PHYSICAL THEORIES AND POSSIBLE WORLDS

M. J. CRESSWELL

1 Introduction

Formalized physical theories are not, as a rule, stated in inten-
sional languages. Yet in talking about them we often treat
them as if they were. We say for instance: 'Consider what
would happen if instead of p's being true g were. In such a
case r would be likely." If we say this sort of thing p, g and r
appear to stand for the meanings of sentences of the theory,
but meanings in some intensional sense.

Now it is very easy to extend the syntax of the formal
theory by adding all sorts of intensional operators, e.g. a mo-
dal operator; and it is possible to extend the semantics by
adding a set of possible worlds and evaluating the modal for-
mulae in the usual way [6, p. 146f]. But this procedure is open
to the criticism that we are extending the theory by adding
something which is not already there. In particular the criti-
cis mwill be that the possible worlds required by the semantics
seem to have no connection with the intended interpretations
of the original physical theory.

The aim of this paper will be to shew how a set of possible
worlds is already implicit in the intended interpretations of a
formally presented physical theory and that these interpreta-
tions induce, in a comparatively direct way, an intensional
semantics which corresponds to the original one,

We have in mind a first-order language £ in which is stated
a theory I which is intended as a total physical theory in the
sense that if it should turn out that there can be distinct pos-
sible situations which models of the theory cannot distinguish
between, then the theory will be held to be inadequate. For
definiteness we shall assume that the primitive logical symbols
of L are ~ (negation), V (disjunction) and the universal quan-



496 M. J. CRESSWELL

tifier; and for simplicity we assume that . contains no indivi-
dual constants or function symbols. (These can always be li-
minated from a first-order theory by the theory of descrip-
tions.)

We assume that the theory makes a distinction between
those sentences which are intended to stipulate the meanings
of the predicates and those which are intended to make an
empirical claim. (On ways of making this distinction vide [10],
[11] and [18].) Of course philosophers who, like Quine, [12],
reject the analytic/synthetic distinction will want to say that
the first set should contain only the theorems of first-order
logic. There is no reason why we should not allow this as a
limiting case, though it is a bit like saying that 'pigs don't fly’
would be false if we gave the name 'pigs’ to birds.

2 Semantics of &

Let E(Y) be a consistent set of sentences (i.e. closed formulae)
of .L and let L(Y) be a subset of E(YJ). The intuitive idea is that
E(.[L) is the set of axioms of the physical theory and L(.L) con-
tains those members of E(Y) which are the analytic axioms of
< (cf. [10, pp. 88-90]). Since this paper is not concerned with
axiomatizability we require no more than that E(Y) be consis-
tent. It would be intuitively desirable, though, that both it and
L(Y) be effectively specifiable. The theorems of I will be all
the deductive consequences of E(J) and the logical (or per-
haps, to avoid confusion, the analytic) theorems of 9 will be
the consequences of L(4).

An interpretation or model M for . is an ordered pair (D, h)
in which D is a set (domain) of ‘individuals’ and h is a value
assignment to the predicates such that:

2.1 Where n is of degree k, i.e. where n forms a wff when
followed by k individual variables, then h(n) is a set of k-tuples
of D.

Associated with M will be a set N of assignments to the in-
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dividual variables. Where x is an individual variable and
v € N then v(x) € D.

2.2 Where v and p are both in N and v and p coincide every
except (possibly) on x, then v and p are called x-alternatives.

M induces an assignment to all wff, which can be defined
as follows (where M = o can be read as ‘o is true in M for
v

assignment v’ and we write 'M = « to mean ‘a is not true in
v
M for assignment v'):

2.3 Suppose ais a(xs ..., X»). Then
M Ir:va iff (v(x) ...v(x)) € h(n)]

24 ME ~aiff M= «
v v
2.5 Mt:vuVﬁ iff M= o orME §
v v
26 M (x)a iff Mk a for every x-alternative p of v
v K

Where « is a sentence then reference to v is unnecessary
and we may just write Mi=a. In such a case M is a model for
o or a is true in M. A model of L(Y) is called a possibility
model of I and a model of E(Y) is called an actuality model
sometimes just a model) of 9. Obviously all actuality models
are possibility models but the converse does not hold in
general.

