FINITE-DIMENSIONAL MODELS OF CATEGORICAL
SEMI-MINIMAL THEORIES

DaANIEL. ANDLER

A semi-minimal theory is a complete first-order theory with
infinite models in which vy = v, is a semi-minimal formula:
for any formula ¢, there are strongly ¢-minimal formulas
Py, ..., P such that in any model I of the theory, {y;(A) ;
1<i<k} is a partition of A. Strong ¢-minimality, a
notion first defined in [S 2], means that ,if ¢ has 1 + n free
variables, for any sequence a of n parameters from A, the
set Yi(A) is included in, or disjoint from the set {x € A;
AE@[x,d]}, up to finite sets. Semi-minimal theories and
their infinite-dimensional models (those which have an infi-
nite indiscernible set) are studied in [A 2], with which the
reader is assumed to be acquainted; all definitions and nota-
tions are carried over from that paper. In the classification
induced by Shelah's degree [S 1], semi-minimal theories are
the simplest theories with infinite models: vy = v, has degree
1. They are, however, quite a bit more complex than, for
example, strongly minima! theories (see [Ma], [BL]), and in-
clude all known examples of 'nontrivial’ uncountable theories
categorical in large powers (those which are not inessential
extensions of a countable theory categorical in uncountable
powers). On the other hand, there is at present no reason
to believe this is not due to lack of imagination, while there
are examples of semi-minimal heories which are not catego-
rical.

This paper deals with the finite-dimensional models of an
uncountable categorical semi-minimal theory. Such a theory,
it is shown, has either a prime model or a finite-dimensional
model. If, like all known examples, it enjoys a certain property
called 1-reduction, it has exactly W, nonisomorphic finite-di-
mensional models; in fact such a theory T possesses a well-
ordered elementary chain <Jlﬁ> such that any model A of
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T is isomorphic to 4 where x is the (finite or infinite) type-
*®

dimension of .4; models of T are characterized, up to isomor-
phism, by their type-dimension.

T will denote throughout an uncountable semi-minimal
theory in language L, categorical in one (hence any) power
greater than |T|; & is a fixed partition sheaf for v, = vy,
9 is the class of models of T of power at least :|T|, I the
class of all models of T. 4 need not exhaust ‘I{, but assuming
that it does is a reasonable simplification. A finite-dimensional
model is one without an infinite indiscernible set.

1. Omissible types and the density condition

A type of T which is omitted in some 4 in i (resp. in 9)
will be called omissible (resp. J-omissible). As infinite-dimen-
sional models are Wg-saturated ([A 2, 3.14]), a type can only
be omitted in a finite-dimensional model. Hence the problem
of constructing a finite-dimensional model under the assump-
tion that no type is omissible, problem which can also be rela-
tivized to I. The first goal is to construct a J-prime model
(i.e. a model elementarily embeddable in any A4 = ). This
can be done in fact under a weaker assumption, as we now
show.

T will be said to satisfy the density condition if any 1-for-
mula of L is contained in some non-J-omissible complete
P-type (this property is obviously independant of the parti-
tion sheaf &; in fact it is equivalent to: non-J-omissible com-
plete 1-types of T are dense in ST, the Stone space of all com-

plete 1-types of T).

2. Strongly minimal formulas and powerful sequences

Among nonalgebraic complete -types, some may contain
a strongly minimal formula of T, while the others are noniso-
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lated (an isolating formula would be strongly minimal). The
two cases often require separate treatment.

LEMMA 1 — Let % be a strongly minimal formula of T.
There is a minimal number n such that for any model JA e 4,
any free set of n elements of 9() generates in A infinitely
many elements of #(A).

* It is enough to show that for some n there exists a model
A e 9 and n free solutions to ¥ in .1 generating in 4 infini-
tely many solutions to #. Let .4 be a model of T of power |T|
and infinite type-dimension p <|T|. By Shelah's two-cardinal
theorem for stable theories (see[S 1]), the categoricity of T
forces |#(A)| = |A| = |T|. On the other hand, letting p
be the unique nonalgebraic complete type containing &, if X
is a basis of #(f), X is a basis of p(4); so |X| = u, and X*,
the set of finite sequences in X, has power p also. Therefore
some finite subset Y of X generates infinitely many solutions
to ¥4, because of the finite character of algebraic closure. If n
is the cardinality of a minimal such finite Y € X, n fulfills
our requirements. *

Given I, any sequence of n free elements of #(_{), with n
as above, will be called a powerful sequence of 4 in A (the
case n = 0 may occur). If S € A, a powerful sequence of ¢
over S in 1 will be a powerful sequence of @ in [4, S] (Th[.A,
S] is also semi-minimal and categorical, and has # as a strongly
minimal formula). We can now state a criterion for element-
ary substructures:

LEMMA 2 — Let A be a model of T, A, a subset of A.
AT Ay is an elementary substructure of  if A, is algebraically
closed in J and contains, for each strongly minimal formula
4 of T, a powerful sequence s of & over Ay,—s, and for each
finite &-type p, an element realizing p in .

