VAGUENESS AND FAILING SENTENCES

J. KEARNS

1. NEITHER TRUE NOR FALSE. If we consider sentences of
the sort used to make assertions, there are different «levels»
of requirements that a fully satisfactory sentence must meet.
These include (in ascending order) the requirements that the
sentence be (a) grammatical (well-formed), (b) significant, (c)
true or false, (d) true. A sentence which is successful at a
given level is successful at all lower levels, but may not satisfy
the higher-level requirements. So a sentence can be gramma-
tical but not significant, or it can be grammatical and signifi-
cant but neither true nor false. If it is false, it is both gramma-
tical and significant. And, clearly, a true sentence is also
grammatical, significant, and true or false.

Some questions have been raised about the distinction
between (a) and (b). It is possible to construct an artificial
formal language which contains grammatical sentences that
are not significant. But it seems somewhat pointless to allow
this; one could as easily make the grammatical requirements
more stringent, so that grammatical and significant sentences
coincide. With respect to natural languages, it is an arbitrary
matter whether one allows a difference between sentences
which are grammatical and those which are significant. It all
depends on what one chooses to call grammatical. The sent-
ence 'Colorless green ideas sleep furiously.’ was once a
favorite candidate for a grammatical sentence that is not
significant. But Chomsky has suggested that an adequate gram-
mar will not leave room for such sentences. (See, for example,
p- 75, [1].)

The distinction between (a) and (b) is less important than
that between (b) and (c). Frege may have been the first logi-
cian to recognize that a significant sentence, of the kind that
is true or false (as opposed to questions or commands), might
fail to be either. At least, Frege may have been the first logi-
cian to do this, who regarded the truth or falsity of a sentence
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as independent of the time when it is uttered. Russell certainly
missed this point, as is evident from his discussion of Frege's
views in «On Denoting.» However, I don't agree with Frege's
choice of significant sentences that are neither true nor false.
In a natural language, the failure of a singular term to refer to
a real object doesn't automatically lead to truth-value failure.
The sentence 'Hitler wasn't much like Hamlet.' is a straight-
forward and true English sentence-it doesn't require rewriting.

Even though Frege's choice of failing sentences is wrong, the
recognition that some significant sentences fail is right. I
think the clearest, though not the only, cases of such failure
are provided by sentences containing vague predicates. In a
natural language, there are criteria associated with a predicate
«by the language.» A thing must satisfy these criteria before
the predicate can be truly applied to that thing. A vague pre-
dicate has associated criteria that give rise to borderline cases
— a borderline case for a predicate neither clearly satisfies nor
clearly does not satisfy the associated criteria. The word ‘tall’
as applied to persons is vague. Some people are clearly tall,
some people are clearly not tall, and some people are neither
tall nor not tall. If Jones is a borderline case for the predicate
‘tall,’ then the sentence 'Jones is tall.’ is significant, but it is
not either true or false. (The same holds, of course, for the
sentence 'Jones is not tall.’)

Natural languages contain significant sentences that fail.
So natural languages are at least three valued. If someone
wished to take account of different sorts of failure, he might
recognize more than three values. For the present, I wish to
lump all failing sentences together. I will consider only the
values truth, falsity, and failure. Sentences that fail do not very
often make trouble for nonphilosophers. There seem to be at
least two reasons for this. One is that we can often eliminate
failing sentences when it is important to do so. A vague pre-
dicate can either be redefined to eliminate (some) borderline
cases, or it can be replaced by a different one. (Instead of
saying «Jones is tall,» we might say, «Jones' height is five
feet, eleven inches.») A second reason is that it frequently does
no harm to ignore failing sentences. Many purposes for using
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and studying language can be successfully achieved if we
make the simplifying assumption that significant sentences
are either true or false. However, in this paper I will try to get
a better understanding of the logical aspects of natural lan-
guages by abandoning this assumption.

It is even an oversimplification to regard significant senten-
ces (the ones that belong in the true-or-false ballpark) as ca-
pable of a neat division into the true, the false, and the failing.
The predicates 'true,’ 'false,” and 'failing’ are themselves vague
and will have borderline cases. (I have discussed this possibility
in connection with self-reference in [4].) However, it will
prove helpful to make this oversimplification in the present
paper. To gain a better understanding of the three-valued
character of natural languages, I will employ the logician's
strategy. I will develop an artificial formal language that has
some resemblance to a natural language, but which is much
simpler than a natural language. The artificial language is an
instrument we can use to gain a better understanding of natural
languages. Artificial langquages can also serve other purposes;
they might be used as languages in their own right. But it is
important not to confuse an artificial formal language with a
natural language.

