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These lectures are concerned with the following central
theme:

Given a countable first order theory T, to describe the
spectrum of the countable members of Ep with particular
reference to the subclasses Fr, Gr.

Thé lectures are divided into 14 sections, and these sections
are grouped into four chapters. We give here a brief descrip-
tion of the content of these chapters.

Chapter A contains the required background material on e.c.
structures, etc. Most of this material is now well known, how-
ever, if required, the reader can find full details in [13].

Chapter B is an 3Ji-version of the classical results concern-
ing the countable models of a complete theory (i.e. the results
of [1, pp 93-106]). This chapter is based on [12] which itself is
based on [5], [6], [7].

Chapters C, D are based on [4] however some of the proofs
given here are quite different to those in [4]. Both chapters
are concerned with counting e.c. structures up to elementary
equivalence. Chapters C contains various cardinality results
and chapter D shows there is an underlying topology which
partly controls the behaviour of the generic structures of a
theory.
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CHAPTER A

Required background material

§ 1. Notation, terminology, etc.

The subject matter of these lectures is a part of first order

model theory with the occasional inessential use of L.  -lan-
co,m

guages. Our notation and terminology is standard except
for a few minor differences and additons. The main differences
from the standard notation is that, for typographical reasons,
we use A, B, C, ... for structures (instead of the usual gothic
letters) and we use K, E, F, G, ... for classes of structures (in-
stead of the usual script letters).

Throughout L is some fixed countable first order language.
All our model theoretic concepts (e.g. formula, structure,
theory, etc.) are relative to L. The countability of L is impor-
tant.

For each set of formulas I, fv(I') is the set of variables occu-
ring free in members of I'. A type is such a set I' with fv(I)
finite. Sometimes we write I'(v) for I" to indicate that v is the
finite sequences of free variables of I'. This notation is most
frequently used when T" is a singleton {g¢}, when we write
fv(g) for fv({g}) and @(v) for {¢}(v). A sentence is, of course,
a formula ¢ with fv(g) = @.

For each new the sets of formulas V. 3. are defined in
the usual way. A type I' is an V.-type or an J.-type if
rcVveorI'c 3.

Each type I' gives us two L  -formulas, i.e. the conjunc-
©0,W

tion AT and the disjunction VI of I,

A theory T is just a deductively closed (consistent) set of
sentences. At various places we tacitly assume that each
occuring theory has no finite models. For each theory T we
write Md(T) for the class of models of T and Sh(T) for the
class of submodels of T (i.e. the class of all structures 1 such
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that there is some @ = T with 4 € $). Two theories T, T' are
cotheories if Sb(T) = Sb(T') ie. if TNVy = T'N V1

For a theory T and formula ¢ we write T = ¢ to indicate that
each model of T satisfies the universal closure of ¢. This nota-
tion is particularly used when ¢ is an Loo -formula.

Let A be a structure. Quite often we will be concerned with
a finite sequence a of elements of 4. For convenience we call
such a sequence a point of 1. Very often such a point a will
occur in conjunction with a formula ¢(v), when it will be
assumed that the point a exactly matches the sequence v.
Thus we may write J = g¢(a).

Given a point a of a structure 4 we can form a new struc-
ture (A, a) by enriching .4 with a. Of course this new struc-
ture is a structure for a larger language.

The sets of formulas Vi, 3. induce several relations be-
tween structures. First there are the well known substructure
relations A <. 9 and the associated n-embeddings A — 4.
Then there are the relations.

A=2(3)8 , A=2(V)B8 , A=,9.

The first of these means that each 3 ,-sentence which holds
in 4 also holds in $. The second is just $=(3,) A, and
the third is the conjunction of the first two. The following
theorems give a useful characterization of =(3,.).

1.1. THEOREM. For each two structures J, $ and neow
the following are equivalent.

(1) A=(3a1) 8.

(ii) There is a structure ( together with an n-embedding
A= C and an elementary embedding B — C.

(iii) There is a structure C together with an n-embedding
A—C and an n+1-embedding B — C.

The relation =(3,) will be used quite often when we
are dealing with theories T with JEP. A characterization of
this property (JEP) is given in 2-18.
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Let A, & be a pair of structures. A partial isomorphism
for A, B is a pair (a;b) of points a of .1 and b of B such
that (A a) =, (B b). A back and forth system (or p-system)
for A, 9 is a non-empty set I of partial isomorphisms for
A, B such that for each (a,b) € the following hold.

(Forth). For each x €  there is some y € & such that
(ax;by) el

(Back). For each y € & there is some x € 4 such that
(ax;by) el

We write A=, if there is a p-system for A, $ (so
A=, B hold if and only if A, P satisfy exactly the same
L  -sentences). If A, & are both countable then A=, %

©0,w

holds exactly when A4 = $.

§ 2. E.C. structures and companion theories

This section contains all the required results concerning
the various kinds of e.c. structures. We do not give any
proofs and, in fact, the order in which we give the results
is not the order in which they are most conveniently proved.

We start, at the beginning, with a definition.

2.1. DEFINITION. Let T be a theory. A structure J is e.c.
for T if A  Sb(T) and for each model B of T,

ACPB=> AL, 8.

We let Er be the class of structures e.c. for T and put
Te = Th(Er). We call T® the e-companion of T.

There is a useful syntactical characterization of e.c. struc-
tures. For each theory T and formula ¢ let Q(T,) be the
type

{p} U {—d:94 is an 3I;-formula, consistent with T, such
that fv(3) c fv(p) and T 4> ¢}.

Notice that if ¢ is an V-formula then Q(T,¢) is an
Vi-type.
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2.2. THEOREM. Let T be a theory and A a submodel of T.
The following are equivalent.

(i) A is e.c. for T.
(ii) For each Vi-formula ¢, A omits the type Q(T,qg).

The class Ep itself can be implicitly characterized. Re-
member that we say a class E is cofinal in a class S if EC S
and for each 4 & S there is some $ € E with A C 4..

23. THEOREM. Let T be a theory. Then Ey is the unique
class such that the following hold.

(i) Ey is cofinal in Sb(T).

(ii) For each pair of members A, B of Er, if A< B then
AL B

(iii) For each pair of structures A, B, if A<,{P < Er
then A € Er.

There are two particularly nice kinds of e.c. structures,
namely the generic structures. First we look at the f-generic
structures.

2.4. DEFINITION. Let T be a theory

(i) T is f-complete if for each formula ¢, consistent with
T, there is an I -formula ¥, consistent with T, such that
fv(d) S fv(p) and T+ B — q.

(ii) A model A of T is a completing model of T if for
BET, if ASP then A< B

These two concepts are related for we have the follow-
ing.

2.5. THEOREM. A theory is f-complete if and only if it is
the theory of its class of completing models.

In general a theory does not have a completing model,
however each theory does have a companion with a con-
trolling class of completing models.
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2.6. THEOREM. Each theory has a unique f-complete co-
theory.

2.7. DEFINITION. Let T be a theory. We write Tf for the
unique f-complete cotheory of T and call T' the f-compan-
ion of T. We let Fr be the class of completing models of T!
(so that T* = Th(Fy)). The members of F; are called the
structures f-generic for T.

We easily check that Fp € E; (so that Te C Tf) and that

J<1$EFT:>JEFT

Note however that, in general, Fr is not cofinal in Sh(T).

There is a characterization of f-generic structures along.
the lines of 2.2. Notice that in this characterization we use
the types Q(T'qg), and not the types Q(T,g).

2.8. THEOREM. Let T be a theory and A a submodel of
T. The following are equivalent.

(i) A is f-generic for T.
(ii) For each formula ¢, A omits the type Q(Tiq).

The second kind of generic structure can be approached
via a characterization similar to 2.3.

2.9. THEOREM. Let T be a theory. There is a unique class
Gr such that the following hold.

(i) Gr is cofinal in Sb(T).
(i) For each pair members A, B of Gy, if AP then
AL 3.

(iii) For each pair of structures A, B, if A< B  Gr then
JAe GT.

2.10. DEFINITION. Let T be a theory. The members of Gp
(characterized is 2.9) are called the structures g-generic for
T. We put T¢ = Th(Gy) and call T¢ the g-companion of T.
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Again we easily see that Gy € Ey so that T* C T¢. In general
there appears to be very little connection between Fy and Gr.

These g-generic structures are intimately connected with
the W, — 3;-saturated structures which we consider in sec-
tion 6. In fact Gr is most conveniently constructed using the
following (where Uy is the class defined in 6.1.)

2.11. THEOREM. Let T be a theory. For each structure
the following are equivalent.

(i) A is g-generic for T.

(ii) There is some B € Uy such that A < B.

So far we have seen three companions T¢, T!, T¢ of a theory
T. It is easy to verify that these are cotheories of T, depend
only on T N V,; and satisfy

TN Vngen V2=Tfn V2=T€ﬂ Vg,

There is a fourth companion of T which will play a crucial
role in chapter B.