* By [A 2, 1.13], we need only show that A, contains infi-
nitely many solutions to every nonalgebraic formula v in .
If ¢ is almost implied by a strongly minimal formula %, as A,
is algebraically closed and contains a powerful sequence s
of & over Ag—s in 4, Ay contains the infinitely many solu-
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tions to & generated by Ay. If ¢ is not almost implied by any
strongly minimal formula, one can define a sequence (y;;
ie= w) of formulas in & such that y, = ¢ and for each
Lgo Ao Ay A gy and o A o Ay A =y, are both
nonalgebraic. Now A, contains by hypothesis, for each i, an
element x; satisfying ¥o A ... Ay A — 4,4 clearly x; #+ x;
for i <<j<w. Hence A, contains infinitely many solutions
toy. *

3. Construction of a Y-prime model J,

Assuming that T satisfies the density condition, we let 1
be a saturated model of T of power at least |T|, and proceed
to construct a set A, € A satisfying the above criterion in a
fairly thrifty way. A, will be optimal in that respect if it turns
out to have power |T|, in particular if H = 9.

Let (pa;a<lg < |T|) be a well-ordering of the nonalge-

braic complete P-types, and s the finite sequence defined
a

by induction as follows (we setS = U s).
a p<a P

Case A: p is not isolated;
a

— if cl Su contains a point realizing P OTpP is
Y-omissible, s, = D
— if not, g - (xa), where X is any element of
A realizing pu.
Case B: p is isolated by the strongly minimal formula 9;

o

— s is a powerful sequence of 4 over S in J
o o
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A
(note that s = & iff ¢l S contains infinitely
o o

many solutions to 9).

A
We now let S = Sl and Ao = ¢l 8. Clearly A0 satisfies
0

the conditions of Lemma 2, therefore 4, = JA[ A, is an ele-
mentary substructure of J. Furthermore, |Aq| < |T].

Now we show that 4, is a Y-prime model. Let us first
observe that S is a basis of Ay in Ay Now let . be any model
in 9. We proceed to construct a & - (A, A) - elementary map
f of S into a basis of A. Proceeding by induction on o <A,
we assume f has been defined on Sa and we must show:

A A
dimg p (A) = f(s). In case A, if cl S Np (H) = &,
o o [+3 J a o
then by induction hypothesis ¢l fS Np (A) = &, and if
o o
p is not J-omissible, then p (A) # @, so there is in A an
o o

element y realizing P and free over fS : let fs = vy; if
o

clual“Sm n P, (A) #+ @ or p is J-omissible, there is nothing
to do as s, = @. In case B, if n is the length of a powerful
sequence of & over Su in Ay(n > 0), then on one hand
4 (sa] = n, on the other hand there is a powerful sequence
t of 4 over fSm in A, of length n; so we can extend f by any

1-1 map of s onto t. This completes the induction and shows

that A, can be elementarily embedded into 4.
Finally, if A and & are two 9-prime models of power |T|,
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they can be mutually embedded into each other. If one of
them is finite-dimensional, these embeddings must be onto,
for clearly no finite-dimensional model can be isomorphic to
an elementary substructure of itself. If one of them is in-
finite-dimensional, the other one is as well, and both have
type-dimension W, so again they are isomorphic. Therefore,
if there is a {-prime model in 9, it is unique up to isomorphism.
Summing up:

THEOREM 3 — If the set £ of non-J-omissible complete
1-types of I is dense in S'f, then T has a Y-prime model J,.

If Ay is in 9 (in particular if || = |T| or H = 9), A is

unique up to isomorphism.

4. Pseudo-minimality of .

Let A be a model of T. We shall call / pseudo-minimal if

A has a basis S in 4 such that f Rc' S, [ cluqR is not an
elementary substructure of 4. Unfortunately that property
seems to be weaker than minimality proper. We proceed none-
theless to show that 4, is pseudo-minimal under some (rea-
sonable) additional assumption. Minimality proper will be
discussed in § 6.

