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1.0 This paper investigates a problem arising from the work
of Veblen and Huntington, among others, in the light of the
more recent model theoretic discoveries of Loéwenheim,
Skolem, Tarski and Vaught In the early 1900's considerable
interest was shown in characterizing certain mathematical
structures uniquely up to isomorphism (e.g. [7] [8] [9] [10] [11]
and [25]). From a modern point of view this work essentially
involves a member i of a «similarity class» of structures [5]
and a class of languages each of which is interpretable in this
similarity class; the problem is finding a set of sentences in
one of these languages all of whose models are isomorphic to
i. The problem here is finding conditions on those languages
which are sufficient to guarantee that i is not characterizable
up to isomorphism.

The results of Tarski-Vaught, Lowenheim and Skolem for
first order languages suggest one possible approach — to
associate with each language a least cardinal § such that no
interpretation of cardinality # or greater can be characterized
up to isomorphism.

In the following pages the details of this approach are
worked out: (a) several candidates for such a number are
defined (by generalizing the relevant features of the Tarski-
Vaught Léwenheim-Skolem and upward Léwenheim-Skolem
theorems, respectively); (b) conditions necessary and sufficient
for the existence of such numbers are discussed; and (c) their
relative sizes are investigated.

2.0 In this section a class, &, of denotational semantics is
introduced and the Tarski-Vaught, Léwenheim-Skolem, Upward
Lowenheim-Skolem, Léwenheim, and Hanf numbers for the
members of this class are defined. For each of the numbers
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conditions which are necessary and sufficient for a sementics
to have that number are given and upperbounds are placed
on their size. Finally, it is shown that while all semantics in
£ have both Hanf and Léwenheim numbers some members
have neither Tarski-Vaught, Lowenheim-Skolem nor Upward
Léwenheim-Skolem numbers.

The Gddel-Bernays set theory [3] with the axioms of choice
and substitution is assumed throughout: in particular, essential
use is made of the distinction between sets and proper classes
(c.f. [3] p. 3).

By a language we mean any set L; the members of L are
called sentences. A semantics for L is a four-tuple S(L) =
(I, V, T, D); where Iis a non-empty class called interpreta-
tions for L; V: L X I > T, called the valuation of S(L); T is a
non-empty set called the truth values of S(L); and D is a non-
empty proper subset of T called the designated values of S(L).
For each interpretation i, the valuation for i (in S(L)) is the res-
triction of the valuation of S(L) to L X {i}. Interpretations i,
j are equivalent in S(L) provided their valuations, considered
as mappings from L to T, are identical.

S(L) is called a denotational semantics provided every inter-
pretation i is associated with a unique set (possibly empty)
called the domain of i. For each interpretation i in a denota-
tional semantics the cardinality of i is the cardinality of the
domain of i; |i| indicates the cardinality of i. # denotes the
class of denotational semantics.

£ includes, among other things, the standard semantics for
first order languages with and without equality; the semantics
for the «non-elementary» languages given by Mostowski [20]
(pp. 132-3); the many valued semantics of Chang and Keisler
[12]; the «standard» semantics for many-sorted logics (e.g.
[13]); free logics (e.g. [14], [17], [6] and [16]); and those semant-
ics which admit empty domains (e.g. [21] and [4]). Explicitly
excluded from & are the truth-valued semantics for various
languages (e.g. [15], [18] and [19]); and those semantics which
admit of truth-value gaps (e.g. [24]).

Let L be a first order language with equality over the count-
able set K of non-logical constants. The interpretations for L
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are pairs i = (u,f) when u is a non-empty set and f is a
function defined on K taking values in the usual way. The
Lowenheim-Skolem theorem establishes that every interpre-
tation of cardinality greater than %, is equivalent to an inter-
pretation of cardinality %.. Thus, no interpretation greater than
%o can be characterized uniquely up to isomorphism. Tarski
and Vaught [23] extended this theorem in two directions by
showing that every interpretation of cardinality greater than
o has equivalent substructures (') in every smaller cardinality
not less than ».. The upward Léwenheim-Skolem theorem
established that any structure of cardinality %, or greater has
equivalent exiensions () in every greater cardinality. Thus,
only interpretations of cardinality less than %, can be charact-
erized uniquely up to isomorphism.

Obviously, the Tarski-Vaught and upward Léwenheim-
Skolem theorems have a «structural» as well as a cardinality
aspect. That is, they guarantee that each infinite interpretation,
i, is equivalent to interpretations in every other infinite car-
dinality and, in addition, that among these equivalent inter-
pretations are substructures in each infinite cardinality less
than |i|, and extensions in every cardinality greater than
|i]. In generalizing these results, structural aspects are
omitted.

