaces over finite fields. It is then per-
haps not too much surprising, that the groups G(p, <) are
¥ -categorical. But a vectorspace over F, is also W;-catego-
rical. It is perhaps surprising, that G(p, <) is not R,-categori-
cal!

Open problem: do there exist infinite partial orderings <
such that the first-order theory of G(p, £) is W,-categorical ?
If the answer is positive, then it would be interesting to clas-
sify those partial orderings = for which Th(G(p, £)) is ®;-
categorical.

§ 6. Group-theoretical consequences

LEMMA 9: Let H be an extra-special p-group and assume
that H has exponent p. If H is finite or countable, then H has
the presentation:

Grp{a,b;; VieS@ = b, =1 &ab; = ba) & Vi jeS
(lbjb] = ae i<jh

for some index-set S and some linear-ordering < on S.

Lemma 9 immediately follows from lemma 7 and its corolla-
ries. In fact the second corollary of lemma 7 says, that the
presentation does not depend on the order-type (if H is at
most countable !). Notice that lemma 9 is not needed in the
proof of W, -categoricity (theorem 3). However lemma 9 is
essentially used in the proof of non- W,-categoricity (theorem
4).

LEMMA 10: (i) Let G and H be extra-special p-groups and
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assume that both have exponent p and both have the same
cardinality. If G is finite or countable, then G = H.

(ii) For every uncountable cardinal m there are exactly Zm
pairwise non-isomorphic extra-special p-groups of exponent
p which have cardinality m.

The proof of (i) follows from lemma 7 if G is countable. For
finite groups G and H lemma 10 (i) was known. It follows
from lemma 8 that T, = Th(G(p, w)) is unstable. Therefore
by a result of S. Shelah [12] (see also Shelah [11], p. 283) T,

m
has exactly 2 non-isomorphic models of power m. Models of
T, are models of X, and models of £, are extra-special
p-groups of exponent p. Thus lemma 10 is proved.
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FOOTNOTES

(®) This paper is a modified version of our paper read at the conference
on Model-Theory at Louvain-La-Neuve in spring 1975.
(*) For the convenience of the printer we write m(v) instead of mv.

Hence m(n —1) is a number m with index n—1 and in particular m(n — 1)
should not be read as multiplication of m with n—1. We use a mul-
tiplication-dot when multiplication is meant.

(**) If Th(G) is N,-categorical and G is a direct sum of finite groups,
then [G:Z(G)] is finite. Hence in this particular case the conjecture is
true.

() G is the commutator-subgroup of G (G' is sometimes also called
the derived subgroup of G). Further x = y (mod. p) means that x and y
are congruent modulo p.

(*) The centralizer of A; in H is Cyg(A;) = {be H; Vae Aq (ba =
ab) }.

(*) In order to avoid misunderstandings we emphasize that {a, b,c, ...}
is merely the set which has a, b, c,... as elements. <a,b> is the ordered
pair of a and b, thus <a,b> = {{a},{q b}}. In particular <a,b> is
not the subgroup generated by a and b, in distinction to the notation in
[3]: [5], [7] and [10].

(°) The theory of dense linear orderings without first and without last
element is ¥,-categorical (G. Cantor). Let m, denote the order type of the
set of rationals. Since the definition of G(p, m,) is closely connected with
the linear-ordering of type m, it seems reasonable to conjecture that
Th(G(p, no)) +is W, -categorical. The theory of the linear ordering on
is not w,-categorical, and hence one might conjecture that Th(G(p, ®)) is
not N,-categorical. However corollary 2 states that the isomorphism-
type of G(p, <) (if G(p, <) is at most countable) does not depend on
the isomorphism-type of the linear-ordering used to define G(p, <). We
do not know whether a similar result holds for uncountable groups G(p, <).

(*) A group H is called % -categorical if Th(H) is ¥ -categorical.
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