2.12. DEFINITION. Let T be a theory. T is O-complete if for
each V-formula ¢, consistent with T, there is an d;-formula
¥, consistent with T, such that fv(9) S fv(¢g) and T + 9 — .

2.13. THEOREM. Let T be a theory. There is a unique V-
axiomatizable, 0-complete cotheory T° of T. This theory T° is
axiomatized by T¢N V, = T'!N V, = TN V, and, for
each Vs-axiomatizable cotheory T of T, T' € Te.

We call this theory T° the 0-companion of T. Notice that
unlike the other three companions of T, this companion T° is
not associated with a class of submodels of T (except, of cour-
se, Md(T?)).

Broadly speaking the above concepts can be regarded as
tools for studying the existence or non-existence of model
companions. We give the relevant results.

2.14. DEFINITION. Let T be a theory. A model companion
of T is a model complete cotheory T™ of T.
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2.15. THEOREM. Each theory has at most one model com-
panion, but may have none.

2.16. THEOREM. Let T be a theory. The following are equi-
valent.

(i) T has a model companion T™,
(ii) Er is an elementary class.
(iii) Fp is an elementary class.
(iv) Gr is an elementary class.

(v) T° is model complete.

Moreover if T™ exists then Er = Fp = Gr = Md(T™) and
TEP=T =T¢ = T°e = Tn,

Finally in this section we give two results concerned with
JEP.

2.17. THEOREM. Let T be a theory, let A, B be two struc-
tures both e.c. for T, and let a be a point of A and b a point
of B such that

(Aa) (34 (Bb).

Then (Aa) =3 (B,b). Moreover if A, B are both f-generic
for T or both g-generic for T then (A,a) = ($.b).

2.18. THEOREM. Let T be a theory. The following are equi-
valent.

(i) T has JEP.
(ii) T! is complete.
(iii) T® is complete.
(iv) For each pair o, of Vi-sentences, if T+ o V B then
either T+ a or T+ B.

§ 3. An omilting types result

Remember that a type I' is principal over a theory T if
there is some formula 1, consistent with T, such that fv(y) S
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fv(I') and T + ¢ — A TI'. The following is the classical omitting
types theorem.

3.1, THEOREM. Let T be a theory and I" a countable collec-
tion of types each non-principal over T. Then there is some
countable model of T which omits each member of T

This result is one of crucial tools needed to study the coun-
table models of a theory. We will be concerned with the coun-
table e.c. structures of a theory and consequently we will
need a corresponding omitting types theorem. This section is
devoted to a discussion of the appropriate result.

3.2. DEFINITION. Let T be a theory. A type Il is 3;-prin-
cipal over T if there is some 3 ;-formula vy consistent with T,
such that fv(y) € fv(II) and T = ¢ —> AIL

This concept is used almost exclusively with V;-types.
The following is the result corresponding to 3.1.

3.3. THEOREM. Let T be a theory and Il a countable collec-
tion of Vi-types each non-3-principal over T. Then there is
some countable member 4 of Fy which omits each member
of II.

PROOF. Notice that each member of Il is non- 3 ;-principal
over T! and so (using the f-completeness of Tf) each member
of II is non-principal over T'. In a similar way, for each for-
mula ¢ the type Q (T, ¢) (of 2.8) is non-principal over Tf. The
required result now follows by applying 3.1 to the countable
collection

IT U {QT*, ¢) : ¢ a formula}

and then using 2.8.

This result is, in fact, equivalent to 3.1. To see this we re-
member that there is a definitional extension T’ of T which is
model complete and there is a 1.1 correspondence between the
models of T and the models of T'. Of course T' is a theory in
a larger language but this language is still countable. The
models of T are exactly the reducts of the models of T'.

Now each member of I" (of 3.1) is equivalent modulo T' to an
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Vi-type, and these types are non-principal over T'. Thus,
applying 3.3 we obtain some countable ' € Fy, = Md(T)
which omits I'. But then the reduct A of {' is a model of T
and omits I', as required.

CHAPTER B

Large and small e.c. structures

§ 4. 3Ii-atomic structures and theories

The study of classical atomic structures and theories uses
the tool of complete formulas. In the same way the study of
J;-atomic structures and theories uses an analogous tool of
J,-complete formulas. These formulas are isolated in the
following theorem.

4.1. THEOREM. Let T be a theory and let ¢ be an 3,-for-
mula consistent with T. The following are equivalent.

(i) For eachV i-formula ¢ with fv(g) € fv(9),
if # /\ ¢ is consistent with T° then T 4 — q.
(i) For each di-formula y with fv(y) € fv(9),
if # A\ y is consistent with T then T° - 4 — .
(iii) For each two 3 i-formulas v, s with fv(yy, ys) S fv(9),
if both & A\ vy, and & A v, are consistent with T then y; A g
is consistent with T.

PROOF. (i) = (ii). Suppose (i) holds and let 4 be an 3I;-for-
mula such that fv(y) € fv(#) and & A vy is consistent with T.
If T° # $—> then® A —y is consistent with T° so (since
—y is an V-formula) (i) gives T +~ #— —. This contra-
dicts the consistency of # A ¢y with T, and so we have (ii).

(ii) = (iii) is trivial.



COUNTING COUNTABLE E.C. STRUCTURES 319

(iii) = (i). Suppose (iii) holds and let ¢ be an V,-formula
such that fv(g) € fv(#) and & A ¢ is consistent with T°, There
is some J € Er and point a of 4 such that A = ¥(a) A ¢(a).
(For otherwise T¢ + —#V —g¢ so that T° - —9V —q,
which contradicts the consistency of 4 A ¢ with T°) Thus
there is some 3,-formula vy such that

A E (@), T - y—q.

The first of these shows that & A vy is consistent with T,
and the second asserts that ¢y A —¢ is inconsistent with T.
Thus, by (iii), we see that 4 A\ —¢ is inconsistent with T, i.e.
T — 4 — @, as required.

4.2. DEFINITION. Let T be a theory. An 3,-formula ¢ is
3 ,-complete over T if # is inconsistent with T and satisfies
the equivalent conditions of 4.1.

There are several different ways of characterizing the
J;-atomic structures. No one of there ways is more useful
than the others so we will first prove their equivalence be-
fore formally defining the 3;-atomic structures.

4.3. THEOREM. Let T be a theory. For each structure i the
following are equivalent.

(i). A = Sb(T) and for each point a of A there is an 3 ,-for-
mula ¥ such that

A E ¥a), TE3>AI

where II is the V;-type of a in .

(ii). A= T° and each point of A realizes a formula which
is 3i-complete over T,

(iii). A € Er and for each point a of A there is an 3 ,-for-
mula ¥ such that

A E ¥a), T E3>AZ
where Y, is the 3,-type of a in .



320 HARRY SIMMONS

PROOE. (i) = (ii). Suppose i satisfies (i). Clearly 4 € Ep
so that 4 = T°. Let a be a point of 4 and let 4 be the 3 ;-for-
mula given by (i). We show that 4 is 3 ;-complete over T, and
hence verify (ii). To do this we verify 4.1(i).

Let ¢ be any V;-formula such that fv(g) S fv(#) and 4 A ¢
is consistent with T°. As in the proof of 4.1 (iii) = (i) there is
some % < Ep and point b of B such that B = 4(b) A ¢(b).
The assumed property of ¥, (i), gives

(A a) (V) (3. b)
so that (since B € Eq)
(Aa) = (B0
Thus we have A = ¢(a), i.e. ¢ € II, and hence (again using

(i) T~ 44— @, as required.

(ii) = (iii). Suppose A satisfies (ii) and let a be a point
of J. Let 4 be the 3,-formula given by (ii) (so that I = 9(a))
and let £, Il be the J;-type of a in 4. Then (since & T°)
{8} U Z U II is consistent with T° so that (since ® is 3;-com-
plete over T) 4.1 gives

TE4+— AT, T E=d4— A 2.

The first of these shows that { € E; and the second com-
pletes the proof of (iii).

(iii) = (i). Suppose A satisfies (iii), so that (trivially) {
Sb(T). Let a be a point of 4 and let X, II be the 3,-type and
Vi-type of a in 4. Since A € E; we have

TEAZS>AIL

Now let ¢ be the 3J;-formula given by (iii), i.e. A= 4(a)
and

T 94— A X,



COUNTING COUNTABLE E. C. STRUCTURES 321

The two displayed relations give T &= 4 — A I, as required.
Notice that the formula # in (i), (iii) is, in fact. 3;-complete
over T.

4.4. DEFINITION. Let T be a theory. A structure 4 is 3,-
atomic for T if 4 satisfies the equivalent conditions of 4.3.

We let SEy be the class of structures which are 3;-atomic
for T.