2. THE FORMAL LANGUAGE . This is a conventional first-
order language. Its building blocks are the following:

Punctuation: (,), [,], the comma: ,
Individual variables: xo, Yo, Zo, X1, Vi,...
Individual constants: ao, be, co, a1, bi,...

For n > 0, n-adic predicates: Fg, Gr’f, H3, Fi',
Connectives: v, ~
Quantifier component: V

The well-formed formulas (wffs) are given by:

(1) If ay, ..., s are individual variables or constants and ¢”
is an n-adic predicate, then g"(ay,...,ax) is a(n) (atomic) wif,
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(2) If A, B are wifs, so are ~A and [A v B].

(3) If A is a wif containing free occurrences of individual
variable o, then (Vo)A is a wif.

(4) All wffs are constructed according to (1) - (3).

A sentence is a wiff without free occurrences of individual
variables.

The following define connectives used as abbreviations:

[A&B] = (def) ~[~Av ~B]
[ASB] = (def) [~A v B]

[A=B] = (def) [[ADB]& [B>A]]
(3)A = (def) ~(Va)~A

Brackets will abbreviated according to the conventions of [2].

The semantics for 1 is three valued; I will use 'T,” 'F,’ and
‘O’ for truth, falsity, and failure. Since the connectives of L
are familiar ones, it is reasonable to require the semantics to
assign the ordinary values when the components are true or
false. We need only determine how to evaluate compound sen-
tences with failing components. The most satisfactory three
valued semantics seems to be provided by the following:

A B ~ A AvB A&B ADB A=B

o0 H
OmHQOmMH-OMHHA
OQ0O0OHH-Hmmm
O0HOHMHHHAM
OO TQOm+
O0HH--0O0OmH
Co0oOQ00OHMTMOTH

The semantics for ~, v, & is intially plausible, but it might be
felt that a different truth-table should be used for the horse-
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shoe. (Of course, given the definition above, the horseshoe
must have the table shown. But it might be thought preferable
to take the horseshoe as primitive, and give it a different in-
terpretation.) The only plausible alternative for the horseshoe
would change its value in the last row to yield:

A B ADB
O O T

I have several reasons for opposing this alternative. In the
first place, I think a truth-functional connective that yields
a true sentence given (exclusively) failing components is more
like a predicate of sentences than it is like a conventional
connective. Such connectives are not so useful for studying
natural languages. A second reason for avoiding the alternative
interpretation is that the redefined horseshoe would have an
even poorer match with natural language conditionals than
does the horseshoe I have chosen. I regard an inference from
AD[ADB] to ADB as entirely reasonable; it is invalid for the
proposed alternative interpretation. A third reason concerns the
difference in status between failure on the one hand and truth
or falsity on the other. The failure of a sentence can in some
cases be removed by changes in the language — by, for ex-
ample, redefining a predicate. It is a suitable regulative prin-
ciple that such changes have a minimal effect on the (already)
true or false sentences. But if ADB were taken as true when
both A and B fail, a change in the values of A and B could
convert the true sentence into a false one.

If we extend the «idea» of the truth-table above to quanti-
fiers, we get:

(1) A sentence (Va)A is true iff A is true for every value of
a; it is false iff A is false for some value of a; it fails otherwise.
(2) A sentence (Ja)A is true iff A is true for some value of
a; it is false iff A is false for every value of «; it fails otherwise.

A more precise account of the semantics of L is as follows.
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Let 4 be a nonempty domain. Then a valuation of L for ¢ is
a function f such that

(i) f assigns an individual of ¥ to each individual constant
of L.

(ii) If ¢* is an n-adic predicate of L, then f assigns an ordered
pair (R, S) to ¢" where R and S are disjoint sets of ordered
n-tuples of individuals of ¥.

(iii}) If ¢"(a1,...,0n) is an atomic sentence of L and f(g") =
(R, S}, then this sentence has value T for f iff {f(a),...,f(an)) € R.
It has value F for f iff (f(a),...,f(ax)) € S. It has value O for f
otherwise.

(iv) If A is a sentence of 1, then f(~A) = T iff {(A) = F.
f(~A) = Fiff {(A) = T. {(~A) = O iff f(4) = O.

(v) If A, B are sentences of 1, then f(Av B) = T iff either
f(A) = T or {(B) = T. f(Av B) = Fiff {(A) = {(B) = F. {(A v B)
= O otherwise.