To generalize the above first order theorems to all members
of &, we introduce the following: for all B a cardinal number.

(1) B is the Léwenheim-Skolem number of S(L) provided
B is the least cardinal such that every interpretation of
cardinality greater than 8 has equivalent interpretations
of cardinality 8. (We indicate this by 8 = LS(S(L));

(2) B is the Tarski-Vaught number of S(L) provided B is
the least cardinal such that for all cardinals §' > B every
interpretation of cardinality §' has equivalent interpreta-
tions in every smaller cardinality not less than .
(TV(SL)) = B); and

(3) B is the Upward Léwenheim-Skolem number of S(L)
provided B is the least cardinal such that every interpre-
tation of cardinality at least f has equivalent interpreta-
tions in every greater cardinality. (U(S(L)) = B).
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Thus, for S(L) the standard semantics for a countable first
order language with equality, TV(S(L)) = U(S(L)) = LS(S(L))
= %, and for S(L'), the standard semantics for a countable for
order language without equality TV(S(L')) = LS(S(L")) = =0,
U(S(LY)) = 1.

Let C(S(L)) denote the class of |i| for i an interpretation for
L. S(L) is stable provided there is some cardinal s.t. all cardinals
greater than that cardinal are in C(S(L)): bounded provided
C(S(L)) is bounded from above; and periodic provided for every
cardinal in C(S(L)) there exists strictly larger cardinals §, §
such that B'<<B, B <= C(S(L)) and B'¢ C(S(L)). Obviously,
every semantics falls into one of these categories. Further, a
simple cardinality argument shows that C(S(L)) is a proper
class if S(L) is stable.

In the following pages, attention is restricted to stable sys-
tems unless stated otherwise. There are several reasons for
this restriction: (i) all of the semantics mentioned above are
stable; (2) all bounded semantics have Tarski-Vaught, Lowen-
heim-Skolem and Upward Lowenheim-Skolem numbers; (3) no
periodic semantics has Tarski-Vaught, or Upward Lowenheim-
Skolem numbers; and (4) while bound semantics have appeared
in the literature (e.g. Tarski's semantics for first order lan-
guages [23] and the weak Lowenheim-Skolem semantics for
second order logic [27]), the author knows of no periodic se-
mantics in the literature.

Obviously, no semantics could have any of these numbers
should it turn out that all equivalent interpretations were iso-
morphic. The following remarks imply, for each stable seman-
tics, the existence of equivalent, non-isomorphic interpreta-
tions.

Let F be the class of all valuations for members of I. F is
itself a set. Let R € F x C(S(L)) such that R(f, f) if f is a valua-
tion for an interpretation of cardinality 8. Note that for each 8
in C(S(L)) there exists an f such that R(f, 8); but, by the axiom
of substitution, R is not a function, since otherwise C(S(L))
would be a set. Hence, there exists i, j such that i is equivalent
to j, but |i| = |j|.
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We now turn to the problem of the existence of these num-
bers and some questions concerning their size.

Let S(L) be a semantics, i be an interpretation in S(L). The
spectrum (%) of i in S(L) is the class of cardinals § such that i is
equivalent to some interpretation of cardinality B. i denotes the
spectrum of i (in S(L)). Note that if i is equivalent to j, then
i=j.

The spectrum of the interpretations of S(L) plays an impor-
tant part in the further developments. Let i be an interpreta-
tion in S(L), i is bounded provided i is bounded from above;
i is stable provided there is some cardinal f such that every
cardinal greater than or equal to f belongs to i. (oi or i (S(L))
denotes the least such cardinal); i is periodic provided i is
neither bounded nor stable; and i is minimal provided i =
{]i] }. B(S(L)), M(S(L)), S(S(L)) P(S(L)) denote, respectively, the
classes of interpretations bounded, minimal, stable and periodic
in S(L). B(S(L)) is a proper subclass of 1. Further, we can easily
verify that M(S(L)) € B(S(L)): that each of the above classes is
closed by equivalence in S(L): and, finally, that B(S(L)), P(S(L))
and S(S(L)) are pairwise disjoint and exhaust I.

For each i in B(S(L)), & (S(L)) denotes the least upper bound
of 1; 8(S(L)) = Lu.b. {di(S(L)): i = B(S(L))} and ¢(S(L)) = lLu.b.
{oi(S(L)): i = S(S(L))} (When no ambiguity results we let § =
8(5(L)) and o(S(L)) = ¢.) A simple cardinality argument guaran-
tees that both ¢ and § exist. Note that for all i and every car-
dinal B, if i € S(S(L)) and § =2 aip € i.