3 Possible worlds

In what follows we shall be considering only those interpre-
tations in which D is the intended domain of I. This allows
us to refer to a particular interpretation by citing only its
value-assignment. D may, e.g, be the set of all space-time
points but its particular nature is immaterial to what we are
about to prove. We assume that . has only finitely many pre-
dicates, each of some specified degree. (This finiteness restric-
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tion is not necessary for the theorem we are going to prove,
but it is probably a desirable constraint to place upon the lan-
guage of a physical theory.) We shall assume that these predi-
cates are indexed by an initial segment of the natural num-
bers. Thus we can speak of
(ﬂl, e J'Eu)'

Where h is a value-assignment (based on the intended do-

main D of L) and (ay, ..., ax) is an n-tuple then we say

3.1 (a, ..., a») is the n-tuple delermined by h iff for every i
suchthatl < i < n, @ = h(m).
| = | h(m).

Obviously not only does every h determine an n-tuple but
every appropriate n-tuple determines an h. (where an 'appro-
priate’ n-tuple is one whose i-th member is a set of k-tuples
where Kk is the degree of ).

We note here that although (ai, ..., a») represents a value-
assignment to L it does not contain any explicit reference to
L. In fact it is made up by set-theoretical construction out of
D. It is this fact which makes it ontologically important. For
we recall that I is supposed to be a total theory in that the
intended possibility models of & are supposed to represent all
the ways the world could be (whether or not I is true). This
means that where (D, h) is an intended possibility model of
9, the n-tuple determined by h in the described in 3.1 can be
regarded as a ‘possible world'.

3.2 Where (a, ..., ax) is determined by h according to 3.1. and
(D, h) is a possibility model of I then (aj, ..., a») is called the
world determined by h and written wy. '

The idea that possible worlds can be thought of as models
is not new (cf, e.g., [7, p. 2] and [3 pp. 330-335] and many
others). What is interesting about the present case is that we
have not used any of the 'linguistic’ elements in the model
but only those parts which can be made up from the domain
of the intended interpretation. This means that although our
notion of a possible world is related to & in a crucial way yet
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the possible worlds are not strictly, linguistic entities. A se-
cond fact of course is that our insistence that & be a total
physical theory gives a metaphysical importance to the possi-
ble worlds constructed out of its intended possibility models.

It may be that, as Przelecki notes on page 30 of [10], we want
to restrict intended models even further by defining some pre-
dicates by ostensive means. By hypothesis such restrictions
cannot be captured by sentences of £ and so they do not affect
most of what we say. (though they do have certain consequen-
ces for modal extensions of ).

4 Intensional interpretations

Given a theory 4 and the intended domain D of its models,
we define the canonical intensional interpretation 1 based on
g as follows:

I is an ordered triple (W,D,V) in which W is the set of all
wi (vide 3.2) for which h is a possibility model of Y, (i.e. (D,h)
is a model of L(Y)) D is the intended domain of <, and V is a
value assignment such that:

4.1 For each k-place predicate n of ., V(n) (frequently written
w ) is a function from D* into ¢ W such that for any uy,|..., u,
JT

€ Dandwi € W,
wi € o (uy ..., ux) iff (w, ..., ur) € h(n)
7T

This means that a predicate will be true of a k-tuple of indi-
viduals from D in a world corresponding to h iff that predicate
was true of that k-tuple in (D,h). Since £ and D are the same
in the intensional model as in the original models so is the set
N of assignments to the variables. We shew how to define an
assignment VV (for every veN) to every wif o of L.

4.2 For atomic formulae

VV (n(xl, 855 xn)) = w [v(xlj, ceer v(xu))
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43V (~o) = W—V 0
44V @VB) = V @ UV ()

4.5 For any w € W,'w €.V ((x)a) iff for every x-alternative
v

nofvw € V (o).
u

As with first-order interpretations, if « is closed then V
v
(@) = V (o) for any v and p in N, and so we may speak of

V(a). (Cf. [5, p. 87]). We can now prove a theorem of equival-
ence between I and the original models.