(vi) Let (Va)A be a sentence of 1. Let f be the first individual
constant in alphabetic order not occurring in A. Let A’ be
obtained from A by replacing all free occurrences of o in A
by B. Then f[(Va)A] = T iff f(A) = T for every valuation f
of L for & that agrees with f on the individual constants and
predicates of 1 with the possible exception of f. (Such an f is
a p-variant of f) f[(Va)A] = F iff there is some B-variant f' of
f such that f'(A') = F. f[(Va)A] = O otherwise.

The semantics for L is the same as that for the strong three-
valued logic presented by Kleene in [5]. However, Kleene
applied this logic to other situations than vagueness, and allow-
ed some sentences with the third value to simultaneously be
either true or false. For this reason, he insisted that the third
value should not be regarded as on a par with truth and fal-
sity. Stephan Koérner has adopted Kleene's logic for dealing
with vague predicates — he calls them inexact predicates.
(See, for example, chapter III of [6].) He was retained Kleene's
insistence that failure not be counted as a genuine third value.
Koérner's reason for this is that a vague predicate is always
subject to a redefinition which eliminates borderline cases.
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Such redefinition is sometimes required for scientific or legal
purposes. Since true and false sentences have permanent
values, and failing sentences can become true or false, we
should regard failure as not on a par with truth and falsity.
(Korner seems to regard a two valued language as an ideal
which we attempt to realize.)

Kleene's reasons for regarding the third value as not quite
a genuine value do not apply to the case of sentences which
fail because of vagueness (or to any instance of a significant
sentence that is neither true nor false). Korner seems to me
to make too strong a separation between failure and the two
classical values. At any given time, a natural language cont-
ains (or permits) failing sentences. These sentences are neither
true nor false. The three-valued semantics corresponds to a
natural language at a given time. The changed situation at a
later time can be represented by a different valuation. It is
unrealistic to think that all vagueness can be eliminated; to do
so would probably make a language unusable for conver-
sational purposes. And vagueness is not the only cause of sent-
ence failure — some sentences with empty singular terms do
fail. For these other sentences, failure is not removable at a
later date. Finally, even true and false sentences are liable
to being reevaluated due to changes in the language, though
this is much rarer than for failing sentences. Two examples are
the following:

(1) Whales are fish.
(2) The Earth is a planet.

So three valued L can be used to represent a natural language
at a given time. None of the three values can be eliminated.

3. THE LOGICALLY DISTINGUISHED ITEMS OF 1. One of
the most striking features of 1 is that it contains no logically
true sentences. Since every atomic sentence is subject to fail-
ure, we cannot construct a sentence that is true for all valua-
tions of L. However, the importance of logically true sentences
has been overrated in modern logic. These sentences are im-
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portant largely because they can be used to present what
Church has called the leading principles of valid inferences.
(See, for example, Exercise 15.9, pp. 104-105, [2].) Since there
are no logical truths in 1, we simply need another way to focus
on valid inferences.

An inference is a human act (or activity). Although senten-
ces can be used to perform an inference, these sentences do
not constitute the inference. I will say that a sequence of
n + 1 sentences (n=0) is an inference sequence, and I will
write such a sequence in this way: Aj,...,An/ B. The slant line
separates the premisses of the inference sequence from its con-
clusion. Logic does not study human acts, but the logician is
properly concerned with inference sequences. Logic uncovers
(discovers) norms that can be used to evaluate (some) human
acts.

An inference sequence Ayj,...,An/ B is valid iff every valua-
tion which makes all of the premisses true also makes the con-
clusion true. A set of sentences X logically implies a sentence
B, and B is a logical consequence of X (in symbols: X |+~ B)
iff every valuation which makes all the members of X true
also makes B true. So Aj,...,A./ B is valid iff { A1,...,An} 1~ B.

Since 1 contains no logical truths, there are no valid infer-
ence sequences with zero premisses. However, the following
present the forms of valid inference sequences of 1.

(1) A/AvB (14 A>B, ~B/ ~A

(2) B/AvB (15) ASB/~B> ~A

@3) AXB/A (16) ~B> ~A/A>B

4 A&B/B (1) A B> C/A>B>C
(5) A B/A&B (18) ASDBSC/A&B>C
6) A/ ~~ A (19) (Vu}A/S;A| Here § is any
(7) ~~A/A individual constant. The nota-
@ A ~A/B tion for substitution is from [2].
(9) ~A AvB/B It indicates the substitution of B