For S(L) the standard semantics for a countable first order
language with equality, 8 = ¢ = %o, B(S(L)) = M(S(L) =
{i:|i] <}, P(S(L)) is empty and hence S(S(L)) = {i: |i] =
%o }. For S(L) the standard semantics for a countable first order
language without equality, o = 9, % = o, S(S(L)) = I and
P(S(L)), B(S(L)), and M(S(L)) are empty.

The following gives conditions necessary and sufficient for

a semantics to have a Tarski-Vaught number and a bound on
its size.

Theorem 1: For all S(L), (a) S(L) has a Tarski-Vaught number
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iff no interpretation is periodic and (b) if S(L) has a Tarski-
Vaught number, then TV (S(L)) < max (3, o).

Proof: Suppose S(L) has a Tarski-Vaught number but some in-
terpretation i is periodic. Therefore, i is neither bounded nor
stable. Since i & B(S(L)) there exists 8, 8', 8" such that TV(S(L))
<pBp<p <p" 1 where hoth B, " € i but B’ & i. Therefore,
there exists j of cardinality " where |j| = TV(S(L)) and j is
not equivalent to an interpretation of cardinality .

Suppose no interpretation is periodic. Then TV(S(L)) < max
(3,0). Let i €1 be such that |i| > max (3, 0). Hence |i| >
and i is stable. Further 8 <C |i|. Let B be any cardinal such
that max (§,0) <P < |i|. If B = max (§,0),p = o and B € i.
Q.E.D.

There are semantics which do not have Tarski-Vaught num-
bers. For example, no second order language with its standard
semantics (and hence no standard semantics for languages in
the hierarchy of the simple theory of types) has a Tarski-
Vaught number. This result (announced in [26]) depends on
showing that certain «periodic» features of the cardinal num-
bers (e.g. «being a limit cardinal») are definable by second or-
der sentences; i.e. there is a sentence A true on all and only
interpretations i, provided |i| is a limit cardinal.

The standard semantics for countable first order languages
with or without equality have Tarski-Vaught numbers where
TV(S(L)) = max (3, o). However, we can easily find semantics
having Tarski-Vaught numbers where TV(S(L)) << max (5, o).
Let Li be that first order language having the binary relational
constant R as its only non-logical constants. Let S(Li) indicate
the standard semantics for Li. Let P be a unary predicate con-
stant, and let A be a sentence involving P but not R. Let
L* = Li U {A} and I' be all pairs i’ = (u, f') where f'(P) S u
and f'(R) S uxu. V' is defined as usual for all B = L;, and
|f(P)| = 1o or |f'(P)| = . Let S(L*) denote the resulting se-
|f(P)| = 3o or [f'(P)| = y1. Let S(L*) denote the resulting se-
mantics. Obviously, 8 = w1, and ¢ = %, but it can easily be
shown that TV(S(L¥)) = x.. Note, however, that if M(S(L)) =
B(S(L)) or & < ¢ and S(L) has a Tarski-Vaught number, then
TV(S(L)) = max (8, o).
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Theorem 2: For all S(L), (a) S(L) has an Upward Léwenheim-
Skolem number provided no interpretation is periodic; and (b)
if S(L) has an Upward Lowenheim-Skolem number, then U(S(L)
< max (3", 0), where d* is the successor of &.

Proof: Suppose S(L) has an Upward Lowenheim-Skolem num-
ber, but some interpretation is periodic. Let i be such an inter-
pretation. Since i is periodic, there exist B, ', such that
U(S(L)) <p<<B where f =1 and f' & i: contradiction.

Suppose no interpretation is periodic. Let i be an interpreta-
tion such that |i| = max (3%, o). Then |i| > 8 and i is stable.
Let B be any cardinal = |i|; since |i| = &,B 1 and i is equi-
valent to some structure of cardinality 3. Hence, S(L) has an
Upward Lowenheim-Skolem number and this number is <
max (d*, o). Q.ED.

Theorems 1 and 2 yield that a semantics has an Uuward
Lowenheim-Skolem number iff it has a Tarski-Vaught number.
Hence, from the above remarks it follows that some semantics
have no Upward Léwenheim-Skolem numbers.

Note that for the standard semantics for a first order lan-
guage with or without equality, U(S(L)) << max (5*, ). How-
ever, for the semantics S(L*) discussed above we can verify
that U(S(L*)) = max (5%, 6) = max (xi, o).

