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In this paper we offer an alternative to Cocchiarella's se-
mantic tableaux proof of the completeness of tense logic. Our
results, which are adapted from a proof of D. Makinson for
modal logic, not only are somewhat stronger than Cocchiarel-
la's but are simpler as well (Y.

1. Syntax and Semantics

The primitive signs of TL (tense logic) shall be '~', '>’,
‘(',')’, the tense operators ‘F' and ‘P’, and a denumerable infi-
nity of sentence letters, say ‘p’, 'q’, ', 'p", 'q", etc. The wffs
of TL are the sentence letters plus all formulas (i.e. strings of
signs) of the following four sorts:

(i) ~A, where A is a wif,

(i) (A>B), where A and B are wifs,
(iii)y FA, where A is a wiff, and

(iv) PA, where A is a wif.

Henceforth we shall use ‘A’, ‘B, and 'C’ to refer exclusively to
wifs of TL, 'S’ to refer to sets of wffs of TL, ‘G’ as short for
‘~F~', 'H' as short for ‘~P~"', (A &B) and '(AVB)' as short
for '~ (AD> ~B)' and '(~ADB)’, respectively, and we shall omit
all sundry parentheses.

Five sublanguages of TL-called TL! TL? TL? TL! and TL®
— shall be characterized below which are equivalent to five
of the best known tense calculi (). A1-A3 and B1-B8 reading
as follows, the axiom schemata for each TL! (1<i<5) are given
in the accompanying table.
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AD(BoA)
(~Bo~A) > (A>SB)
(AS(B>C)) o ((A>B) o (ADQ))
G(ADB) o (GA>GB)
PGADA
GA, where A is an axiom.
MI(A) (*), where A is an axiom and MI(A) is the result of

simultaneously replacing each occurrence of 'F’' in A by
‘P’ and each occurrence of ‘P’ by ‘F'.

GADGGA
(FA & FB) > (F(A &B) V (F(A & FB) V F(B & FA)))
GADSFA

GGADGA

TABLE OF AXIOM SCHEMATA (4
TL': A1-A3 and B1-B4
TL*: A1-A3 and B1-B5
TL*: A1-A3 and B1-B6
TL*: A1-A3 and B1-B?7
TL®:- A1-A3 and B1-B8

In addition, each TL! has modus ponens as a rule of inference.,
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Presuming the notions of a proof and a derivation in TLi to
be understood, we shall say that a wff A is provable in TLi —
r—-i A, for short — if there is a proof of A in TL! and that a wif

A is derivable from a set S in TLI — S +~ A, for short — if
1

there is a derivation of A from S in TL. Furthermore, if
‘~(p>p)’ is derivable from S in TL!, we shall say that S is
syntactically inconsistent in TL! and, otherwise, syntactically
consistent in TLI, ‘

By a truth-value assignment for TL we understand any func-
tion from the set of sentence letters of TL to {1,0}, where 1
is the truth-value “true” and 0 the truth-value "false’’. Mimick-
ing Cocchiarella (‘), we shall take any pair of the sort <ER>
to be a history of TL if E is a family of truth-value assignements
for TL whose index set is I and R is a dyadic relation on I.
Where a. is a term of E, we shall say that a, is a moment of
the history <E,R>. The histories of the sublanguages TLi are
to be distinguished by the properties of R. P1-P4 being as below,
the relation R in the histories of TL' is unrestricted, R in the
histories of TL® has P1, R in the histories of TL® has P1 and P2,
R in the histories of TL* has P1, P2, and P3, and R in the his-
tories of TL® has all of P1-P4.

PL. (Vx) (Vy) (V2) (R(xy) &R(v,2)) D R(x.2)

P2. ((Vx) (Vy) (V2) (R(x,Y) &R(x2) D (y = ) V
R(y:z) V R(z,v)))) and (Vx) (Vy) (V2) (R(x,y) &
R(xz) o (y =2) V R(v.2) V RzY)) )

P3. (Vx) (3y)R (x,y) and (V) (Iy)R (xy)
P4. (Vx) (Vy) R(xY) 2 (32) R(x2) &R(zY)))

We shall take a wif A to be true at a moment ax of a history
<E,R> of TLi if:

() in case A is a sentence letter, a.(A) = 1,
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(ii) in case A is a negation ~B, B is not true at ap,

(iii) in case A is a conditional BoC, either B is not true at

an or C is,

(iv) in case A is of the sort FB, B is true at some b, of

<E, R> such that R(n,p), and

(v) in case A is of the sort PB, B is true at some b, of

(v) <E,R> such that R(n,p).

Finally, a wif A shall be said to be valid in TL! if A is true
at every moment of every history of TL!; a set S shall be said
to be semantically consistent in TL! if there is a moment of a
history of TL! at which all the members of S are true, other-
wise S shall be said to be semantically inconsistent in TL!; and
S shall be said to entail A in TL! if S U{ ~A} is semantically
inconsistent in TLI.