Trivially SEp € Er, and we easily check that
A <L 1.@ESET:>JESET.

(In [12] these 3J;-atomic structures are called strongly e.c.
structures, hence the notation SEr.)

As can be expected only certain theories have 3;-atomic
structures. These are just the 3;-atomic theories.
4.5. DEFINITION. A theory T is 3;-atomic if T has JEP and
satisfies the following condition. For each 3 ;-formula Yy con-
sistent with T, there is an 3;-formula 4 which is 3 ;-complete
over T such that fv(93) € fv(y) and T° + & — .

46. THEOREM. Let T be a theory with JEP. The following
are equivalent.

(i). There is some (countable) structure which is 3;-ato-
mic for T.
(i). T is d;-atomic.

PROOF. (i) = (ii)). Suppose A is J,-atomic for T and let
Y be an 3I,-formula which is consistent with T. Since T has
JEP v is realized in 4, i.e. there is some point a of ./ such
that A = y(a). By 4.3 there is some formula ¥ which is 3 ;-
complete over T such that Ak #@) and T° ~ # — . This
verifies (ii).

(ii) = (i). Suppose T is 3 ;-atomic. For each finite set V of
variables let II(V) be the V-type

{—9:% is a formula such that fv(#) € V and is 3;-com-

plete over T}.
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Let IT be the countable set of all these V;-types.

Suppose that, for some V, II(V) is 3;-principal over T.
Then there is some 3 ;-formula v, consistent with T, such that
fviy) €V and T E=y— ATI(V). Since T is J;-atomic we
may assume that  is 3;-complete over T, so that —y € II(V).
But then T +~ - —1, which contradicts the consistency of
¢ with T.

This shows that no member of II is 3;-principal over T.
Thus, by 3.3, there is some countable 4 € F; which omits
each member of II. But then, 4.3 (ii), shows that £ is 3 ;-atomic
for T, which gives (i).

Superficially there is another possible definition of 3;-
atomicity of theories. We may consider those theories T
which have JEP and the following property. For each V;-for-
mula ¢ consistent with T°, there is an 3;-formula 4 which is
Ji-complete over T such that fv(9) S fv(g) and T+ 9 — q.
I have made no study of this property. Note, however, that
it is weaker than 3,-atomicity.

§ 5. Further properties of 3;-atomicity

J,-atomic structures (like their classical analogues) have
very strong back-and-forth properties. These properties are
derived from the following lemma.

5.1. LEMMA. Let T be a theory, A a structure which is 3 -
atomic for T, and B a model of T°. Let a be a point of J and
b a point of $ such that

(Aa)  =(3) (8D

Then for each element x of A there is some element y
of B such that

(Jl, a, X) é( 3 1) (-@, bl Y)’

PROOF. Let x be an element of 4 and let Z(v,v) be the
J-type of a, x in . (So v is a sequence of variables matching
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a and v is a single variable). By 4.3 (iii) there is an 3 ;-formula
¥(v, v) such that

A E ¥a, %), T = 34— AZ.

In particular A= (3 v) ¥, v) so that B (I v)$ (b, v)
i.e. there is some element y of & such that B = ¥ (b, y). Since
B k= Te this gives B = = (b, y), which is the required result.

Our first use of 5.1 is to prove a uniqueness result.

52. THEOREM. Let T be a theory with JEP. Let A, & be
two structures both 3;-atomic for T. Then A =, B, in parti-
cular if A, B are countable then A = B.

PROOF. Let I be the set of all pairs (a, b) of points a of A
and b of 4 such that

(A a) = (B, b).

(Of course, since both 4 and & are e.c. for T, this relation can
be replaced by =(3,), =(V,;) or =,) Notice that, since T
has JEP, I is non-empty since (&, &) 1.

Now 5.1 shows that I is a back-and-forth system, which
gives the required result.

The next theorem is the 3 ;-analogue of the classical result
that the countable atomic model of a complete theory is the
prime model of the theory. (A prime model of a theory is a

model which is elementarily embeddable in each model of
the theory.)

5.3. THEOREM. Let T be a theory with JEP. For each struc-
ture J the following are equivalent.

(i) A is coutable and 3,-atomic for T.

(i) A = Er and is embeddable in each model of Te.
(iii) A is a prime model of T
(iv) A € Er and is embeddable in each member of Fy.
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PROOF. (i) = (ii). Suppose A satisfies (i) so that (since
SEr € Er) A € Eq. Let B be any model of T°, Since T has JEP
we have A =(3;) P so, since A is countable, repeated use
of 5.1 produces an embedding of .1 in 4.

(if) = (iii). Suppose A satisfies (ii) and let & be a model
of T! and let C be a member of Fr (so C is a particular kind
of model of T'). Both %, C are models of T° and so there are
embeddings f, g of 4 into B, C respectively. Since A € Ey
both f, g are 1-embeddings so, using g, we see that 4 € Fr.
Le. A is a completing model of T, and so f is an elementary
embedding. Thus we have (iii).

(iii) = (iv) is trivial.

(iv) = (i). Suppose A satisfies (iv) so that (since Fp has
a countable member) 1 is a countable submodel of T.

Let a be a point of <A and let II be the V;-type of a in A
By (iv) we see that I is realized in every member of Fr hence,
by 3.3, II is 3 ,-principal over T. Thus there is some 3 -for-
mula 4, consistent with T, such that fv(§) € fv(II) and
T =% — AIL By 4.3(i) it is sufficient to show that A E=#(a).

If 4 E —d@) then —9d =1II so that T ~4— —9 which
contradicts the consistency of % with T. This completes the
proof.

5.4. COROLLARY. Let T be a theory with JEP. Then SEy € F.

PROOF. We have seen above that each countable member
of SEr is in Fr. But a structure is a member of Fy if and only
if each of its countable elementary substructures is in Fq,
which gives the required result.

Having seen 5.3 the following characterization of 3J;-atomic
structures is no surprise.

5.5. THEOREM. Let T be a theory with JEP. For each struc-
ture A the following are equivalent.

(i) A is Ii-atomic for T.
(ii) A is an atomic model of T
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PROOF. (i) = (ii). Suppose A & SEp so (by 54) A e Fr.
Let a be a point of f and let X, I" be the J;-type and full
full type of a in 4. Since A € Fy we have

TTEAZ—=AT.

But A € SEq so there is some % € 2 such that T° 4 — A I,
This gives T!+ 98— AI', which shows that .{ is an atomic
model of T

(iiy = (i). Suppose A satisfies (ii), so that A € Sh(T).
Let a be a point of 4 and let IT be the V,-type of a in A
Since { is atomic there is some formula ¢ such that A E=g(a)
and T!' =¢— AIl. The f-completeness of T! now gives some
J,-formula, consistent with Tf, such that fv($) C fv(y) and
T' =%—>¢, and hence T' =94 — AIl. Thus (considering the
quantifier complexity of 4 — AIl) we have T 4 — AIl, and
so it is sufficient to show that .4 E=d(a). But if 4 = —d(a)
then —# Il and hence T +&— —¥%, which contradicts the
consistency of 4 with T.

5.6. COROLLARY. Let T be a theorem with JEP. Then T
is 3 -atomic if and only if T! is atomic.

The results of this section show there is a strong connec-
tion between f-generic structures and 3,-atomic structure.
This connection reinforces the feeling that, in some sense,
f-generic structures are small.

To complete this section we state, without proof, a charac-
terization of 3 ;-completeness.

5.7. THEOREM. Let T be a theory and let 4 be an 3;-for-
mula consistent with T. The following are equivalent.

(i) & is 3J;-complete over T.
(ii) & is complete over T'.
(iii) ¥ is complete over T&.
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§ 6. W,- I, -saturated structures

We now come to the large e.c. structures i.e. those e.c. struc-
tures which are the 3;-analogue of saturated structures.

First we need a little terminology.

Let ‘Il be some fixed structure. We extend the underlying
language L to a new language Ly by adding to L a name for
each member of H. These additional constant symbols are
called the parameters of Ly. An W,- 3;-type over M is an
d;-type X in the language Ly such that ¥ contains no more
than finitely many parameters.

The reader will probably recognize the following definition.

6.1. DEFINITION. Let T be a theory. A structure M is R, -
d;-saturated for T if M € Sh(T) and for each W,- 3;-type
2 over M, if M is realized in some extension of ¥ which is
a model of T the £ is also realized in M. We let Uy be the
class of structures which are WR,- 3;-saturated for T.

These W, - J;-saturated structures are, of course, nothing
more than the well known existentially universal structures.

We will sketch here some of the properties of Ur and its
members. A full account can be found in [13] where the W, -
J,- saturated structures are called R,-closed structures).