A
THEOREM 4 — Let Ay = Al cl S be the 9-prime model
constructed in § 3. If |S| = |T|, or if M = 9, or if any
omissible 1-type of T is Y-omissible, then A, is pseudo-mini-
mal.

a,...,n
* Throughout the proof we write Vx, ..., z for
(VU({x .. z})—{a ...,n}. Let X, be an element of S. We

A
shall show that Ay [cl °S™ = & is not an elementary sub-
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structure of 4, This implies that for any Rc S, A, [ CIJ‘)R

is not an elementary substructure of A;. The idea is to show

that no element of B can "fill in" for x;. We suppose for con-

tradiction that B S A, Let P, be the complete P-type
0

X,
realized by xy in A, and put ' = S °+1 4
)
Step 1, Case A: p, is nonisolated. If |S| = |T| or if T

0

has no model of power less than |T|, then & € 9. In both
these cases & does not omit p ; it is also true in the case
o
0

where any omissible 1-type is Y-omissible. Therefore some

A
t = B realizes p . On the other hand no element of cl °S
a a
0 0

realizes p in A, or else x; would not have been thrown in.
o
0

Step 1, Case B: 1 is isolated by the strongly minimal for-
0

A
mula 9. Because ¢l %S’ contains but finitely many solutions
to & (the reason why x, was thrown in), some element t of B
satisfies 4 and is not generated in 4, by S'.

Step 2: in either case, there are elements xy, ..., x, of S such
that, p being the complete P-type realized by x; (1 <i < n),
o

i
<< for 1<i<j<n and tecl °S'x..x
—cl %'x,..x,-;. From this we infer:

A
(a) by the exchange principle, that x, = cl °A'wt, with
W = (Xyg ..., Xp-1)
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(b) because t and x, are free over S'w and realize the same
P-type, that t(t, Ay S'w) = 1(Xo, Ao S'W).
By (a), let n(vy b, t), with b = (S'w)*, be an irreducible poly-
nomial for x, over S'wt, with say m solutions.

Step 3, Case A: P , the P-type of x,, is nonisolated. For
a

n

all g P, (Ao b, t) = Imva(v, b, ) A Vv[a(v, b, t) = ¢(v)].

n
By (b), substituting x, for t in the above sentences preserves

their validity in A,. Yet together they imply thatcl °S con-
a

n

tains an element realizing p , which contradicts the fact that
a

n
x was thrown in S.
a

n

Step 3, Case B: p is isolated by the strongly minimal for-
o

mula 4. Let k, k + i, k + j be the lengths of powerful sequen-
ces of % over S'wxyx,, S'wx,, S'wx, respectively. Naturally i
and j are nonnegative; further, as it was necessary to throw
in x, at the a,-th stage, j is strictly positive (in fact j = 1, for
reasons of dimension).

Case a: i = 0. Let (ay, ..., ax) be a powerful sequence of ¥
over S'wx,, and for each m, w, be a formula and s, a sequence
in S'w such that m,(vy, 3y, ..., @k Sm Xn) has m' solutions
(m € m' < R) satisfying 4' in :Q;’ Then x, satisfies in[4;,S'w]
every formula g, (u), where ¢,(u) is:

Az, ... 3z, [I™V 7, (V, Z4, o) Ziy Sy U) A F (1) A A ¥(z

1S/ <k )
(c) for infinitely many m, [, S'wt]ke Vv [a(v, b, t)—

1.
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pm(v)]. By (b) let x' be a solution in (A, b, Xo) to the polyno-
mial m(vy, b, X¢). Then x'll generates over S'w together with k

well chosen solutions to 4 infinitely many more; for if not,
the number of solutions to % obtained with the help of k solu-
tions would be bounded, in contradiction with (c) where x, is
legitimately substituted to t (by (b)). But now S'wx, generates
x'n therefore k is the length of a powerful sequence of §' over

S'wxy in J, contradicting j > 0.