2. Soundness and Completeness Theorems

The proof of our (strong) soundness theorem for TL is simi-
lar in all respects to the modal case and shall be left to the
reader (%).

Theorem 1. If S ~ A, then S entails A in TLi,
i

Turning then to matters of completeness, our first prefatory
lemma is the tense logic analogue of “Lindenbaum's Lemma".
Lemma 1. If S is syntactically consistent in TL! there is a set
K such that:

(a) ScK,

(b) K is syntactically consistent in TLi,

(c) For any wif A, ~A is a member of K iff A is not a member
of K,

(d) For any wffs A and B, A>B is a member of K iff either
A is not a member or B is,

(e) For any wif A not a member of K, K U { ~A} is syntacti-
cally inconsistent in TLI,

Proof: Let So be S and define Sy, for each n from 1 on, as fol-

lows: An being the alphabetically n-th wff of TLi, let S, be

Sn+1 U {As} if syntactically consistent in TLi, and otherwise

let Su be Sn+1. Then let K be the union of So, Si, Sg, etc. By

arguments now familiar from the literature it is easily verified

that (a) — (e).
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We shall henceforth refer to sets such as K by the name
Lindenbaum sets of TL! and, where S and K are as above, shall
call K the Lindenbaum extension of S in TLI

Where K is a Lindenbaum set of TLi S, is the set consist-
ing of all wifs B such that GB is in K, Sg, is the set consisting
of all wifs B such that HB is in K, and FA and PA' are mem-
bers of K, we shall call the Lindenbaum extension of Sp, U {A}

a future attendant of K and the Lindenbaum extension of Spy
U {A'} a past attendant of K. Note that there is a future (past)
attendant of K for each wif of the sort FA (PA') in K.

With these definitions in hand, we pass to our next lemma.
Lemma 2. If K, Sp,, Ss, FA, and PA' are as above, then:
(@) Ss, U {A} is syntactically consistent in TLi, and
(b) Ss, U {A'} is syntactically consistent in TLI
Proof: (a) Suppose, for a reductio, that Sp, U {A} is syntacti-
cally inconsistent in TL! and let {By, Bs, ..., Bx} be a finite sub-
set of Sg such that {Bi, Bs, ..., Bx}  ~A. Then ~ B D

i i i
(B: o ... Bk © ~A) ...) by A1-A3, and |—i GB:1 o (GB: o ...

(GBx > G~A) ...) by A1-A3 and B1 and B3. Hence, by A1-A3
again, {GB:, GBg, ..., GBx} ~ G~ A. But, by hypothesis,

1
{GBy, GBg, ..., GBk} is a subset of K. Hence, K F G~A (=
~FA). However, by hypothesis, K ~ FA (since FA was as-
i

sumed a member of K). Therefore, Sg, U {FA} is syntactically
consistent in TL! ().
(b) By (a) and B4.

Hence, by our first two lemmata,

Lemma 3. If K is a Lindenbaum set of TL!, then the future and
past attendants of K are Lindenbaum sets of TLI,

As in the classical case, corresponding to each Lindenbaum
set K there is a truth-value assignment which assigns 1 to all
the sentence letters in K and 0 to all others. Henceforth we
shall call this truth-value assignment the associated truth-
value assignment to K.

Beginning with a syntactically consistent set S we next con-
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struct a family EvL of Lindenbaum sets of TLi. Ej, is to be the
least family containing Kn — the Lindenbaum extension of S
— all of its future and past attendants, all of their future and
past attendants, etc. The index set of EL shall be I(¥). On I a
dyadic relation R is defined as follows:

For any two terms K and KJ of Ey, if A is a member of Kj
for every wif of the sort GA in K, then R(i,j).

The pair <Er, R> shall be called an L-history of TLI,

It is crucial for our forthcoming completeness theorem that
the relation R in the L histories of TL!, constructed as above,
have the properties appropriate to the specific system. This is
established by the following lemma.

Lemma 4. (a) In the L-histories of TL? R has P1.

(b) In the L-histories of TL?, R has P1 and P2.

(c) In the L-histories of TL', R has P1, P2, and P3.

(d) In the L-histories of TL®, R has P1-P4.

Proof: The arguments verifying (a) - (d) are similar to the mod-
al case and are by now familiar from the literature. We give
the proof that TL’® histories have P2 as an example.

Since B6 is an axiom of TL? it is a member of each term of
the L-history <Ei, R> of TL® Suppose then that K, is a term
of Er and that there are two other (not necessarily distinct)
terms K; and K" of EvL such that R(n,p )and R(n,r). Further-
more, let A belong to K; and B belong to K. Then if F(A & B)

is a member of Kn, p=r; if F(A & FB) is a member of K,
R(p:1); and if F(FA & B) is a member of Ks, R(r,p). By the same
reasoning and axiom B4, if R(n,p) and R(n,r) then ne of p = T,
R(p,1), and R(r,p) will hold. Hence R in the L-histories of TL?
has P2,

A history of TL! can be constructed to parallel the L-history
<EL, R> of TL! by forming the family E of all the associated
truth-value assignments to the terms of Er and using the same
index for the associated truth-value assignment as was used
for the term of Er. Carrying the relation R over, we shall say
that <E, R> corresponds to <Ep, R>, if it is formulated as
above. And this brings us to our crucial lemma.