The reader should contrast the well known connection be-
tween these large e.c. structures and g-generic structures with
the connection between the small e.c. structures and f-generic
structures given in section,

Almost trivially we have Ur € Er and by a fairly routine
argument we can show that Ur is cofinal in Sh(T). The R, -
d;-saturated structures have back-and-forth properties ana-
logous to those of W,-saturated structures and, in some way,
dual to those of 3;-atomic structures. The following two re-
sults are sufficient for our purpose.

6.2. THEOREM. Let T be a theory with JEP and let J, B
be two structures both W, - Jsaturated for T. Then A =, B,
in particular if J, B are countable then A = B.
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6.3. THEOREM. Let T be a theory with JEP and let M be a
structure W, - 3J;i-saturated for T. Then each countable sub-
model of T is embeddable in M.

In general a theory will not have a countable W, - 3J;-sa-
turated structure, simply because there will be too many
d;-types for any countable structure to deal with. To discuss
the relevant properties of these 3;-types it is convenient to
make the following definition.

6.4. DEFINITION. LetT be a theory. An 3;-type X is a max-
3,-type of T if X is consistent with T and for each 3,-formula
¥ such that fv(9) C fv(), if £ U {¢} is consistent with T then
¢ € 2. For each finite set V of variables we let m(T, V) be the
number of max- 3 ,-types = of T such that fv(Z) € V.

Clearly every 3;-type consistent with T can be extended to
a max-3J,;-type of T. These max-3;-types are located in the
following theorem.

6.5. THEOREM. Let T be a theory. For each 3,-type I the
following are equivalent.

(i) = is a max-3,-type of T.
(ii) There is some A € Er and some point a of A such that
T is the di-type of a in .

PROOF. (i) = (ii). Suppose X is a max- 3 ;-type of T. Since
2 is consistent with T, £ is realized in some model &8 of T.
Let 8 € A, where 4 € Ey, so that (since £ is an 3 ,-type) =
is also realized in 4. Let a be a point of .4 which realizes =,
and let 9 be any 3;-formula such that 4 =¢(a). Then = U {9}
is consistent with T and so, by (i), ® € Z. This shows that =
is the J;-type of a in A.

(i) = (i). Suppose A, a, £ are as in (ii), so clearly ¥ is
consistent with T. Let 4 be any 3;-formula such that fv(9) <

fv(Z) and £ U {9} is consistent with T. To show (i) it is suffi-
cient to show that 4 =¥d(a).
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Since ¥ U {9} is consistent with T there is some model &
of T and point b of & such that

B EZ(b), B E=8(b).
The first of these gives
(“ha) =(3) (8D
so that, since ] € Er,
(A, a) =, (3, b).

Thus we have 4 E4%(a), as required.
The following theorem characterizes those theories which
have a countable W,- J;-saturated structure.

6.6. THEOREM. Let T be a theory with JEP. The following
are equivalent.

(i) For each finite set V of variables, m(T, V) < 2 o
(ii) For each finite set V of variables, m(T, V) < R,

(iii) There is a countable member of Uy.
(iv) There is some countable M € Sb(T) such that each
countable model of T is embeddable in L.

PROOEF. (i) = (ii). This uses a splitting argument similar
to those in section 10 (later). We do not give the details.

(ii) = (i) is trivial.

(ii) = (iii). This follows from an analysis of the construc-
tion of W,- J;-saturated structures. Such structures are con-
structed as the union of an ascending chain of submodels of
T. Condition (ii) enables us to keep down the length of this
chain and the cardinality of its components.

(iii) = (iv) follows from 6.3.

(iv) = (ii) is trivial.
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Let i(Er) be the number of countable members of Eg, up to
isomorphism. The following corollary holds by 6.5 and 6.6 (i).

6.7. COROLLARY. Let T be a theory with JEP. If i(Ey) <

R
2 ° then there is a countable member of Ur.

The final theorem of this section is the 3;-analogue of
[1, Theorem 2.3.14].

6.8. THEOREM. Let T be a theory with JEP. If T has a coun-
table R, - di-saturated siructure then T has a (countable)
3 -atomic structure.

PROOF. Suppose T does not have an 3 ;-atomic structure so,
by 6.6. there is some 3 ;-formula 4 which is consistent with T
but is not 3J;-completable over T. We use this formula ¢ to
construct a binary tree of essentially different 3 ;-formulas,
each consistent with T but not 3;-completable over T. Hence

0

we get m(T, fv(#)) = 2
The following is the crucial lemma.

6.9. LEMMA. Let T be a theory with JEP and let 4 be an
d-formula consistent with T but not 3,-completable over T.
Then there are 3i-formulas 9, &, both consistent with T but
not I -completable over T, such that the following hold.

(i) fv(d, 0y S fv(9).
(i) T° —%—9, wherei = 0, 1.
(i) T - — (3 A #).

PROOF. Since # is not 3;-complete over T there are, by 4.1.
two I ;-formulas vy, y; such that fv(y,, ) S fv(9), both & A
¥ A vy, are consistent with T but vy, A v; is not consistent with
T, ie. T+ — (Yo A y4). We simply put & = & A ;.

Finally in this section we consider the 3;-analogue of
Vaught's amazing result [1, Theorem 2.3.15]. I state this in
the form of an exercise (since I have not verified all the de-
tails of the proof).
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6.10. EXERCISE. Let T be a theory with JEP. Then i(Eq) #+ 2.

§ 7. Categoricity results

This section contains three results concerning W,-categori-
city. The first two of these are both, in some ways, 3 ;-analo-
gues of the Engeler — Ryll — Nardzewski — Svenonius cha-
racterization of W ,-categorical complete theories.

7.1. THEOREM. Let T be a theory with JEP. The following
are equivalent.

(i) i(Ep) = 1.

(i) SEpr N Up + Q.

(iii) Each max- 3;-type of T contains a formula which is
3d;-complete over T.

(iV) SET = .ET.

PROQF. (i) = (ii). Suppose (i) holds so that, by 6.7, there
is some countable member ‘! of Uy. But then, by 6.8, there is
some countable member A of SE;. Now (i) gives M = J,
which gives (ii).

(ii) = (iii). Let M be any member of SEr N Up and let
Z be a max- 3J;-type of T. Since i = Uy and T has JEP, =
is realized in M by some point a of . The maximality of
2 implies that X is the J;-type of a in M. But M  SE; so
4.3 (i) gives (iii).

(iiify = (iv) follows from 6.5 and 4.3 (ii).

(iv) = (i) follows by 5.2.

7.2. THEOREM. Let T be a theory with JEP. The following
are equivalent.

(i) Te is WR,-categorical.

(ii) For each Vi -type Il consistent with T° there is a for-
mula ¥, 3 -complete over T, such that fv(¥) C fv(II) and
T =4— AIlL
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(iii), For each finite set V of variables there are formulas
%4, ..., %, (where n depends on V) each one 3 ;-complete over
T such that fv(}y, ..., 89) SV and T° % V ... V 8,

(iv). For each finite set V of variables, m(T, V) < R,.

(v) For each finite set V of variables there are, up to
Te-equivalence, only finitely many 3 -formulas ¢ with fv(9) €
V.

(vi) T has an W,-categorical model companion.

PROOF, (i) = (ii). Suppose T° is WR,-categorical and let
A be the unique countable model of T°. Notice that 4 is
J;-atomic for T. Let I be an V;-type consistent with T°, so
that IT is realized in A. The required result now follows by
4.3.

(ii) = (iii). Suppose (ii) holds and let V be a finite set of
variables. Consider the Vi-type II

{—¥:fv(}) €V and ¥ is I -complete over T}.

Condition (ii) implies that II is not consistent with T°, and
so we get (iii).

(iii) = (iv). Suppose (ii) holds and let V be a finite set of
variables. Let #,...,%, be the 3I;-formulas given by (iii).
Let 2 be a max- 3;-type of T such that fv(2) € V. The maxi-
mality of X gives us some 4#; such that & € =. But 9; is 3 ;-
complete over T and so X is determined by #. Thus we have
m(T, V) € n, which gives (iv).

(iv) = (v) follows since two 3 ;-formulas are T° equivalent
if and only if they are equivalent in each member of Eq, and
hence if and only if they are members of exactly the same
max - 3 -types of T.

(v) = (vi). Suppose (v) holds. We will first show that
T¢ is model complete (and so T° is the model companion of T)
and then show that T° is W, - categorical.