Case B: i>0. Let %, ..., Z. be k elements of B which are
solutions to ¥ in Jf; and are free over S'wx,: we know that
not only such elements exist, but that they are not sufficient
to generate infinitely many solutions to ¥, because i>0
(while 8 must have infinitely many solutions to #, being an
elementary substructure of  4;). By the exchange principle,
and because S is free, {z, ...,z } is a free set over S'wx,xq.
So {zy, ..., Zx } generates over S'wx,x, infinitely many solutions
to 4, one of which, say u, is not generated by {z;, ..., zx} over

A A
S'wx,. Thus: uescl S'wx %2 ...zx — ¢l S'Wx,z;... Zk

A A
Exchanging: xp= cl ‘S'wx,z;...zzu<Scl °9 contradict-
ing the freedom of S. *

COROLLARY 5 — If the nonomissible complete 1-types of T
are dense in S'-:, then T has a prime model which is pseudo-

minimal and unique up to isomorphism.
* The first point is that, if we strengthen the density condi-
tion by replacing '"non-J-omissible” by "nonomissible”, we

can perform the construction leading to 4, with the same
modification and obtain a model Jl;, which is prime instead of

just J-prime. The second point is that by the same token, the
proof of Theorem 4 shows that J; is pseudo-minimal. The

final point is that if @ is another prime model of T, it is em-
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beddable in J(’), which in turn is embeddable in $. The iso-

morphism of Ji;] and .L follows as before. *

5. Finite-dimensional extensions

Starting with a finite-dimensional model 4, it is easy to
construct nonisomorphic elementary extensions of ' ;. Letting
A be any proper elementary extension of 4, u an element of
A — A, of type p, X a basis of p(fy), consider T' = Th [,
X " {u}]: T' has either a finite-dimensional model or a prime

model %'. On the other hand, 4, has a manimal elementary

A
extension, viz. 8 = J[cl (AOU {u}). However, nothing

seems to prevent B and &' from being infinite-dimensional, in
which case they must be isomorphic; the point is that relative
type-dimensions could conceivably be larger in the smaller
model 4, than in the larger model $. We might mention the
following very special case:

W
PROPOSITION 6 — If T is irreducible, Wo<<|T|<<2 °

and |T| is regular, then T has at least ¥, nonisomorphic finite-
dimensional models of power |T]|.

* If T had no finite-dimensional model of power |T|, every
model in 9 would be W,-saturated, thus would realize every
type of T in any number of variables. Then by [K, Theorem B],
under the hypotheses on |T|, T would be reducible. So T has
a finite-dimensional model of power |T|; call it . For the
same reason, if # is a proper elementary extension of .4 and
u € B - A realizes the type p of T, and X is a basis of p(.A) in
A, then Th[$,XU{u}] has a finite-dimensional model whose
contraction to [, the language of T, is finite-dimensional and
not isomorphic to 4. Iterating this construction, we obtain
the desired models. *
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A characteristic feature of finite-dimensional models is total
homogeneity (a structure J{ is totally homogeneous if any
partial automorphism of / can be extended to an automor-
phism of (f). Infinite-dimensional models are either not homo-
geneous (if their type-dimension is less than their power) or
(in the other case) homogeneous and not totally homogeneous
([A 2, 3.15)):

PROPOSITION 7 — The finite-dimensional models of T are
totally homogeneous.

* Let J be a finite-dimensional model of T, X a subset
of A, f an (J, A)-elementary map of domain X. Let (p ;
[+ 3

a <)) be a well-ordering of the complete % -types of T. We
define by induction an increasing sequence f of partial auto-
1)

morphisms of  extending f such that p () € domain
a

f N range f . Assuming f has been defined, with
at1 at1 a

A
domain f = X , we consider c1 X N p (A), of dimension
o a 13 a
say m . Let n be the dimension of p (). f m = n , then
a J o 1 } a o
pu(uQ) Ccl Xa, or else there would be n + 1 independent
a

elements in pu[JE); in that case we set f 24 to be an element-
. A
ary map extending f to ¢l X . If m <n, let x be an
a [ 4 o
: A :
element in pu(dl) — cl X . By induction hypothesis,
a
A A A A
dim (cl (quu) n pu(..}l}) = dim (1 X Np (A)) =
o o

. A
m , s0 there is an element y in p () — ¢l (f X ). We set
o o a
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flx = yand f! [X = f.f is (A A)-elementary.
a o a a
We subject f! to the same treatment as f , and thus obtain,
a [+5
after finitely many steps (at most n — m in fact) an (A,A)-
o a
elementary map f* extending f and whose domain and range
o a
each generate p (). We let f be some extension of fk
a at+1 «

to the closure of its domain. At a limit ordinal 8, we take

f = U f .f is the desired isomorphism. *
b f<a B2
0

6. The n-reduction property

Let T be a semi-minimal theory, .4 a model of T. As the
algebraic closure has finite character, and as a set X free in
A of elements realizing in .4 the same 1-type of T is indis-
cernible in A, the following is clear: given two complete