Tueorem 1 For any assignment h in the intended possibility
models of 4, and any v € N and wif u

(Dh) = o iff w, & V (@

The proof is by induction on the construction of a.
(1) Suppose a is (X1,...,Xn)

Then (D,h) |=\J a iff (v(x),..., v(x)) € h(x);
ie. (by 4.1) iff w, € mn[v(xl),...,v(xﬂ]);

ie. iff woE V(n(x],...,x")}

w, € VV[(x)a).

(2) Suppose the induction holds for a and . Then

{D,h) t:v‘~a' iff (D,h) i=\r o
iff wkl & Vv(a)
iff w, e Vv[~a}

and
(D,h) &= oV} iff either (D,h) = or (D,h) = P
v v v
iff either w, & V (o) or w, € V )
o it v
iff w e V (VP
h v



PHYSICAL THEORIES AND POSSIBLE WORLDS 501

(3) Suppose the induction holds for a (for all v| & |N). Then
(D,h) E (x)a iff (D,h) = a, for every x-alternative p of v
v u

i.e. iff w, € V (o) for every x-alternative p of v. ie. iff
u

w € Vv((x]u.

This induction proves the theorem.

CoroLrary 1 If o is a sentence then {D,h) = a iff w, € V(a).

CoroLrLary 2 If h is an actuality model of £ then for any de-
ductive consequence o of E(J[), w, €V (a) for every veN.
* v

5 Possible worlds and atomic facts

Some views of possible worlds (e.g. those found in [19] and
in [2]) would suggest that a world can be characterized by the
‘atomic facts’ true in it. In our present framework an atomic
fact could be given by associating with each u€D a sequence
f (called an atomic sequence) of 'truth values’, say 1 and 0, in
such a way that the i-th member of f(u) is to be 1 if u satisfies
the i-th predicate and 0 if it does not. Given a complete set of
these sequences, one for each ueD we could reconstruct the
world

(a;, p— an)

which represents this set by letting (for each u € D) u|e
a; iff the i-th member of f(u) is 1. Of couse some of these com-
plete sets of atomic facts would represent interpretations which
are not possibility models of 9, and these would not deter-
mine possible worlds.

In certain cases we can give an even simpler characteriza-
tion of atomic facts; a characterization which lay behind the
proposals in [4, p. 6] and [5, p. 38] to regard a possible world
as a subset of a set B of ‘'basic particular situations’. By
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way of illustration B was postulated as the set of all space-
time points and the illustration time points and the illustra-
tion assumed that any set of space-time points determines
a possible world, in the sense that it is to be thought of as
the set of those points which are occupied. It is our business
in this section to take a look at what kind of physical theory
would make sensible such an illustration. In particular we
want to consider the conditions under which any subset of
the intended domain of the theory determines a possible
world.

We suppose that . contains a one-place predicate n, (We
are putting it first in the enumeration of predicates to simplify
matters) m corresponds to the 'is occupied’ predicate of the il-
lustration. If there is no single predicate in . which does the
trick but there is a complex wif a with only one free variable,
say x, which does then we simply add an extra predicate
to L and the axiom (x) (@ = n(x)) to L(Y). We then assume
that it is the extended theory we have to deal with and revise
everything accordingly.

All this means that any world wx in the intensional model
of I will be an n-tuple {(az ..., @) in which @i = h(m) and in
which, in particular, h(n1) € D. A subset of D will determine
a possible world if the following holds:

5.1 If (ai, ..., ax) and (by, ..., ba) € W and if a1 = by, then

ai = biforalll € i <n

‘What this condition comes to is that differences in worlds
are always reflected by differences in their first members.
This means that ai determines a unique world; and since a; is
a subset of D this means that every subset of D determines a
member of W. In fact there is no reason why we cannot sim-
ply say that a; is a possible world. Notice that J may contain
other predicates than m and may assert all sorts of relations
between them.

It may of course happen that not all possibility models of .
satisfy 5.1 but that enough of them do, in the sense that for
any w, w W, where

w = (ai,...,an) and w' = (b,...,bx)
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5.2 If a1 = bs then for a any wif a of L and any assignment
veEN,w € V (0 iff w = Vv(a).
v

What this means is that although w and w’ may be distinct
worlds in the model yet there is no formula which will distin-
guish between them in the sense of being true in one but false
in the other. In such a case we can contract the model, either
by leaving only one 'representative’ of all the worlds which
are equivalent in the evaluation of formulae, or by redefining
worlds in the new model as equivalence classes of worlds in
the old. In the contracted model worlds will correspond with
subsets of D as before.