Let ¢ be any V;-formula consistent with T° and consider the
d,-type © of all I;-formulas & such that # is consistent with
T, fv(#) € fv(g), and T° + 4 — ¢. We know that ® += & and
(v) gives us some # € O such that T° & 4 < V 0O.
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If T° - ¢—% then ¢ A —4¥ is consistent with T° so (by
0-completeness) there is some 3 ;-formula v consistent with
T° such that fv(y) € fv(p A —8) S fv(g) and T° — y— (p A
—9). In particular T° + y—> ¢ so that y € © and hence T°
+ ¢y — 3. But also T° ~ yy— — 9 so we have a contradiction
(since vy is consistent with T°). This shows that T° ~ ¢— 9
so that T° - ¢ <9 and hence (by a well known characteriza-
tion) T° is model complete. :

Consider now any model 4 of T° and let a be a point of
A and = the 3;-type of a in 4. Since T° is model complete
we have ] € Er. Also (v) gives us some 3;-formula 4 such
T° +— % < AZ. Thus 4.3 (iii) shows that 4 = SEq.

The W,-categoricity of T° now follows by 5.2.

(vi) = (i) holds since if T has a model companion then T°
is this companion.

Finally in this section we derive the following result of
Saracino (see [10]).

7.3. COROLLARY. Each W®,-categorical theory has an W®,-
categorical model companion.

PROOF. Let T be an W,-categorical theory (so that T has
JEP). The classical Engeler — Ryll — Nardzewski — Sven-
onius theorem shows that for each finite set V of variables
there are, up to T-equivalence, only finitely many 3,-for-
mulas. We now easily check that 7.2 (v) holds, and so we get
the required result.

§ 8. Some further remarks

This chapter has been on the whole, concerned with theories
T which have JEP. We have isolated 7 classes of such theories
using properties (i) — (vii) (below). These classes form an
increasing chain i.e. (i) = (ii), (ii) = (iii), etc.

(i) T is W,-categorical.
(i) T has an W,-categorical model companion.
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(iii) i(Ep) = 1

(iv) i(Ep) <2 °
(v) T has a countable ®,-3,-saturated structure.

(vi) T has an 3 -atomic structure.

(vii) T has the property mentioned at the end of section 4.

A further analysis of these and related properties ought
to be carried out, and would (I believe) bring to light more
interesting results. The first job is, of course, to find examples
which show that the seven properties are distinct.

Several of these results of this chapter are 3 ;-analogues
of classical results. In fact these 3;-results imply the classical
results. To see this we note that 3 ,-results immediately gives
us the classical results restricted to model complete theories.
But (as in section 3) using suitable definitional extensions it is
sufficient to prove the classical results for model complete
theories.

CHAPTER C
Counting the = - blocks of e.c. structures
§ 9. Minor results

Associated with each theory T there are three cardinalities
i(Et), i(Fr), i(Gr). These are just the number of countable
members of Ep, Fp, Gr respectively, these members being
counted up to isomorphism. Very little is known about these
cardinalities. (In fact I include somewhere or other in these
notes all the non-trivial general results that I know). The
major open problems are the three generalizations of Vaught's
conjecture i.e, if K is one of Ep, Fp, or Gr then

R, <i(K) = i(K) = 2“"

In this chapter we look at a different set j(Er), j(Fr), j(Gr)
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of cardinalities associated with T. These are much easier to
handle and, consequently, we can prove rather more about
them.

9.1. DEFINITION. Let T be a theory and let K be any of Er,
Fr, Gr. The cardinal number j(K) is the number of members

of K, these members being counted up to elementary equival-
ence.

For each of these classes K we have
AL BeK > JAeK

so that j(K) is determined by the countable members of K.

In particular j(K) < i(K). Much of this chapter is concerned
with methods of making j(K) large and so, indirectly, with
methods of making i(K) large.

Our first result gives us the relative strengths of these car-
dinalities.

9.2. THEOREM. For each theory T,
. . . )
1 < j(Fy) < j(Gp) < j(Er) <2

PROOF. The two inequalities 1 < j(Fq), j(Er) -‘szao hold
since the underlying language is countable, and j(Gy) < j(Eq)
holds since Gr € Ep. Thus it remains to prove j(Fy) < j(Gy).
Let {Aj:j= J} be a set of = - representatives of Fr (i.e.
for each & € Fy there is some j € J such that 4, = %, and
for each jy, jo € J if ji # jo then A; = A;). Thus j(Fr) = [J].
For each j & J let J; be a member of Gy such that J; € B,
Notice that, in fact, A4; < B, so, for each j;, = J

.@jl — ’@jg $ uqil Eluql'22> le = J,-g

the second implication following by 2.17.
This shows that j(Gr) = |J|, as required.
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Let X be a set of sentences consistent with the theory T.
We write T + X for the theory axiomatized by T U =. If T is
a singleton {0} then we write T + o for T + {¢}. Notice that
the notation T + X is used only when X is consistent with T.

A finite extension of T is simply an extension of T of the
form T + X where X is finite. Similarly an 3 -extension of T
is an extension T + X where X is a set of J;-sentences.

We easily verify that if £ is a set of 3 ;-sentences consist-
ent with T then X is also consistent with any cotheory of T.
In particular we have cotheories T+ X, Te+ =, Tf + I,
Te + X,

9.3. THEOREM. Let T be a theory and ¢ an 3;-sentence
consistent with T. Then the following hold.

(. (T+o)* =T +0o E = E N Mdo).

+o
). (T+a! =T +g, FT+a = Fp N Md(o).

@ (T+off =Te+o G, = GrN Md)

PROOF. (e). Let K = Er N Md(o). Clearly, using Ep, each
embedding between members of K is a 1-embedding, and sin-
ce ¢ is an J;-sentence

Thus to show that K = ET " it is sufficient to show that
(o]

K is cofinal in Sh(T + o).

Since o is an 3;-sentence we easily check that Sh (T + ¢) =
Sb(T) N Md(o), so that K< Sb (T + o). Now consider any
A € Sb(T + ). Since 4 & Sb(T) there is some B = Ep such
that 4 € 8. But A = o so (again since ¢ is an 3 -sentence)
B =0 and hence B = K. Thus K is cofinal in Sh(T + o), as
required.
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Finally we note that

T + o) =

(T+0)° = ThE_, )
= Th(Er N Md(0))
= Th(Er) + o
=Teta

which completes the proof of (e).

(f). Since o is an 3J,-sentence we see that T + ¢ and Tf + ¢
are cotheories. Now consider and formula ¢ consistent with
Tf + 0. Thus ¢ A ¢ is consistent with T' and so there is an
J,-formula ¢ consistent with T!, such that fv(4) € fv(c A @)
= fv(p) and T' - 4 >0 A o.

This shows that # is consistent with ' Tf + ¢ and Tf + o
% —¢. Hence T! + ¢ is f-complete so that (T + ¢)f = Tf + 0.

To prove (f) it is now sufficient to show that K = Fr N
Md(o) is the class of completing models of Tf + o.

Let A € K, so that A is a model of T! + ¢, and consider any

model $ of T!'+ o such that < B. Then A<= Fr and
A S B E T so that A < B. Thus A is a completing model of
T + 0. Conversely let 4 be a completing model of Tf + o,
in particular A = Md(o).
Suppose A S B = T. Since o is an I;-sentnce and Ak ¢
we have B = ¢ i.e. B is a model of Tt + o. Thus A < B, which
shows that 4 is a completing model of Tf i.e. 4 & F;. Hence
A € K as required.

(g). This is proved in the same way as (e).

The final result of this section generalizes a part of 2.18,
which can be stated as

i(Fr) =1 & jGp = 1.

9.4. THEOREM. Le! T be a theory. If either of j(Fy), j(Gy)
is finite then both are and j(Fr) = j(Gy).

PROOF. Clearly, by 9.2. if j(Gy) is finite then so is j(F1). So
we may assume that j(Fy) is finite.
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Suppose there is some 1 = F; such that Th(J) is not a
finite extension of T!. Then there is a sequence (o, : 1 < w) of
sentences such that

oo € Th(A) — Tt
and, for each r < w,
0r.1 € Th(A) — (Tt + go A ... A o).
Consider the sequence (t,:r < w) defined by
T = t/\ — o Ore1 = 00 A ... Aor A et

Each of these sentences is consistent with Tf (and so holds
in some member of Fr) and they are pairwise inconsistent
with Tf. Thus we have j(Fr) 2.8, which contradicts the fini-
teness of j (Fr).

This shows that for each 4 = Fp there is some sentence ¢
such that Th(.4) = T! + ¢. Notice that (since { is a complet-
ing model of Tf) we can assume that o is an 3 ;-sentence. With
this J;-sentence 9.3(f) shows that (T + o)f is complete so, by
2.18, T + o has JEP.

Suppose j(Fr) = n. The above argument gives us 3;-sen-
tences oy, ... 6, such that the following hold.

(i) Each T + o, has JEP.
(i) T°- oy v...vo,
(iii) The sentence oy, ..., 6, are pairwise inconsistent with T.

Now, for each 1 < i < n, let

Gi = Gr N Md(o) = GTH;

By (i) we have j(G) = 1 and (ii) gives

GT = G1 U ... U Gn.
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But (iii) shows that this is a partition of Gr, so that j(G;) = n,
as required.