A
I-types p, q of T, there is a number N = N,, such that if
some elements of p(.{) generate in 4 a free element of q(.A),
then any set free in A of N elements of p(_{) generates in ./

A
a free element of q(.A). Of course, N, , is actually independent
of J. We shall say that T has the n-reduction property if for
any complete inessential extension T' of T, any model {' of

T', any two complete 1-types p and q of T, N;f < n. All 'non-
trivial’ uncountable categorical theories known have the 1-re-
duction property.

Now let 9, be the class of models of T which for some
complete 1-type of T have p-dimension at least n. Categori-
city of T, which was not required in the presentation of n-
reduction, is again assumed.
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LEMMA 8 — If T verifies n-reduction for some n = 1, and
A is a model in 9,, then A omits no 1-type of T.

* Let p be a complete 1-type of T such that dimdlp Zn,
and let X be a basis of p({), completed by Z to a basis of A
in A. Let C be an R,-saturated elementary extension of i,
and X' extend X as a basis of p(C). By [A2, 3.1a], 8 =

) ch[X' UZ)SC. As @B is an infinite-dimensional model
of T, B is W, -saturated; therefore, given a complete 1-type
q of T, there exists z € B realizing q in 4. z is generated in
[8,Z] by some elements of X'. If z = A, we are done. If not,
z is free over Z in [$, Z]. Therefore, by n-reduction, any n
elements of X' generate in [$, Z] an element realizing q in
[B,Z]. In particular, pick n elements of X: they generate in
[8, Z] an element z' realizing q. But z' € A and [, Z] < [C, Z).
Therefore z' realizes q in 4. *

LEMMA 9 — Suppose T verifies n-reduction for some n = 1,
and let N be any number. If J is a model in 9,,y, then A
omits no (N + 1)-type of T.

* We show by induction on k < N that 4 omits no (k + 1)-
type of T. The case k = 0 follows from Lemma 8. Assuming
the conclusion for k, let 0 be a (k + 1)-type of T. Let & be an
elementary extension of 4 with a (k + 1)-tuple (b, ..., by)
realizing o, and let ¢ = t((by, ..., by),¥). By the induction

hypothesis, some sequence a = (a, ..., ay) realizes ¢' in A

Let T'" = Th(.4, a). T' verifies n-reduction, and for some com-
(A a)

plete 1-type p of T, dim p2Z2N+n—k=>=n, as

Ae D,,.x and by the dimension theorem. Therefore (4, a)
realizes every 1-type of T', by Lemma 8, in particular some
element a, realizes in (.4, a) the type {@(vo @y ....3) | B E
@[bg, ..., b]}, so aja realizes o in A. *

Let us now substitute 9, for I in the construction of § 3;
we obtain a model .‘53 of T. Theorem 3 can then be restated

as follows, by Lemma 8:
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LEMMA 10 — Let T verify n-reduction for some n = 1.
There exists a 9,-prime model .@3 of T. If .@3 belongs to 9,

then it is unique up to isomorphism.
The main improvement due to n-reduction is the following:

THEOREM 11 — .@‘5 is finite-dimensional. In fact there is

a nonalgebraic complete 1-type py of T such that .93 has py —

dimension at most n.
* (The notations are carried over from § 3). B’; is determined

A
as cl S. (p ;a<l) is the well-ordering of the nonalgebraic
o

P-types used to construct S. Suppose for contradiction that

.(Bn
dim %p, is greater than n. For 1 i< n+1— /(s¢) (note
that /(s) < n by n-reduction), let o; be a minimal (finite)
sequence in S generating over s, an element x; realizing p,

and free over s¢x;...X;-. Leto = U ¢; (0 * ) and z € o
1<i<n

be an element whose type has highest rank « in the hierarchy
(p ia<<l) among elements of o. As ¢; is minimal, x; €
o

_(Bn n z n z
cl, 0"0; — cl, 0005, so by exchange: z & cl, D%ixi. Pick n ele-

x
ments yy, ..., Y, among s¢X;...X, . By definition {x; vy, ..., Yo}

is a free set.

