NO RATIONAL SENTENTIAL LOGIC HAS A FINITE CHARACTERISTIC MATRIX

R. ROUTLEY and R. WOLF

Gödel showed (in [2]) that the intuitionist sentential logic has no finite characteristic matrix, i.e. that the logic is not a finitely many valued logic; and Dugundji (in [3]) adapted the matrix argument Gödel used to Lewis modal systems. Since then others have shown, in a likewise rather system-specific way, that other sentential systems such as relevant logics E and R lack a finite characteristic matrix, i.e. a matrix with a finite number of values which verifies all theorems of the given system and falsifies all non-theorems. Meyer's study (in [1]) of metacompleteness enables however a general proof that a large and diverse class of sentential logics lack a finite characteristic matrix.

A sentential logic L is rational only if it has a separable sublogic L', with at least connectives \rightarrow and \vee , which is M-rational (rational in a modification of the sense of Meyer [1]). A sublogic L' of L is seperable iff, for every wff A of L', A is a theorem of L iff A is a theorem of L'. Meyer-rationality is thus far characterised by an extensive listing of optional postulates for rational logics. For present purposes it is enough to offer a necessary condition for Meyer-rationality. Let L be any sentential logic whose improper symbols consist (apart parentheses) of some or all of the following connectives and constants: \rightarrow , \vee , &, \neg , \square , \diamondsuit , t, F.

The $canonical\ metavaluation\ V$ on L is defined recursively on wff of L as follows:

- (i) V(p) = F, for each sentential parameter P;
- (ii) V(t) = T;
- (iii) V(F) = F;
- (iv) V(A & B) = T iff V(A) = T = V(B);

- (v) $V(A \lor B) = T$ iff V(A) = T or V(B) = T;
- (vi) $V(A \rightarrow B) = T \text{ iff } A \rightarrow B \text{ is a theorem of } L$;
- (vii) $V(\neg A) = T$ iff $\neg A$ is a theorem of L;
- (viii) $V(\Box A) = T$ iff $\Box A$ is a theorem of L;
- (ix) $V(\diamondsuit A) = T$ iff $\diamondsuit A$ is a theorem of L.

The connective - represents refutability or intuitionistic negation, \square necessity and \diamondsuit possibility, and constants F and t can be thought of as the conjunctions of all wff and of all theorems respectively. A metavaluation V of L is a function V from wff of L to $II = \{T, F\}$ satisfying those of clauses (ii) — (vii) that apply. A wff A of L is true on a metavaluation V iff V(A) = T. Logic L is coherent iff each theorem of A is true on all metavaluations of L, and is metacomplete iff exactly the wff true on the canonical metavaluation of L are theorems. Meyer's main result in [1] for sentential logic L is that if L is rational then L is metacomplete and accordingly coherent. It will almost suffice here to take metacompleteness as, what is it, a necessary condition for Meyer-rationality — but not quite. Logic L is M-rational only if L is metacomplete, identity (i.e. $A \rightarrow A$) is an axiom scheme of L, and modus ponens (i.e. where A and $A \rightarrow B$ are theorems of L so is B) and uniform substitution are admissible rules of L. (Note that in [1] Meyer requires modus ponens of rational logics and presupposes uniform substitution, but treats identity as an optional extra.) Theorem. No rational sentential logic L has a finite characteristic matrix.

Proof. Let L be a rational logic. Then L has a separable sublogic L' which is M-rational. Thus L' is metacomplete, and therefore demonstrably prime, i.e.

(1) AVB is a theorem of L' iff one of A and B is. Now, to vary Gödel's original argument, consider the wff of L': $(p_1 \rightarrow p_2) \lor ... \lor (p_1 \rightarrow p_n) \lor (p_2 \rightarrow p_3) \lor ... \lor ... \lor (P_2 \rightarrow p_n) \biguplus ... \lor (P_{n-1} \rightarrow p_n) \quad (Vn)$ where association is to the left.