§ 10. Major results

This section contains the four major results concerning the
three j-cardinalities, and some indications of one method of
obtaining these results. We begin, however, we a result con-
cerning i(Fr).

10.1 THEOREM. Let T be a theory with JEP. If i(Fy) <2 °
then T! is atomic.

This result is proved in [2]. In fact it can be obtained as a
corollary of the following theorem. The details of this can be
found in [11].

10.2. THEOREM. Let T be a theory such that no finite 3 ;-

1]

extension of T has JEP. Then j(Fy) = 2

The other three results are simply the analogues of Vaught's
conjecture stated in terms of j.

10.3. THEOREM. For each theory T the following hold.

(). W, <<j(Er) = j(Er) = 2
®. R, <j(Fr) = j(Fp) = 2

@ ®o<iGy =Gy =2 °

The proofs (that we discuss in this section) of 10.2 and the
three parts of 10.3 are based on splitting arguments. There
are similarities and some essential difference between these
proofs. The details of 10.2 can be found in [11]. Here we will
discuss the details of 10.3(g) (which, in fact, is the easiest to
prove) and then sketch the modification required to prove
10.3(e) and 10.3(f).

For the rest of this section let T be a fixed theory.
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For each set X of sentences let
G(X) = Gp N Md(X).

The splitting construction is achieved using the following
lemma.

10.4. LEMMA. Let X be a finite set of sentences such that
i(G(X)) > R,. Then there are 3i-senteces oy, o, such that

(i) JGX U {0})) >R, and j(GX U {a1})) > R,
(11) TE— — o) V = O1.

PROOF. Let X be the set of J;-sentences ¢ such that j(G(X U
{o})) < R, and put

GX) = U{GXU{d):0 =}

Thus, since G'(X) is essentially a countable union of coun-
table sets, we have j(G'(X)) € R,
In particular

IGX) — G X)) > N,

so there are J), J; € G(X) — G'(X) such that A, = ;.

Now A, ; are both g-generic so that 4, (3 A; and
hence there is some 3 ;-sentence o, such that A, = o, ;i =
— ay.

But then (since J4; is e.c) there is some 3 ;-sentence o;
such that A = 0; and T + oy —> — 0y This gives us (ii) so it
remains to show (i).

Let i = 0,1. Notice that 4, € G(X U {g;}).

If J(GX U {6;})) <R, then ;=X and so 4 € G'(X). By
choice this is not so, and hence we get (i).
Let ¥ be the complete binary tree i.e. ¥ is the set of

finite sequences of 0 and 1 (including the empty sequence)
ordered by extension.

10.5. LEMMA. Let T be a theory such that j(Gr) > R,. Then
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there is a system X = {X :ve& ¥} of sets of sentences with
v

the following properties.
(i) For each node v of ¥, X is a finite set of 3,-sentences
v

such that j(G(X ) > R,

(ii) For each two nodes v, v of ¥, if v< v then X < X ,.
Al v

(iii) For each two nodes v, v' of ¥, if v|v' then T¢ U X\r u

X , is inconsistent.
v

PROOF. We first put Xg = (@ and then construct the rest

of the system X by induction up the tree using 10.4.
We can now complete the proof of 10.3(g).
Consider the system X given by 10.5. For each branch B

of ¥ let X‘3 = U{X :veB}. By 10.5 (i, ii) X'3 is a set of
v

3 ,-sentences consistent with T8, so there is some ﬁﬁ € Sb(T)

such that ﬁﬁ = Xﬂ. But then there is some diﬁe Gr such that

_‘z'i‘!3 c JB and so (since X‘5 is a set of J;-sentences) JZB = Xﬁ.
Finally 10.5 (iii) shows that for each two branches B, ' if p = B’

(4]

then JIB = Jlﬁ,, and hence j(Gr) = 2

This completes the proof of 10.3(g). We now look at the
modifications required to prove 10.3(e.f).

First consider 10.3(f). Here we may carry out the above
proof up to the existence of the model .‘Bs of XB. But Fp is

not cofinal in Sh(T) so there may be no Jﬂ € Fp such that
J E Xﬂ. Next consider 10.3(e). Here we do not have, for

i
Jg, 'Jql € En,
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Aw 23 A= A = Ay

so part of the proof of 10.4 breaks down. In fact we can con-
struct a corresponding system X but we can not assume that
its members are sets of 3 ;-sentences. Thus again we have a
a problem to obtain a suitable model of X

In both cases the system must be constructed with a little
more care so that the following holds.
(?) For each branch § of ¥ there is some

A € Ep (or Fp) such that A E Xﬁ

To do this we use the fact that Er (Fp) is exactly the class
of models of T¢ (Tf) which omit a certain countable set of
types. We then interweave an omitting types construction
into the construction of X to ensure that each of the relevant
types can be omitted in a model of each T U X[3 (T* U XB ).

The details of this construction are similar to those of the
proof of 10.2 given in [11].

The results of this and the previous section tell the whole
story concerning the relative values of j(Ey), j(F1), j(Gr). Mo-
dulo these results anything which can happen does happen.
Various examples to show this can be found in [4].

§ 11. A topological proof

In this section we derive 10.2 and 10.3(f) from a well known
result of descriptive topology. This method can be modified to
give a proof of 10.3(e) also.

We are concerned with four properties of a topological
space S.

(S1). S is second countable.
(Sz). S is haudsdorff.
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(Ss). S is compact.
(S4). S has a basis of clopen sets.

Any space satisfying (Sy,¢s) is induced by a complete metric.
so we have the following result.

11.1 THEOREM. Let S be a space satisfying (S,z3) and let ®
be a Ga subset of S such that either

D [@] >%,

or (ii) ® has no isolated points.

..
Then ® includes a perfect set, in particular |®] =2 °

The space satisfying (Sy34) are, of course, exactly the dual
space of boolean algebras. The particular space we use is con-
structed as just such a dual space.

From now on let T be a fixed theory. Let A be the sentence
algebra of T (i.e. the boolean algebra of all sentences modulo
T') and let S be the dual space of A. Thus S satisfies (S,
and since the undelying language is countable S also satis-
fies (S;). We call S the f-space of T.

The points of S are essentially the complete extensions P
of T, in particular each I € Fr gives us a point P = Th(J)
of S. We call such points the f-points of S (not every point
of S is an f-point) and let ® be the set of f-points. Notice that
two members of Fr are elementarily equivalent if and only
if they give the same f-point ,so that j(Fr) = |®|. Thus to
use 11.1 we must show that ® is a Ga subset of S.

For each formula ¢ let Q(g) be the type

{e} U{—9¥:% is an I -formula, consistent with T, such
that fv(4) € fv(g) and T' - # > @}

These types enable us to characterize the f-points of S.

11.2. THEOREM. Let T be a theory and S its f-space. A point

P of S is an f-point if and only if for each formula ¢ the type
Q(¢) is non-principal over P.
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PROOF, Suppose first that P is an f-point of S, so that there
is some A € Fy with P = Th(.4). Suppose also that ¢ is a
formula such that the type Q(g¢) is principal over P i.e. there
is some formula 1, consistent with P, such that fv(y) S
fv(Q (¢)) = fv(g) and

PEy— AQ(Q).

Since y is consistent with P there is some point a of .4 such
that A4 = y(a). Thus (since P~ y— ¢) A = ¢(a) and so (since
J € Fr) there is some formula % with — % = Q(¢) and
AE 8(@). But — 8 = Q(p) gives P+ y—> —9 so that A |
— #(a), which is a contradiction.

Conversely suppose that for each formula ¢ the type Q(g)
is non-principal over the point P of S. Thus, by the classical
omitting types theorem, there is some model 4 of P which
omits each Q(¢). We easily verify that [ is a completing
model of T! i.e. A & Fy, so that P = Th () is an f-point.

For each sentence ¢ we let

() = {P:Pis a point of S such that P o}

so that (o) is a typical member of the canonical basis of S.

11.3. COROLLARY. Let T be a theory and S its f-space. Then
the set ® of f-points is a G‘5 subset of S.

PROOF. For each two formulas y(v), @(v) (so that fv(y) C
fv(g)) let U¢¢ be the union of f(— (3 v)y(v)) and

U{B((3V) (V) A —o(v)]) t o = Q(g) }
so that UWP is an open set of S. The theorem 11.2 shows that

®=n {UWP ;¢ are formulas such that fv(y) € fv(g)}

which gives the required result.

We now see that 10.3(f) immediately follows from 11.1(i).
To obtain 10.2 from 11.1(ii) we prove the following.
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11.4. THEOREM. Let T be a theory and let ¢ be any 3;-sen-
tence, consistent with T, such that T + o has JEP. Then T' 4+ ¢
is an isolated point of the set ® of f-points of T.