Case A: p is nonisolated. Let C S S complete x;y;...y, to
o a
a basis of S ' As X;yi...Yn generates over C an element z
o
free over C and realizing p , by n-reduction y;...y, generates
o

over C an element z' realizing p . As p is nonisolated,
[v3 a
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Cy1...Yyn £S5 generates no element realizing p, or else z
o o

would not have been thrown in: contradiction.
Case B: p is isolated by a strongly minimal formula 9. Let
a

z
CcCcsS complete X;v;...y, to a basis of S . Let m be the
a+1 at+1

length of a powerful sequence of 4 over C. m = 1 or else z
would not have been thrown into s . Now x;y,...y., generates,
a

freely over C, an element z satisfying # free over C. So y;...Va
alone generates over C an element z' satisfying ¥ free over C.
Z satisfies, for each N and some formula ny of L(C) and some

finite N' 2 N, the I-formula Jvi... vy ( A #v) A

Isism—1
AN vu[n (Ve Vi, oo Vi) A $(Vy)]). Therefore z' satisfies the

z
same formulas. On the other hand, as S 4 contains a power-
o
z
ful sequence for ¢ over Cz, S 4 contains m — 1 solutions to
a

% free over C. The formulas written above, which z' satisfies,

imply that m — 1 solutions to # free over C generate over C

a number of solutions to 4 which, being unbounded, is infinite

(for N large enough, only free v;...v,-; will do, so any free
z

Vi...Vp-1 will do). Altogether, S & generates infinitely many
a.

solutions to ¥: this contradicts the definition of z= s . *
a

In order to obtain other finite-dimensional models of T, one
simply starts with 59: and constructs successive finite-dimen-

sional models !Bi“ in the following way: let C be an ®,-satur-
ated elementary extension of !B‘i‘, X a basis of po(.@‘;). u an
element of py(") —B% and T' = Th[C, X U {u}]. As T' has the
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same properties as T, including n-reduction, one can take a
.@;-prime model ¥ of T’ (_fD;l being the class of models of T'

which for some complete 1-type p of T have p-dimension at
least n). 9" is finite-dimensional, therefore its contraction to
the language L of T is a finite-dimensional model $» Find of T of

strictly greater pj,-dimension that 59;‘. Therefore

COROLLARY 12 — If T verifies n-reduction for some
n=1, T has at least R, nonisomorphic finite-dimensional
models. If in addition, for some N, T has |T| complete (1 + N)-
types (in particular if T is irreducible and cf|T|>w), then these
models can be chosen to have power |T|.

* The last part follows from Lemma 9: _‘B'; .y has finite

po-dimension at least n + N, therefore _‘B; , for k =2 n + N,
realizes every complete (1 + N)-type of T. *

LEMMA 13 — Let T verify n-reduction for some n = 1, and
A < B be models of T. If there is a complete 1-type q of T

such that dimfg q = n, then for any nonalgebraic 1-type p of T,
p(A) * p(H).

* In the case where { is infinite-dimensional, this was
shown in the proof of [A2, 3.16] (n-reduction superfluous).
Now suppose A is finite-dimensional. Let 9 be an infinite-
dimensional elementary extension of $ and X a basis of q(9)

over A. Finally let = g)l‘clgg{A U X). As usual, C < 9,
and because / is finite-dimensional, p(() contains an element
u not in A, therefore free over A in . In 9), u is generated
over A by X, therefore by n-reduction any set free over A of
n elements realizing q generates an element free over A realiz-
ing p. This is also true in B < 9 and % contains n elements
of the right sort;in # they generate over A an element u’
free over A and realizing p: u' € p(%$) —p(A). *
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Thus finite-dimensional models show some signs of good
behavior under n-reduction: on one hand there are infinitely
many of them, on the other no large "distortions” are possible
when one extends the other, a limiting factor for possible iso-
morphism types. Yet only under the hypothesis of 1-reduction
are we able to settle the matter completely.

7. 1-reduction and the elementary chain

As observed earlier, 1 reduction is verified by known exam-
ples of nontrivial uncountable categorical theories. It might
not therefore be as preposterous a postulate as would seem
at first.

Let T be a categorical semi-minimal theory with 1-reduc-
tion, and {Bm an Wy-saturated model of T. We first observe

that the class 9, augmented, if it is an elementary substruc-

3

w
ure of 8 , by By, = B [ cl @, constitutes up to isomor-
@ w

phism the class of all models of T. In other words, either 3,
is a model of T, and then of course %, is a prime model of T,
or %, is not a model of T and then the 9);-prime model of T
is a prime model of T. Next we show:

THEOREM 14 — If T verifies 1-reduction, any model of T
has a minimal prime extension.