6 Intensional extensions of .

At this point one might wonder what has been gained by the
elaborate construction of an intensional model for a physical
theory formulated in an extensional language. If we choose
to leave the language as it is the answer is that nothing has
been gained. But, as our opening remarks indicated, one of
the reasons for wanting an intensional semantics was so that
the theory could be embedded in a richer language. One wants
to be able to say, granted that & is the correct total theory of
the physical world, how our ordinary talk, in our ordinary
intensional language (of which . is only a small part) can be
construed as talking about the same physical world which I
reveals to us. The kinds of richer language I have in mind are
those developed in detail in [5] in which it is shewn how, on
the basis of a set B of 'basic particular situations’ (B could be
D if & were a theory of the kind satisfying 5.1) one can build
up semantics for languages which are argued to be rich enough
to model English.

The details of this construction, and the evidence for the
claim that such a formal language can model English, are too
long to be described here; we must refer the reader to [5]. We
shall, however, mention at least two ways in which £ can be
extended. We could add new functors (we shall look at a
moment at the necessity functor) and new predicates; and en-
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tities of higher syntactic categories could be added in the man-
ner of [5 pp. 72 and 85]. But, more radically, we could extend
the domain of the model. If we are to keep to the ontological
restriction which is the main theme of this essay we should
want the extended domain D* to be made up from set-theore-
tical construction out of D. Some hints about what sorts of
things everyday objects would then be are given on pp. 94-98
of [5]. If the domain is enlarged the quantifiers of L would
have to become restricted quantifiers ranging only over D.
This could be done either directly or with a predicate which
was true only of ultimate entities (i.e. members of D). We could
then use an unrestricted quantifier provided D* was not too
big.

What is important about these intensional extensions of .
is that on the one hand they are all based on the framework
required by the original scientific theory I i.e. they do not go
beyond envisaging the world in ways which 9 allows; yet on
the other hand they do not require the translation of the or-
dinary language into the language of <. The expressive power
of a language in which meanings can be defined in terms of
things obtained out of the intensional semantics of & may be
well beyond that of I itself. Historically it seems to me to
have been a mistake of the logical atomists, and those who
followed in their footsteps, to think that once having found the
correct total physical theory, and having put it into a first-
order language; then any respectable talk about the world
ought to be translatable into the language of that theory. The
present paper has been trying to shew how to have it both
ways; i.e. how to have our ordinary language without having
to give up any of the claims we might want to make for the
adequacy of a first-order physical theory.

7 Modal logic

By way of illustrating an extension of . which makes essen-
tial use of its intensional semantics I shall consider the lan-
guage [+ obtained from . by the addition of an S5 type of
necessity operator. L is a one-place propositional functor. (I.e.
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L+ is L with the extra formation rule that if « is a wff so is
Lo.) This means that the value of L in an intensional inter-
pretation is an operation on sets of worlds. In fact in any
intensional model I, V(L) is the function in o such that:

7.1 Forany w EWanda €W, w € o) iff a-="W. (In-

stead of V(L) we sometimes write ar.)

Tueorem2 If « € L(JL) and 1 is the canonical intensional mo-
del based on (9) (in the sense of section 4) then w € V(La)
for any w €W,

The proof is immediate, for we know that any w is wx for
some (D,h) and that (D,h) =« iff wi & V(a). Further we know
that (D,h) is a possibility model for 9 and so if o€ L(d) then
(D,h) E=a for every such (D,h). Thus w. € V(a) for every
wi € W and so by 7.1, w- & V(L ) for any w . W.QED.

It is convenient to refer to {La : « & L(L)} as L(.[)".}.

Theorem 2 is not surprising but it means that in £* we can
express the fact that the members of L(2J) are necessary truths.