For the standard semantics for a countable first order lan-
guage with equality we note that TV(S(L)) = U(S(L)); and for
the standard semantics for a countable first order language
without equality we note that U(S(L)) << TV(S(L)). Moreover,
for the semantics S(L*) discussed above, it can be verified that
TV(S(L*)) < U(S(L*)).

Theorem 3: For all S(L), (a) S(L) has a Lowenheim-Skolem num-
ber provided either (i) no interpretation for L is periodic: or
(ii) there is a cardinal B satisfying the following: (1) f & N
{i:iePBL)} (2) B> ai; i = S(S(L)): and (3). if i & B(S(L)),
B <<Si, then f =i; and (b) if S(L) has a Léwenheim-Skolem
number, then (i), if P(S(L)) = A, LS(S(L)) < TV(S(L)); and (ii)
if P(S(L)) =+ /\, then LS(S(L)) is the least cardinal satisying
conditions (1), (2) and (3) above.

Interestingly, there are semantics (e.g. the standard semantics
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for second order languages) which have been shown [27] to
have no Léwenheim-Skolem numbers. Further, we can con-
struct semantics which have Lowenheim-Skolem numbers but
no Tarski-Vaught numbers. Let Si(L*) consist of the language
and interpretations of S(L*). The valuation Vi is defined as
usual for pairs (B, i) where B € Li and Vi (A, 1) = t, if |i| > %
and |i| is a limit cardinal; or if |i| = % and f(P) = A; and
Vi(A, i) = f, if |i]| <wo; or if |i| > %, and |i| is not a limit
cardinal; or if |i| = % and f(P) # A. We can show that Si(L*)
contains periodic interpretations and hence has no Tarski-
Vaught number. However, it can be verified that LS(S:(L*)) =
%o

Obviously, for the standard semantics for a countable first
order language with equality, U(S(L)) = TV(S(L)) = LS(S(L)),
and for the semantics for a countable first order language
without equality, U(S(L)) <LS(S(L)). However, we can find
semantics having Tarski-Vaught numbers where LS(S(L)) <<
U(S(L)). Let Sz(L*) be composed of the language and interpre-
tations of S(L*). The valuation Ve is defined as usual for all
pairs (B, i) where B € L1 and Vz (A, i) = tif |i|] = w or |i| =
%o and f(P) = A; and Vz(A,i) = fif |i]| > or |i| <=uo or
|i| = % and f(P) = A. We an verify that LS(Sz(L¥) = u <
TV (Sz(L*)) = %2 = U(Sz(L#)).

Thus, not every semantics has a Ldéwenheim-Skolem number.
However, a simple cardinality argument (c.f. [1] p. 85) esta-
blishes that every system has the following: for all 8, § is the
Léwenheim number of S(L) provided B is the least cardinal
such that every interpretation is equivalent to an interpreta-
tion of cardinality 8 or less. (L(S(L)) indicates the Lowenheim
number of S(L)).

Theorem 4: For all S(L), (a) S(L) has a Léwenheim number; and
(b) L(S(L)) = Lu.b.{min i:i = I}.

We can verify that if S(L) has a Tarski-Vaught number then
L(S(L)) = LS(S(L)) < TV(S(L)). Note that for the semantics for
a countable first order language with or without equality,
L(S(L)) = LS(S(L)) = TV(S(L)), but there are semantics having
Tarski-Vaught numbers (e.g. Sz(L*) above) such that L(S(L)) <
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TV(S(L)). Further, we can construct a semantics which has a
Léwenheim-Skolem number where L(S(L)) <<LS(S(L)). Let
S3(L*) contain the language and interpretations of S(L*). The
valuation V3 is defined in the usual way for all pairs (B, i),
B # A. In addition we have the following: V3 (A, i) = t if |i]
= w and V3 (Ai) = f otherwise. We can show that L(Ss(L*))
= w2 but LS(S3(L*)) = =»2. Note further that L(Ss(L*) << U(Ss
(L*)) and for the standard semantics for a countable first order
language without equality, U(S(L)) <<L(S(L)), while for the
standard semantics for a countable first order language with
equality, U(S(L)) = L(S(L)).

Earlier we noticed that some semantics have no Upward
Lowenheim-Skolem numbers; but a simple cardinality argument
(see [1] p. 85) verifies that every system has the «weaker»
Han f number.

For all 8, B is the Hanf number of S(L) provided B is the least
cardinal such that every interpretation of cardinality at least
B is equivalent to some interpretation of greater cardinality.

B = H(ESWL)).

Theorem 5: For all S(L), (a) S(L) has a Hanf number; and (b)
H(S(L)) = min. {f : for all i € B(S(L), p > &:i}.