(10) ~[A&B]/~Av ~B  for all free occurrences of a in
(11) ~[AvB]/~A& ~B A

(12) A/Bo A (20) S3A| /(F)A

(13) A, A > B/B
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The differences between L and a two valued language are
minimized if we consider only valid inference sequences. To
get a clearer picture of the differences, it is helpful to consider
more complex inferences. I will consider deductions carried
out by means of tree proofs. In such a proof, the sentences at
the tops of branches are the hypotheses. An inference figure
is that part of a tree proof constituted by the premisses of a
particular inference, the line separating the premisses from
the conclusion, and the conclusion. If a kind of inference figure
is elementary, all the premisses of such a figure must be sen-
tences occurring on the line. In a nonelementary inference
figure, some of the premisses may consist of tree (sub)proofs.
In nonelementary inference figures, it is common to have
some of the hypotheses of the tree-proof premisses cancelled,
so they no longer count as hypotheses of the main proof.
(A more elaborate explanation of such proofs is found in [3].)

An inference figure is valid if it is truth preserving. There
is a valid (elementary) inference figure corresponding to every
valid inference sequence. In addition, the following are wvalid
inference figures.

v Elimination [A] [B] This is a nonelementary infer-
AvB C C ence figure. The bracketed ex-
~ ¢  pressions are hypotheses in

(two) tree proofs leading to the
occurrences of C. Occurrences
of the bracketed hypotheses are
cancelled by this inference fi-

gure.

V Introduction A Here § is an individual constant
(Vo)sPA| that occurs in A but does not

“ occur in a wf part (Va)B of A.

And § does not occur in any

uncancelled hypothesis of a

subproof which concludes on

the line of this inference figure.
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3 Elimination [S3A|] Here B is an individual
constant that does not oc-

(39A B cur in A, B or in any uncan-

B celled hypothesis other

than $3A| in the subproof

whose conclusion is B.

Examples of inference figures valid for a two-valued langu-
age but not for v are the following.

~ Introduction [A] ~ Elimination [~ A]
~A A
~A A
S Introduction [A]
B
A>B

In 1, being contradictory (leading to a contradiction) is no
guarantee of falsity. Similarly, if we can reason from A to B,
the sentence A D B may still fail. In 1, the horseshoe is not a
very conditional connective.

4. A FORMAL SYSTEM. The formal system r is a natural
deduction system using tree proofs. The rules of inference are
the following:

v Introduction A B v Elimination [4] [B]
AvB AvVB AvB C C
C
~ ~ Introduction A ~ ~ Elimination ~~A
Contradiction A ~A

Elimination B
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V Introduction A The restrictions on this rule
(Ve)$BA| are in § 3.

V Elimination (Va)A B is a constant.
SA|

3 Elimination [S5A 11

(Iw)A B The restrictions on
B this rule are in § 3.

~v Eimination ~[Av B] ~[A v B]

~A ~B
~v Introduction ~A ~B
~[A v B]

~ V¥V Introduction ~$gA| B i
is a

~(Va)A constant

~ Y Elimination ~(Va)A
(Ja)~A

Vv Interchange (Vo) [A v B]a does not
Av (Va)B occur free in A.

If there is a proof of B from uncancelled hypotheses Aj,...,Axs,
then Aj,...,An/B is a theorem of r. I will write either  Aj,...,
An/Bor Aj,...,An — B to indicate that Ay,..., A/ B is a theorem
of r. The system F is clearly sound with respect to the semantics
of L. We can also show that it is complete for the valid infer-
ence sequences of 1. To do this, we can establish the following
results. (Proofs are omitted, because they are straightforward.)

(4.1) If Aj,...,As/ B is an inference sequence of L, then  Aj,...,
An/B iff - A1 &...& A,/ B.
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(4.2) If A, B are sentences of 1, then ~[AvB]-~A& ~B,
~A& ~Br~[AVvB], AVvBr~[~A& ~B],
and ~[~A & ~B]-AvVB.

(4.3) If A, B are sentences of 1, then ~[A&B] ~Av ~B,~Av
~Br~[A&B], A&Br ~[~Av~B], and ~[~AvV ~B|r
A&B.

(4.4) If A, B, C are sentences of 1, then Av[B&C]—[AVB] &
[AvC],[AvB]&[AVC]AV[B&C], ~[AV[B&C]]- ~[[AV
Bl|&[AvC(C]], and ~[[AVvB]&[AVvC]]+~[AV[B&C]].

(4.5) If A, B, C are sentences of 1, then A& [BVvC]—[A&B]v
[A&C], [A&B]v[A&C]|-FA&[BVC], ~[A&[BVC(C]]+~][[A
&B]v[A&C]], and ~[[A&B]v[A&C]]+~[A&[BVC].