We must now look at the problem of characterizing the
class of wff which are true in all members of W. Obviously
this will include all the members of L(.L) and L(L)*). Also it will
include all instances of valid S5 formulae (with the Barcan for-
mula). The ordinary rules of quantification will be validity-
preserving, as will necessitation. What we need to know is
whether it will be the least set satisfying these conditions. Call
this set the S5-closure of .L and let it be denoted by .L*. From
standard results in modal predicate logic [6] we know that any
consistent set of wff is true in some world in the model con-
structed by letting worlds be certain maximal consistent sets
of wff. We can call a model like this a Henkin model. If a is
not in the S5-closure of T then L(L)* U { ~a} will be consistent
and so a will be false in a Henkin model in which L(9)" is true.
The nature of a Henkin model will also ensure that its worlds
will correspond with the worlds of the canonical intensional
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model based on (Y), and this enables us to conclude that a wff
a is true in all worlds of the canonical intensional model iff it
is in the S5-closure of 9.

The intended interpretation of .L* has the same domain as
those of L. Further this domain has been constant in all worlds.
This is why the Barcan formula is valid in the canonical inten-
sional model. But of course we spoke of extending the domain
in various ways. To take a rather simple case suppose that D
is the set of all space-time points and suppose that we think
of a physical object as a function from a world to the set of
space-time points the object occupies in that world [5, pp. 94-
96]. Then we must extend our domain to incude such func-
tions. We suppose further that a physical object exists only in
those worlds in which the set of space-time points it occupies
is not empty. We can then associate with each world the set
of things which exist in that world; and by means of these
differing domains we can falsify the Barcan formula [pp. 170-
183]. Similar remarks apply to the introduction of intensional
objects and contingent identity. (Vide [6, p. 197f], [13, pp. 152-
155] and [5, p. 691])

8 Essentialism

It has been acknowledged that the main motive for the inten-
sional model of < is that we want to be able to embed it in an
intensional language without having to assume any more ba-
sic entities that </ does. This means more that the somewhat
minimal extension which the addition of a single modal opera-
tor has produced. Nevertheless there are some philosophically
important issues which can be raised, even at this stage. Given
the semantics we have for the modal operator then the intended
model for the modal extension J* of & is going to be unique
in the sense that the value of any wiff a of L* in any world in
the canonical intensional model based on I is fixed. This being
so we can ask whether a theory I can impose any interesting
modal features on its extension J*; e.g. can a theory impose
or prevent essentialism.

Part of the problem here is how to characterize essentialism.
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This problem is discussed by Terence Parsons in [9] (cf. also
[18]) who suggests that essentialism should be regarded as the
doctrine that some things have necessarily a property which
other things do not have necessarily. If we restrict this to
simple one-place predicates this means that for some n the
following holds;

8.1 (Ix)Lax .- (Ix)~Lnx

(Parsons has a more complicated formulation because he wants
to consider predicates of higher degree.)

The fact that we need an atomic predicate is not important
for if we have a theory in which a complex wff a (with only x
free) is an essentialist formula we can simply extend the the
language by adding an extra predicate and add to L(9) the
formula

82 (x) (@ = (x))

When restricted to one-place predicates Parsons' formulation
is only trivially different from ours. What Parsons shews is
that an essentialist sentence is false in what he calls a maxim-
al model. He has also shewn that there is a maximal model
for any consistent set of closed non-modal formulae (e.g. the
models of L(YJ). This means that no physical theory entails
essentialism with respect to the predicates of the theory. (Pro-
vided of course that W consists of all models of L(9J). If we
restrict the intended models by means other than by adding
axioms it is not clear that we can still prevent essentialism.
Suppose, e.g., that there is some u such that, in every intended
model, h(n) = {u}. No sentence of the original first-order
theory could capture this but it would entail that if we made
W out of only intended possibility assignments we would have
(3x)Lax .: (3 x) ~Lxx as true.)

But of course the point of an intensional model is to allow
us to extend the language, and there is nothing to prevent our
adding a new predicate y with the following semantics:

8.3 Given some u € D and some w* € W we suppose, for
everyw € W
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1) w € o (u)

(2) For any u' other than u
(a) w* €. o (U)

(0) Hw + we w. ¢ o @)

This gives us the truth of an even stronger formula that any
of Parsons’ for in w* the following will be true:

8.4 (Ix)Lyx . (Ix) (yx . ~yx)

L.e. there is a predicate which one thing has necessarily and
which another thing has contingently.