(2) (Vn) is a theorem of L' iff $p_i=p_j$ for some i and j, with $n\geqslant 1,\ 1\leqslant i\leqslant n,\ 1\leqslant j\leqslant n.$

Suppose firstly $p_h = p_k$ for appropriate h and k; then $p_h \to p_k$ is a theorem of L'. Hence by iterated application of (1), (Vn) is a theorem of L'. In order to respect association to the left there are two steps involved. Firstly (1) is applied to disjoin all disjuncts in (Vn) to the left of $p_h \to p_k$ at once; and then (1) is repeatedly applied to disjoin one at a time disjuncts to the right of $p_h \to p_k$ in (Vn). The full proof that (Vn) is a theorem is thus by induction on the length of (Vn) to the right of $p_h \to p_k$. For the converse we use the fact that

- (3) where $h \neq k$, $p_h \rightarrow p_k$ is not a theorem of L'. Suppose on the contrary $p_h \rightarrow p_k$ is a theorem of L'. Then by uniform substitution, $(A \rightarrow A) \rightarrow p_k$ is a theorem of L', whence p_k is a theorem of L'. But by the metacompleteness of L' and (i), no sentential parameter is a theorem of L'. Thus (3) is established. Next suppose (Vn) is a theorem of L'. Then by repeated application of (1) at least one of the disjuncts $(p_1 \rightarrow p_2), \ldots, (p_{n-1} \rightarrow p_n)$ is a theorem of L' (the full argument is again by induction). But this contradicts (3) given that all the parameters of (Vn) are distinct. Thus (2) is established.
- (4) L' has no finite characteristic matrix. Suppose that \mathbf{M} is any finite matrix, with j values say. Consider (Vn) for any $n \geq j$, say n = j + 1. Then any assignment of values from \mathbf{M} to (Vn) assigns the same value to at least two parameters in (Vn). Hence \mathbf{M} validates (Vn), since by (2) (Vn) with two parameters identified is a theorem of L'. But also by (2), (Vn) is not a theorem of L' since no variables need coincide. Hence \mathbf{M} is not characteristic for L'.
- (5) L has no finite characteristic matrix. Suppose it has, and that \mathbf{M} is such a matrix; that is, wff B is a theorem of L iff \mathbf{M} validates B. But then \mathbf{M} is characteristic for L', contradicting (4). For where A is a wff of L', A is a theorem of L' iff A is a theorem of L, i.e. iff \mathbf{M} validates A.

It follows that a great many sentential logics have no finite characteristic matrices; for example not only intuitionist, minimal and absolute logics, many Lewy systems, and a range of modal logics, but also all the relevant logics of [4] and