* Let A be a model of T. If A is infinite-dimensional, the
claim has been established in [A 2]. If not, let X be a basis
of A and, assuming without loss that 4 < B , let u be any

w
element of B — A: u realizes a nonalgebraic complete 1-type
w

B
p.Let 3 =38 [ cl m[A U {u}). Let A’ be any proper ele-
w

mentary extension of A: there exists an element t in q( ) —
q(A) for some complete 1-type q. By l-reduction and Lemma
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13, p(A) — p(A) contains an element u'. Then clearly the
identical map of X extended by sending u onto u’ is element-
ary, and thus extends to an elementary embedding of & onto
4" over A. Thus & is a prime extension of 4. It is obvious
that & is also a minimal elementary extension of 4. *

We shall now construct an elementary tower of finite-di-

B

mensional models. Let 4, be defined as .‘Bw ['cl . @ only if

it is a model of T. If 4, is not defined, let .4, be a 9);-prime
model in & . If ], is defined, let 4; be a prime extension of
w

Ay in 8 (A may or may not be 9;-prime). By induction on
w

n =1, we let JEHH be a prime extension of A, in # . As
w

for each n there is clearly an N such that 4, is elementarily
embeddable in the model .‘B; of the previous section, 4, is

A
finite-dimensional. But let us see more precisely that dim »

Po = n. The proof of Theorem 11 shows that dimuq‘po = 1,

whether A, or 4, be 9;-prime. Therefore in py(_A;) there is a

free element u; (which may or may not belong to s;) such that

Sou; is a basis of py(A;). As the proof of 14 shows, 4,,; can
-%w

be seen as B [ «cl (A, U {u,}) for some u, € py($ ) —
w w

po(4.). By induction, suppose that squ;...u, generates p(.4,) in
A,, and for contradiction that Sel;...u,,1 does not generate
P(An.1) in A,y Let u be an element of p(.i,.;) free over
SoUi...up.;. By exchange, as Su, generates A, in i, it is

z

easily seen that for some z =S free over S u;..u, = V,
1 "

zecd Vu,,u. By 1-reduction, u generates over V an ele-

ment z' of same type as z free over V. Exchanging again:

n

1 F i 3o .
uscl Vz.As zand z are indiscernible over V, z there-
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fore generates an element u' of type p, free over sgu;...u,. But
this means that squ;...u, does not generate py(.A,), contrary to
our induction hypothesis.

It is also clear that for any nonalgebraic complete type p’

of T, dimdlnp' = n. Indeed, the model J; obtained like A,

starting with p’ instead of p is isomorphic to A,.

Finally, A = U 4, is the (essentially unique) model of

w new

type-dimension R, Now let .4 be any finite-dimensional mo-
del; there is an embedding of f, into 4 which, provided it is
not onto, can be extended to an elementary embedding of .4,
into J, and so forth. The process ends after finitely many
steps, or else 4 would be an elementary extension of an iso-
morphic image of uqm, and therefore be infinite-dimensional.

Thus for some k € 0, J is isomorphic to A,

If T verifies 1-reduction, the notion of type-dimension, pre-
viously defined for infinite-dimensional models, clearly makes
sense also for finite-dimensional models. Our conclusion may
therefore be worded in the following way:

THEOREM 15 — If T verifies 1-reduction, T has an element-
ary chain of models < gi €S <Pf> (e = 0 or £ = 1) such

that Jl is a prime model, Jl Sid is a minimal prime extension

of Jl JZ = U J for a limit ordinal §, and any model
5 B<d B

A of T is isomorphic to any JB such that |B| equals the type-
dimension of A. For f§ 2 ¥,, |A | = |B] + |T|. For p<< W,
|Aﬂ| < T. Therefore T has |a| + W, isomorphism types of

models of power at most |T| = 8 . If in addition for some

21, T has |T| complete N—types there is an m < N + 1
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such that A, belongs to 9 and is I-prime; then in power |T|,
T has R, finite-dimensional models.

*
* %

The significance of the n-reduction property, in particular
when n = 1, for categorical theories, remains to be ascert-
ained; therefore the question of how many finite-dimensional
models, if any, a categorical semi-minimal theory can have,
remains open.
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