What this seems to mean is that even if essentialism is not
‘out there’ in the world there is nothing to prevent us from in-
troducing it if we want to. As noted in [5, p. 84n] the really in-
teresting question is whether and how the predicates of ordin-
ary language introduce it. The believer in 'scientific realism’
need not fear essentialism, for it does not affect any of his
claims for the adequacy of his theory as a complete frame-
work for a physical description of the world; indeed our dis-
cussion has proceeded on the assumption that it is a complete
framework, otherwise models of L(<) would not exhaust the
possible worlds. Essentialism comes from the way we talk
about the world; it comes from the language we erect upon
the language of the physical theory. All that .’ does is provide
the entities we need for the semantics of that language.

9 Other extensions

We have defined the semantics of L in terms of truth in all
possible worlds. One can also define an empirical necessity
operator E in terms of truth in all worlds which correspond to
the actuality models of I, (i.e. the models of E(d)). This theory
will contain L(J) and E(Y) together with all the principles of
S5 (for both operators) except Ep o p (that would fail in all
worlds which are not actuality models of 9). In this theory L-
necessitation will sometimes fail (for the axioms of < are not
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all in L([L).) though E-nesessitation will always hold. This
will make explicit the distinction between those sentences
which, according to .’, are empirically necessary and those
which are logically necessary.

What is perhaps a more interesting extension of .L would
involve the addition of a counterfactual condional operator >
in the manner of [14] and [15]. @ > § is true in a world w iff
in the nearest world to w in which a is true § is also. (More
sophisticated versions deny the assumption that there is a uni-
que nearest world, e.g. [8] and [1].) In the development of these
theories the ‘choice function’ which picks out the nearest
world in which the antecedent is true, is specified by the model.
It must satisfy certain minimal conditions but mostly it is left
quite undetermined. This procedure is perfectly acceptable
when studying conterfactual logics, for it amounts to deciding
to investigate those principles which are true no matter what
choice function we use. However the canonical intensional
model based on I is supposed to represent how the physical
world works and has a structure imposed on it by the nature
of IJ. If we are to adopt the Stalnaker/Thomason theory of the
conditional as a viable theory of counterfactuals for the phy-
sical world then what we need to look out for are features of
the canonical intensional model based on G which can be used
to define the choice function required in a natural kind of way.
I have no suggestions to offer as to how this might be done
but am concerned merely to stress that the existence of canoni-
cal intensional models for physical theories, models whose
nature is closely related to the structure of those theories,
could provide a framework in which counterfactuals involving
the physical world can be given a non-arbitrary semantics.

10 Higher-order languages

It might be held that we have unduly restricted ourselves in
considering only theories stated in first-order languages. Cer-
tainly many theories have been envisaged as stated most na-
turally in lanuages of higher order. Indeed the position of the
logical atomists was not cited correctly above since they
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tended to have in mind the theory of types of Principia Mathe-
matica as their preferred language. One way of dealing with
such a comment would be to indicate how what we have said
could be adapted to deal with models for higher-order lan-
guages. There is nothing in principle impossible about such
extensions but their details would be rather complex. The al-
ternative, and, I think, the preferable approach, is to assume
that these theories are reformalized in the language of a first-
order set theory.

If I includes the axioms of set theory (presumably as logical
axioms) then its intended domain will have to be rather bigger
than the domains we have been considering. In fact D will
have to be so big that the possibility of extending it by set-
theoretical construction will be ruled out; for the extra mem-
bers are in D already. This means that the only extensions
which we need to consider are those which consist in adding
new symbols to L and giving semantic rules for them. The
domain of such a theory will be the universe class which is
based on a set B of 'individuals’. (For even if nothing but sets
and classes are needed for mathematica we almost certainly
need individuals for the intended domains of physical theories.)
Some predicates might be assigned always subsets of B. If the
m of section 5 is such a predicate and if 5.1 holds of I then
we can define a possible world as a subset of B.

It may be of course that the idea that a total physical theory
is possible is a Utopian one. On this fundemental issue I would
not like to comment. All I want to insist is that the intensional
extensions of such a theory are in no worse position than the
original theory and that the pursuit of precision in philosophy,
so far from requiring that these extensions are somehow not
respectable, demands on the contrary that they be followed
up as fully as possible.

Victoria University of Wellington
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