Lemma 5. Where S is a set of TL!, if S is syntactically consis-
tent in TL!, then S is semantically consistent in TL!
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Proof: If S is syntactically consistent in TL!, then S extends by
Lemma 1 to the Lindenbaum set K. Out of K the L-history
<EL, R> can be constructed as described above, and corres-
ponding to <Eg, R> is a history <E, R> of TL!. By mathema-
tical induction on the length of a wiff A, it is easily established
that A is a member of a term K; of Ev if and only if A is true
at the moment a, of <E, R> (where ap is the associated truth-
value assignment to K;], and hence that KI'J is semantically
consistent in TL! Thus, since S is a subset of a term Ka of
<EL, R>, and all the terms of <Ey, R> are semantically con-
sistent in TL}, S is semantically consistent in TLi as well. Base
Case. Let A be a sentence letter of TLL. Then by the definition
of ap, A is true at a; if and only if A is a member of K;. Induc-
tive Case, Suppose, for every wif A' shorter than A, that A’
is true on gy if and only if A is a member of K;:' Then, by the
standard arguments, if A is either of the sort ~B or BoC, A
is true at ap if and only if A is a member of K;J . Or, suppose A
is of the sort FB and is a member of K;,. Then there is a set
K" such that B is a member of K and R(p,r). Hence by the
hypothesis of the induction, B is true at a. and FB is true at
ap, since R(p,r). On the other hand, suppose FB is true at aj.
Then B is true at some a; such that R(p,r). Again by the hypo-
thesis of the induction it follows that B is a member of K",
and in view of the fact that R(p,r), FB is a member of K;J Hence,
if A is of the sort FB, A is true at ap if and only if A is a
member of K;. And the case where A is of the sort PB is
similar. Consequently, K; is semantically consistent in TL! as
are all the terms of E.. Hence S is semantically consistent in
TLi (%,

Thus our strong completeness theorem for tense logic is now
at hand.
Theorem 2. If S entails A in TLi, then S . A.

\Proof: Suppose S entails A in TLi, Then SU { ~A} is semanti-
cally inconsistent in TL!, Hence by the contrapositive of Lem-

ma 5, S U { ~A} is syntactically inonsistent in TL!, and, hence
S I A.(* u)_
i
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NOTES

(*) Cocchiarella's proof is given in full detail for the quantificational
case in N.B. Cocchiarella, TENSE LOGIC: A STUDY IN THE TOPOLOGY
OF TEMPORAL REFERENCE (Ph. D. Thesis, University of California at
Los Angeles, 1965). Also see his abstract “A Completeness Theorem for
Tense Logic,” in THE JOURNAL OF SYMBOLIC LOGIC, vol. 31 (1966),
pp. 689-690. The Makinson proof is found in D. Makinson "On Some Com-
pleteness Theorems in Modal Logic,” ZEITSCHRIFT FUR MATHEMA-
TISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, Band 12 (1966),
pp. 379-384.

(®) To be precise, TL! is equivalent to K; TL? to CR, TL?® to CL, TL* to
CS, and. TL® to GHI. For additional information on the origin of these cal-
culi and alternative axiomatizations see M.K. Rennie, “Postulates for
Temporal Order,” THE MONIST, vol. 53 (July 1969), pp. 457-459 and A.N.
Prior, PAST, PRESENT, AND FUTURE (Oxford, 1967), Appendix A.

() Schemata B3 and B4 replace the more customary rules of inference
RG:

If — A, then | GA
and RMI:

If = A, then | MI(A)
Including these principles among the axiom schemata makes for vastly
simpler proofs of some of the meta-theory of TL, especially Soundness and
the Deduction Theorem (on this, also see footnote 10, below). ‘

(#) Cocchiarella, op. cit.

(%) By R, we mean the converse of R.

(°) For the full proof, see Robert P. McArthur, TENSE LOGIC, Chapter 5
(forthcoming).

() This proof owes some to Hugues Leblanc.

(®) See McArthur, loc. cit., for the details of this indexing.

(°) Some of the minor details of this proof have been left out for the
sake of brevity. For the complete proof see McArthur, loc. cit.

(*) A comprehensive account of the move from “S U {~A} is syntacti-
cally inconsistent in TLi” to “S j~ A" requires (among other things) the

Deduction Theorem, ie., If S U i{A} t— B, then S |- ADB. Since the
proof of this theorem for TL is similar in all respects to the classical case
(in light of axiom schemata B3 and B4 in place of extra rules of inference)
it has been omitted.

(*) I am indebted to a reader for LOGIQUE ET ANALYSE for several
helpful criticisms and suggestions on the penultimate draft of this paper.