(4.6) Let B be a sentence obtained from a sentence A by re-
placing zero or more occurrences of a wff M in A by a wff N.
Let ai,...,an be the distinct individual variables occurring free
in either M or N. Let f4,...,8» be the first n individual constants
in alphabetic order not occurring in A, B, M, or N.

Let M', N' be §

f.!i vea U.anr Sﬂ.l ves a"N|.

6 -Bﬂ Bl---ﬁn

Let M'N', N-M', ~M'~N', and ~N' ~M'. THEN A
B, B-A, ~Ar~ ~B, and ~B ~A.

It follows from (4.2) - (4.6) that every quantifier-free sentence
A can be put into disjunctive normal form A’, and that A A’
and A'+ A. (For the purpose of obtaining the disjunctive nor-
mal form, the connective ‘&’ is regarded as a genuine expres-
sion rather than a definitional abbreviation. In disjunctive nor-
mal form, each disjunct need not contain every atomic com-
ponent or its negation.) This, together with (4.1) and (4.7), esta-
blishes that r contains all valid quantifier-free inference se-
quences.
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(4.7) Let B be a sentence without quantifiers. Let Aj,...,An be
distinct atomic sentence, among which are all the atomic com-
ponents of B. Let vy,...,va be a sequence of the values T, F, O
such that B has value T or F for these values of Aj,...,An. Let
Ci,...,Cn be constructed: (a) if vi = T, then Ciis Ay (b) if vi =
F, then Ciis ~A;; (¢) if vi = O, then C; is the null formula.
THEN if B has value T for the values vi,...,va of Aj,...,As then
Cy,...,Cn+B. If B has value F for this assignment, then Cj,...,Cn
— ~B,

To show that r is complete with respect to the valid infer-
ence sequences of L, we can establish that r is equivalent to
system PP of Wang [7]. In Wang's system, a sentence A— B
is best understood as a one-premiss inference sequence. The
following results, together with the preceding ones, are suffi-
cient to establish that r is equivalent to PP, and hence com-
plete.

(48) If (Jo)A is a sentence of L, then (Ja)~Ar ~(Va)4,
~(Va)Ar(Ja)~A, ~(Ja)~Ar- (Va)A, and (Vo)A ~(Ja)
~A.

(4.9) If (Va)A is a sentence of 1, then (Vo)~Ar ~(Ja)A and
~(Ja)Ar(Va)~A.

(4.10) If (Vo) [Av B] is a sentence of L in which a does not
occur free in A, then (Vo) [AvB]~Av(Va)B, Av(Va)Br-
(V&) [AVvB], ~(Va)[AVB]-~[Av(Va)B], and ~[AV
(Va) Bl ~(Va) [AVB].

(4.11) If (Jo)[AVvB] is a sentence of L in which a does
not occur free in A, then (Ja) [AvB]-Av(3a)B, Av(3a)B
—(3a)[AVvB], ~(3a)[AVB]+~[Av(Ja)B], and ~[AvV
(Fe)B]=~(30a) [AVB]

These results show that every sentence A can be put into
prenex normal form A’, and that A~ A" and A'+ A. So the
completeness theorem described by Wang in [7] also applies
tor.
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5. STRONG COMPLETENESS. The system F and the language
L don't lend themselves to a strong completeness theorem like
Henkin's. It is possible to obtain such a result if L is enlarged
by adding the monadic connective v. This yields the language
L. The truth-table for 7 is: A nA

T F
F F
O T

In the language L*, there are logically true sentences. For
example, sentences having these forms are logically true: A v
~Avna, ~mA.

The system r* is obtained from r by adding these rules:

~n Introduction A ~A ~mn Introduction mnA

yl~ ~MA ~mA
~vn Introduction [A] nvn Introduction n[A v B]
~A nA v nB

~AvnA

1V Elimination n(Va)A
(Jo)nA

I will use the symbol I+ to indicate implication in v+, If X
+
is a set of sentences of .+ and B is a sentence of L+, then B is

deducible from X by means of v* (X B) iff there are sentences

+
Ai,...,An which are elements of X such that Ai,...,As/B is a
theorem of r*. We can adapt the proof of Henkin's comple-
teness theorem for standard systems (as found, say, in [2]) to
give the following result about r+.

(5.1) Let X be a set of sentences of L* and let A be a sentence

of .t such that Xl— A. Then X A.
+ +
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Since L is contained in L*, we can clearly deduce all the
consequences of a set of sentences of L. So L is compact — i.e.
if X1~ A, then there is a finite set YC X such that Yl A.

John T. Kearns
State University of New York at Buffalo
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