their negation extensions, and all the relevant implicational systems of [5] — indeed (as Meyer [1] will show) any logic which contains as a separable sublogic a logic axiomatised using the postulates t (where applicable) and $A \rightarrow A$, the rules of modus ponens and, where, applicable adjunction and disjunctive addition (i.e. if A or B is a theorem so is $A \lor B$), and any selection of (at least) the axiom and rule schemata listed below:

```
A \& B \rightarrow A, A \& B \rightarrow B, (A \rightarrow B) \& (A \rightarrow C) \rightarrow A \rightarrow (B \& C)
A \rightarrow A \lor B, B \rightarrow A \lor B, (A \rightarrow C) \& (B \rightarrow C) \rightarrow (A \lor B) \rightarrow C
A & (B \lor C) \rightarrow . (A & B) \lor (A & C), A \rightarrow B \rightarrow . B \rightarrow C \rightarrow . A \rightarrow C,
B \rightarrow C \rightarrow A \rightarrow B \rightarrow A \rightarrow C, A \rightarrow (A \rightarrow B) \rightarrow A \rightarrow B,
((A \rightarrow A) \rightarrow B) \rightarrow B, A \rightarrow . (A \rightarrow B) \rightarrow B, t \rightarrow . A \rightarrow A,
A \rightarrow . t \rightarrow A, (t \rightarrow A) \rightarrow A, A \rightarrow (B \rightarrow C) \rightarrow . A \rightarrow B \rightarrow . A \rightarrow C,
A \rightarrow B \rightarrow . C \rightarrow D \rightarrow . A \rightarrow B, A \rightarrow B \rightarrow . C \rightarrow . A \rightarrow B
(A \rightarrow B \rightarrow . A \rightarrow . B \rightarrow C) \rightarrow . A \rightarrow B \rightarrow . A \rightarrow C
(A \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow B)) \rightarrow A \rightarrow (B \rightarrow C) \rightarrow A \rightarrow C
(A \rightarrow B \rightarrow . B \rightarrow C) \rightarrow . A \rightarrow B \rightarrow . A \rightarrow C
(B \to C \to A \to B) \to B \to C \to A \to C
(A \rightarrow C \rightarrow . A \rightarrow B) \rightarrow . A \rightarrow C \rightarrow . A \rightarrow B \& C
(C \rightarrow B \rightarrow A \rightarrow B) \rightarrow C \rightarrow B \rightarrow (C \lor A) \rightarrow B
A \rightarrow B \rightarrow A \rightarrow C \rightarrow A \rightarrow (B \& C)
A \rightarrow C \rightarrow . B \rightarrow C \rightarrow . A \lor B \rightarrow C, F \rightarrow A,
A & (A \rightarrow B) \rightarrow B, (A \rightarrow B) & (B \rightarrow C) \rightarrow A \rightarrow C,
A \rightarrow F \rightarrow . \neg A, \neg A \rightarrow . A \rightarrow F; A \rightarrow \Diamond A, \Diamond \Diamond A, \text{ etc.};
A \& B \rightarrow A, B; A \rightarrow B, B \rightarrow C \rightarrow A \rightarrow C,
A \rightarrow B \rightarrow B \rightarrow C \rightarrow A \rightarrow C; B \rightarrow C \rightarrow A \rightarrow B \rightarrow A \rightarrow C;
C \rightarrow D \rightarrow A \rightarrow B \rightarrow . C \rightarrow D ; A \rightarrow B \rightarrow A ;
A \rightarrow t \rightarrow A; A \rightarrow B, B \rightarrow A, C \rightarrow D, D \rightarrow C \rightarrow A \rightarrow C \rightarrow B \rightarrow D,
```

where A_1 , A_2 , ..., $A_n \rightarrow B_1$ B_2 here abbreviates: if A_1 and A_2 and ... A_n are theorems so are B_1 and B_2 , etc.,

It is sometimes irksome however to have to cope with logics which include a normal or classical negation by first determining an appropriate separable sublogic. The troublesome step can very often be avoided by adding a negation clause

(x)
$$V(\sim A) = T$$
 iff $V(A) = F$

to the definition of a metavaluation, and working with coherence rather than metacompleteness as a necessary condition of rationality. A logic L is *N-rational* (negation rational) only if it is coherent, and identity, modus ponens and uniform substitution are admissible.

Theorem. No N-rational sentential logic has a finite characteristic matrix.

Proof: varies the proof of the first theorem simply in replacing L' by L and (1) by

(1') $(A \rightarrow B) \lor (C \rightarrow D)$ is a theorem of L iff one of $A \rightarrow B$ and $C \rightarrow D$ is.

That (1') holds is an immediate corollary of coherence and disjunctive addition.

As to how coherence of logics which contain connective ~ may be established see Meyer [6]: but thus far it is by no means so easily established as is metacompleteness and coherence of positive-style rational logics, both of which tend to be very straightforward matters.

R. Routley and R. Wolf Australian National University Southern Illinois University (Edwardsville)

REFERENCES

- [1] MEYER, R. K., 'Metacompleteness', Notre Dame Journal of Formal Logic (forthcoming).
- [2] GÖDEL, K., 'Eine Interpretation des intuitionistische Aussagenkalküls', Ergebnisse eines mathematishes Kolloquiums, 4 (1933), 34-40.
- [3] DUGUNDJI, J., 'Note on a property of matrices for Lewis and Langford's calculi of propositions', Journal of Symbolic Logic, 5 (1940), 150-1.
- [4] ROUTLEY R. and MEYER R. K., 'The semantics of entailment III', Journal of Philosophical Logic 1 (1972), 192-208.
- [5] ROUTLEY R. and MEYER, R. K., 'The general theory of implication and conditionals I' Reports on Mathematical Logic (forthcoming).
- [6] MEYER, R. K., 'On coherence in modal logics', Logique et Analyse (forth-coming).