PROOF. By 9.3(f) we have T' + ¢ = (T + 0)f so that (since
T + ¢ has JEP) T! + o is complete and hence is a point of the
f-space S of T. But there is some A & Fy such that A= o
and hence T'+ o € Th(A). The completeness of Tf + ¢ =
Th(A), so that T! + o = @.

Now f(o) is an open set of S and, for each point P of S,

PednNpB) = TTCSPand s P
=2 Tt+eCP
=>P=T+g

so that ® N B(6) = {T' + o}, which gives the required result.

The method of this section can be modified to obtain 10.3(e)
To prove 10.3(e) we look at the space S of complete exten-
sions of T¢ i.e. the dual space of the sentence algebra of Te.
Certain of the points of S (the e-points) correspond to the
=-blocks of Er. There is a characterization of these e-points
corresponding to 11.2 (we simply use the types Q(¢) for V-
formulas ¢ only), and so (corresponding to 11.3) the set of
e-points form a G6 subset of S. Thus 10.3(e) follows from

11.1(i). There appears to be no reasonable way of stating the
corresponding result which follows from 11.2 (ii).

CHAPTER D
The space controlling generic structures
§ 12. The dual space of a distributive lattice

In section 11 we used spaces constructed as the dual space
of boolean algebras. In section 14 we will use a space con-
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structed as a dual space of a distributive lattice. This section
contains the required lattice theoretic results.

The duality theory for boolean algebras was developed by
M.H. Stone and then extended (by him) to distributive lattices.
Unfortunately he made the wrong extension. In this section
we give an account of the right extension, which is due to
H.A. Priestley. The proofs and more details of these results
can be found in [8], [9].

Throughout we are concerned with distributive lattices which
have a top 1 and a bottom 0 such that 0 # 1. For simplicity
we refer to such structures as d-lattices. The smallest d-lattice
is, of course, the two element lattices 2.

The dual space of a d-lattice A can be built with the points
as either the prime ideals of A or the prime filters of A. There
are advantages and disadvantages to both approaches, however
I prefer a third approach.

12.1. DEFINITION. Let A be a d-lattice. A character of A is
a morphism

A — 2

We let A be the set of characters of A.

These three concepts (prime ideal, prime filter, character)
are, of course, equivalent. Thus, for a character p of the d-lat-
tice A, the corresponding prime ideal is p~—'[0] and the cor-
responding prime filter is p—![1].

Every non-trivial result of boolean duality follows from the
boolean prime ideal theorem, so we must expect to use some
generalization of this theorem here. The following is the ap-
propriate generalization.

122 THEOREM. Let A be a d-lattice, I an ideal of A, and F
a filter of A such that I N F = &. Then there is some cha-
racter p of A such that p[I] = {0}, p[F] = {1}.

‘We now turn A into a space in such a way that A is iso-
morphic to a subalgebra of the algebra of clopen subsets of
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BA. We do this in the obvious way. For each x € A we put
Bx) = {pepA:px) = 1}
and topologize BA by taking
{Bx):xe A} U {BA —B(x) :x € A}

as a subbase. We call this space the dual space of A.
Notice that if A is a boolean algebra then the above defined
dual space is the usual dual space.

12.3. THEOREM. Let A be a d-lattice. The dual space BA of
A is a boolean space. If A is countable the BA is second coun-
table.

Since the dual BA of A is boolean it must be the dual space
of the boolean algebra Co(fA) of clopen subsets of BA. Notice
that, for x € A, B(x) € Co(BA). Also we easily check that, for
X,y E A,

Bx) N Bly)
B(x) U B(y)

Blx A y)
Blx Vy)

and that f is 1 — 1. Thus we have an embedding

A P —> Co(BA).

To determine the range of this embedding we use the natu-
ral ordering of BA, ie. for each p, g = BA we let

P<q mean (Vxe A) [qx) < p(x)].

The simplicity of the following result should be compared
with Stone's original result.

12.4. THEOREM. Let A be a d-lattice. Then 8 is an embedding
of A into the algebra Co(BA) of clopen subsets of the dual
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space BA of A. The range of {§ is the set of clopen initial sec-
tions of BA. In fact Co(BA) is the boolean closure of A.

We now come to some lattice theoretic results which, al-
though they have independent interest, are motivated by the
application to the study of generic structures.

12.5. DEFINITION. Let A be a d-lattice. Then pA is the set
of maximal elements of BA.

Notice that the elements of uA correspond to the maximal
prime ideals of A or the minimal prime filters of A.

We easily check that the ordering of fA is inductive so we
have the following lemma.

12.6. LEMMA. For each p  BA there is some q € pA such
that p < q.

To study pA it is useful to introduce another idea. For each
ac A let

at = {xeA:aVx =1}
We easily check that a* is a filter of A, and that a* is

principal if and only if a has a dual pseudo complement in A.
Notice also that for p  BA,

p@ = 0 = plat] = {1}

These filters a* enable us to characterize pA inside BA, but
first we require a weakened version of 12.2,

12.7. LEMMA. Let J be an ideal and a an element of the d-
lattice A such that J N a*t = . Then there is some q € pA
with q[I] = {0} and gq(a) = 0.

PROOF. Consider the subset op A

I={xVy:xel y<al

We easily check that I is an ideal of A and that J U {a} S I



348 HARRY SIMMONS

Now 1 & I, for otherwise there is some x € J such that
xVa=1ie xeJUat.
Thus I N {1} = & so that 12.2 gives us some p € BA with
pll] = {0}. But then 12.6 gives us some q € uA such that
P < q so that (by the definition of the ordering of BA) q[I] =
{0}. Hence we have the required result.

We can now caracterize pA inside BA.

12.8. THEOREM. Let A be a d-lattice. For each p € BA the
following are equivalent.

(i) p € pA.
(ii) For each a € A, if pla*] = {1} then p(a) = 0.

PROOF. (i) = (ii) Suppose - p € pA and a = A is such that
pla*] = {1}. Let J = p~![0] so that J is an ideal with J N at
= (J. By 12.7 there is some q € pA such that q[J] = {0}
and g(a) = 0. The choice of J gives p < q so that (since
p € pA) p = q, which gives the required result.

(ii) = (i). Suppose p satisfies (ii) and consider any q € BA
such that p € q. Then, for each a € A, we have

q@ = 0 = qg[a’] = {1} by above remark
= pla*] = {1} since p<q
= p@ = 0 by (ii)

so that q < p, which gives p = q, as required.

12.9. COROLLARY. Let A be a countable d-lattice.
Then pA is a Gﬁ subset of BA.

PROOF. For each a = A let
U. = {fA—B(@)} U{BA —B(x) :x = a*}
so that U, is an open set of BA. From 12.8 we have
pA = N{U;:aes A}

which gives the required result.
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The particular d-lattices we consider in the following sec-
tions will, of course, be countable so 12.9 will be applicable,
Certain of these lattices A will also satisfy the following
property.

(12.10). For each a € A, if a = 0 then there is some p € pA
with p(a) = 1.
This enables us to apply the following theorem.

12.11. THEOREM. Let A be a d-lattice which has (12.10).
Then pA is dense in BA.

PROOF. 1t is sufficient to show that each non-empty member
of the canonical subbase of fA meets uA. So we consider two
cases.

Suppose first that a € A is such that f(a) = @ ie. a = 0.
Then (12.10) gives us some p = pA N f(a).

Secondly suppose that a € A is such that f(a) # BA i.e.
a * 1 so there is some p € A with p(a) = 0. But then 12.6
gives us some q € pA such that p < q, in particular q(a) = 0.
Thus ¢ € pA N (A —fB(a)), as required.

We now wish to look at a particular factor lattice of A. In
order to describe the congruence used we require a couple of
results.

12.12. LEMMA. Let a be an element of the d-lattice A. For
each x € A the following are equivalent.

(i) x = at.
(ii) Foreachp € pA, ifp(x) = 0 then p(a) = 1.

PROOF. (i) = (ii). Suppose x € a* and consider any p  pA.
Then p(x) V p(a) = p(x V a) = p(l) = 1 so that if p(x) = 0
then p(a) = 1.
(ii) = (i). Suppose (i) does not hold, so that
xlNat =@

where [x] is the principal ideal of A generated by x. Then
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12.7 gives us some p & pA such that p(x) = 0, p(a) = 0,
which contradicts (ii).

12,13. THEOREM. Let a, b be elements of the d-lattice A.
The following are equivalent,

(i) a* S b+
(ii) For each p = pA, p(a) < p(b).

PROOF. (i) = (ii). Suppose (i) holds and consider any
pepA. If p(b) = 0 then p[b*] = {1} so (i) gives p[at] =
{1}. But then 12.8 gives p(a) = 0, and so p(a) < p(b), as re-
quired.

(ii) = (i). Suppose (ii) holds and consider any x € at.
We use 12.12 to show that x  b* (and hence a* € bt).