Notice that if S(L) has an Upward Léwenheim-Skolem num-
ber, then H(S(L)) < U(S(L)). Further, for the semantics for a
countable first order language with or without equality
H(S(L)) = U(S(L)). However, semantics can be constructed
which have Upward Léwenheim-Skolem numbers strictly
greater than their Hanf numbers. Let Sy(L*) be composed of the
language and interpretations of S(L*) where V, (B, i) for B #= A
is defined as usual and Vi (A, i) = fif |i|] <w or |i] = % and
f(P) #+ A, and Vi (A, i) = tif |i] = % or |i| = % and f(P) =
A. It can be verified that H(Ss(L*)) = %o << U(Ss(L¥)) = x1.

3.0 In the last setion five candidates for a measure of the
ability of a language to distinguish interpretations up to iso-
morphism were introduced. In this section we briefly discuss
which of these candidates would make the best measure. For
convenience we group these candidates into the upward meas-
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ures, i.e. Hanf and Upward Léwenheim-Skolem numbers, and
the downward measures, i.e. the Tarski-Vaught, Léwenheim-
Skolem and Léwenheim numbers. Of the upward measures,
the Hanf numbers seem the best candidate, since (i) every se-
mantics has a Hanf number while some semantics have no
Upward Léwenheim-Skolem numbers; and (ii) even for those
systems having Upward Léwenheim-Skolem numbers H(S(L))
< U(S(L)). Similar remarks apply for the Léwenheim numbers
when compared to the other downward measures.

Presumably, the choice between H(S(L)) and L(S(L)) is a
function of their relative sizes, the principle being always to
choose the smaller of the two. Notice, however, that their
relative sizes are not known (in general) beyond computing
both of them; i.e. for the standard semantics for a countable
first order language with equality H(S(L)) = L(S(L)); however,
for the standard semantics for a countable first order language
without equality H(S(L)) <<L(S(L)) and H(Sz(L*)) > L(Sz(L*)).
Interestingly, under the assumption that every bounded inter-
pretation in S(L) is minimal, it can easily be shown that
H(S(L)) < L(S(L)).

4.0 Leaving aside this problem, one might wonder whether
any of these numebrs could, in general, serve as a necessary
and sufficient condition for an interpretation to be determined
uniquely up to isomorphism. Tarski ([22] p. 712) has noted that
a structure can be characterized uniquely up to isomorphism in
the standard semantics for a countable first order language
with equality just in case it is finite, i.e., less than the Hanf
number of that semantics. However, we can show that there
are interpretations of cardinalities less than the Hanf and
Loéwenheim numbers of the standard semantics for countable
second order language which cannot be characterized uniquely
up to isomorphism.

Let S(L) be a standard second order semantics whose lan-
guage contains the binary relational constant R. Let B be any
cardinal. B is describable in S(L) provided there is some sent-
ence in L true on all and only interpretations of cardinality B.
It can easily be shown that x, is describable (c.f. [26]). It follows
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from a result of Zykov [28] that 2 , 2*  and 2* are describ-
able; and hence that both the Hanf and Léwenheim numbers

of S(L) are larger than 29%. Further, we can verify that for
every cardinal f§ which is describable in S(L), the interpretation
i = (u,f) where |i| = B and f(R) = A can be characterized
uniquely up to isomorphism in S(L). It follows from a result of

K
Tarski ([22] p. 713) that there are exactly 2 many non-equi-
valent interpretations in each infinite cardinality. But it can

w
easily be shown that there are 2° ° non-isomorphic interpreta-
w
tions of cardinality 2° .

Let u be any set of cardinality 2"MD and let << be some well-
ordering on u. For each a € u, let u(a) denote the weak initial
segment of < determined by a; and let i(a) = (u, f(a)) where
f(a) (R) is the restriction of < to u(a). We can easily show that
for all a, b € y, if a # b then i(a) is not isomorphic to i(b) and

"
hence that there are 2!  non-isomorphic interpretations of
P

K
cardinality 2* 0. (These arguments can be extended to the en-
tire hierarchy of the elementary theory of types.)

George Weaver
Bryn Mawr College
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NOTES

() i = <u,f> is a substructure of j = <v,g> provided u S v, f and
g agree on all individual constants in K and f on any other member of K
is the restriction of g on that member to u. Under the same conditions j
is an extension of i.

(*) This notion of the spectrum of an interpratation is a generalization
of the notion of the spectrum of a set of sentences (c.f. [28], p. 2).

(®) In [26] such numbers are called weak-Lé6wenheim-Skolem numbers,