Consider any p = pA such that p(x) = 0. Then 12.12
(i) = (ii)) (applied to a) gives p(a) = 1, so that (ii) gives
p(b) = 1. But then 12.12 ((ii) = (i)) (applied to b) gives
x € bt, as required.

The factor lattice we construct will have property (12.10), in
fact it will have a stronger property, namely the following.

(12.14). For each two elements a, b of A, a < b if and only if
at C b,

12.15. LEMMA. Each d-lattice with (12.14) also has (12.10).

PROOFEF. Suppose A is a d-lattice with (12.14) and consider
any a A, a # 0. Since a £ 0, (12.14) gives a* ¢_ 0+ so that
12,13 gives us some p  pA with p(a) € p(0) = 0, i.e. p(a) =
1, as required.

Now let ~ be the relation on A defined by

a~b e (Vpeuh) [pl@ = pb)l.
We easily check that ~ is a congruence on A; 12.13 shows
that a ~ b holds exactly when at = b*.

12.16 DEFINITION. For each d-lattice A we let A° be the
factor lattice A/~ of A, and let
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A —> A°

be the canonically associated epimorphism.
To show that A° has (12.14) we need three easy results.

12.17. LEMMA. Let a, b, c be elemenis of the d-lattice A.
The following hold.

(i) a<b=atchbt.
(ii) c~1=c = 1.
(iii) (@ Ab)t = at N b+.

PROOF. (i). Suppose a <b and x = a*, so that aVbh = b
and x Va = 1. Then

xVb=xVaVb=1Vb =1

so that x € b*, as required.

(ii). Suppose c # 1 so that (by 12.2 and 12.6) there is some
p € pA such that p(c) = 0 # p(1), which gives ¢ ~ 1, as
required.

(iii). For each x € A we have
xes@Abt & @AbV =1
© @vViyAbVx =1
o @Vy=bVx =1
@ xeat Nbt

as required.

12.18. THEOREM. For each d-lattice A the factor lattice A°
has (12.14) and hence (12.10).

PROOF. By 1217%(i) it is sufficient to show that, for each
abe A,

f(a)* < f(b)* = f(a) < f(b).



352 HARRY SIMMONS

Let a,b € A be such that f(a)™ € f(b)*. Consider any x € a*,
so that (since

fix) Vi@ = fxVa = f(1) =1)

f(x) € f(a)* € f(b)", and hence f(x V b) = 1. But now 12.17
(ii) gives x Vb = 1, i.e. x € b™. This shows that at € b™.

Now 12.17 (iii) gives (a A b)* = at N b" = at so that
aAb~atie fla Ab) = f(a). Hence

fla) A f(b) = fla A b) = f(a)

which gives f(a) < f(b), as required.
The dual spaces BA, BA° are, in general, different. Never-
theless the morphism f induces, in a natural way, a map

B A° LA N

which gives us a comparison between BA° and BA.
The following theorem can now be proved.

12.19. THEOREM. The above map ¢ is a 1 —1, continuous,
increasing map, and sets up a 1 — 1 correspondence between
uA° and pA. In particular pA and pA° are homeomorphic.

§ 13. The components of a theory

In the next section we will set up (for each theory T) a
certain space which controls the = -blocks of Gp and Fr.
To do this we will use the lattice theoretic results of the last
section and some model theoretic results. This section, which
is based on [3], contains these required model theoretic results.

13.1. DEFINITION. Let T be a theory. A component of T is
a theory P such that

(i) P is Vi-axiomatizable,
(i) TN V,€P,
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(iii) P has JEP,
and is minimal with respect to these properties.
For each theory T we write TV for the theory axiomatized

by TN V,.
The following theorem gives the fundamental result con-
cerning components.

13.2. THEOREM. Let T be a theory. For each theory P the
following are equivalent.

(i) There is some A € Er such that P = Th(J) v

(ii) P is a component of T.
(iii) There is some A G such that P = Th(u‘l}v

PROOF. (i) = (ii). Suppose P = Th (JE]V where A € Er.

Clearly P satisfies 13.1 (i, ii, iii) so it is sufficient to show
the minimality of P.
Let S be any theory satisfying the properties of 13.1 (i, ii, iii)
such that S € P, and let @ be any model of S. Since Ak S,
S has JEP, and J = Er we have A =(V;) 8. Thus (using the
V ;-axiomatizability of P and S) we have %= P and hence
S = P, as required.

(ii) = (iii). Suppose that P is a component of T and consider
any $ € Ep. Since P is V;-axiomatizable we have P € Th(%)
so, since P has JEP, P = Th(.@]v.

Now TN V; € P so there is some 4 Gy with 8
This gives T N V,; € Th(J) v C Th(9) v = P hence (since
Th(A) v is a component of T) we get P = Th(u‘l’)v, as required.

(iii) = (i) is trivial.

The next theorem should be compared with 9.3. It is proved
in more or less the same way.



354 HARRY SIMMONS

13.3. THEOREM. Let T be a theory and let P be a component
of T. Then the following hold.

() P = Te+ P, Ep = Ep N Md(P).
() PP =TI+ P, Fp = Fp N Md(P).
(@ P = Te+P, Gp = Gr N Md(P).

Suppose A, B = Er. Clearly A, P give rise to the same
component of T if and only if 4 =; $. In particular if A, B
are both f-generic or both g-generic for T then they give the
same component if and only if A = %. In other words there
is a 1 —1 correspondence between the components of T and
the = -blocks of Gr, and some components of T correspond
to the = - blocks of Fp. (This gives us another proof of j(Fp) <
i(Gr).)

In the next section we construct a space pT out of com-
ponents of T. This space will be, in fact ,the space pnA of some
d-lattice A associated with T. The corresponding lattice A°
(and the congruence ~ which gives us A° from A) will be
located using the following lemma.

13.4. LEMMA. Let T be a theory and «,f two V-seniences.
The following are equivalent.

(i) T°- aep
(ii) For each A € Ey, A a if and only if J = p.

PROOF. Simply remember that T° is axiomatized by T° N V..

§ 14. The component space of a theory

Throughout this section T is a fixed theory and A is the
lattice of V;-sentences modulo T. Thus A is a d-lattice and so
all the machinery of section can be used in connection with
T. The next theorem shows the connection between these lat-
tice theoretic methods and the components of T.
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14.1. THEOREM. There is a 1— 1 correspondence between
the theories P satisfying 13.1 (i, ii, iii) and the points of A.
Under this correspondence the componenits of T are paired
with the points of pA.

PROOF. The theories satisfying 13.1 (i, ii) are essentially the
(proper) filters of A so, using 2.18, the theories satisfying
13.1 (i, ii, iii) are essentially the prime filters of A and these
are essentially the elements of SA.

The ordering imposed on A is essentially the ordering of
ideals by inclusion, or the ordering of filter by anti-inclusion.
Thus the components of T (= minimal prime filters of A) cor-
respond to the maximal elements of T i.e. the elements of
uT.

Let puT be the space pA (i.e. the space A relativized to pA).
Thus, by 12.3 and 129, uT if a G& subset of the second coun-

table boolean space fA. Also, using 13.2, the elements of uT
are essentially the = - blocks of Gr and some of these points
correspond to the = -blocks of Fr. These f-points form a
large part of uT.

142, THEOREM. The set of f-points of uT form a dense sub-
set of uT.

PROOF. Let us identify the points of uT with the components
of T.

After a few moments thought we see that typical members
of the cannonical subbase of uT are

Xu={PEpT:u.EP} Yu={PEp.T:—|uEP}

where o is an V;-sentence. For each 3;-sentence ¢ let

Uu = {PeuT:0= P}

so that U =Y i.e. U is an open subset of uT. Also,
o V]

—0o

remembering 13.2, we soon see that
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X = U{U :0 is an 3J;-sentence such that T+ oc—>a}
o o]

so that {U., 10 an Jj-sentence} is a subbase (in fact a basis)
of uT.

This shows that it is sufficient to show that each non-empty
U contains some f-point. But this is trivial since U is non-
) o

empty if and only if ¢ is consistent with T, and each 3;-sen-
tence consistent with T holds in some member of Fr.

As defined uT appears to depend on T, whereas it should
depend only on the cotheoretic class of T. We show that, in
fact, this is so. We do this by showing that the factor lattice
A° of A is the lattice of Vi-sentences modulo T° and then
applying 12.19

14.3. THEOREM. Let A be the V-lattice of the theory T.
Then the Vi-lattice of T° is the factor lattice Ae.

PROOF. Let B be the V,;-lattice of T°. There is an obvious
epimorphism

A g —> B

(simply send the T-equivalence class of each sentence onto
the T°-equivalence class of that sentence). To show that B =
A° it is sufficient to show that g has the right congruence
kernel. But this follows immediately from 13.4, which gives
the required result.
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