ON STANDARD MODELS OF SET THEORIES

Rolf Scrock

A logical constant is one of N (‘not’), — (‘only if'), A (‘and’),
v (‘or'), « (if and only if), A (for any’), V (for some’), and
I (‘is identical with') while the membership predicate ¢ is the
only non-logical constant. Formulas are assumed to be built up
in the usual way from denumerably many individual variables
by means of the constants and parentheses (which are omitted
according to the usual conventions). On the assumptions that
each variable and constant is in fact a particular natural num-
ber and that parentheses denote the operation of forming the
finite sequence of the objects around which the parentheses
stand, it is clear that every formula is a set. The occurrence and
freedom of variables is understood in the usual way. A dummy
is an expression D which is like a sentence except in that there
is exactly one F such that, for some distinct variables xi...xa
and n-place predicate P different from I and g, F = x1P X2...Xn
occurs in D. S is the schema determined by D just when D is a
dummy and S is the set of all formulas which result from
replacing the improper atomic subformula xiP xs...x» of D with
formulas F such that no variables occuring in D besides xi
through x» occur in F. That S is the predicative schema de-
termined by D is defined in the same way, but with respect to F
in which any quantified variable v is first relativized with a
formula V wvew with w the first variable not occurring in
For D. S is a schema just when S is the schema or predicative
schema determined by some dummy. A principle is a sentence
or a schema and a class theory is a set of principles one of
which is the principle of extensionality. If T is a class theory,
then the basic principles of T are the members of T and the
axioms of T are the formulas which are either basic principles
of T or members of basic principles of T. A satisfaction relation
is any relation S for which the usual recursive clauses hold
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between functions assigning values to the variables and for-
mulas. Of course, a given function either stands in S to a given
formula or does not. Given a satisfaction relation S, Vs is the
set of all formulas F such that aSF for any a in the domain of S.
Notice that Vs can be either the set of all formulas true in some
absolute sense or the set of all formulas true in a given model.
The rule of true consequences is the inference rule which al-
lows the derivation of H from F and G when, for any satisfac-
tion relation S, H is in Vs when F and G are. A formula F is
provable in a class theory T just when there is a finite sequence
ending in F whose terms are either axioms of T or follow from
at least one earlier term by the rule of true consequences.
Since any logical law is a true consequence of any formula, no
logical axioms are needed. A set theory is a class theory in
which AwVxwex is provable (w and x the first two vari-
ables). It is assumed that the basic principles of a class theory
are effectively determinable in that they are finite in number
and either sentences nameable in the metalanguage or schemas
determined by dummies nameable in the metalanguage.

A model is a sequence M = <U,R> where U is a non-empty
set and R is a relation whose field is U. M is isomorphic with a
model M' = <U',R'> just when there is a 1-1 function f from
U onto U’ such that xRy is equivalent with f(x) R’ f(y) for any
x and y. The symbols ‘€', 'C’, and 'c’ denote the metalin-
guistice relations of membership, inclusion, and proper in-
clusion respectively. A model M = <U,R> is standard if U
is a pure set and R = =y, the membership relation within U.
M is standard complete if standard and x € y € U implies
x € U, and sirongly standard complete if standard complete
and x € y € U implies x € U. The power of M is, of course,
that of U. If all the axioms of a class theory T are satisfied in
a model M when ¢ is interpreted as R and I as the identity
relation within U, then M is a model of T. A minimal model of T
is a standard complete model M = <U,ev> of T such that,
for any standard complete model M' = <U',ep> of T, U C U".
A class theory T is embeddable in a class theory T' when, for
any model M' = <U'R'> of T, there is a U € U’ such that,
if R is R' within U, then <U,R> is a model of T which is
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standard complete if M’ is. If T' is not also embeddable in T,
then T is properly embeddable in T'.

An x is R-minimal in S just when S is a set, x = S, R is a
relation, and there is no w = S such that w R x. A founding
relation is a relation R such that there is an x R-minimal in S
for any non-empty S < the field of R. A class theory is founded
just when T has a model M = <U,R> with R a founding rela-
tion.

ZF is the set theory whose basic principles are either iden-
tical with or determined by one of the following expressions.

Extensionality: AXAY(Nz(z e x < zey)—> xly).

Foundation: Vx xP—->VxX(XPANV y(yexAAx(xly =
xP))).

Union: AxVyAz(zey oVwWwexAzew)).

Power set: ANxVyAz(zey Aw(wez—> we x)).

Infinity: Vy(Vz(zeyANVXxxezZ) ANzZ(zey —
Vwweya Ax(xew e xezvxIz)))).

Replacement: AWAXAy(wQx A Ax(xIy = wQx) — xIy)

—=>AzZVyAx(xey e VwwezAwQx)).

We assume here that w through z are the first four variables
and that P and Q are the first non-set-theoretical 1-place and
2-place predicates respectively. ZF is Zermelo-Fraenkel-Skolem
set theory. An extension of ZF is ZF or a set theory which
results from adding sentences and schemas to ZF. If T is a class
theory and s is a sentence or schema, then T + s is the theory
which results from adding s to T. T" is T with ultimate classes
and T? is T with predicative ultimate classes for a set theory T.
These are obtained from T by first relativizing any quantified
variable v in a basic principle of T which is a sentence with
the formula Vw vew (w the variable next after v). The same
is done with the dummies which determine the schemas of T.
Also, the comprehension dummy VxAy(yex <Vxyex X yP)
is added. Finally, the predicative schemas determined by the
dummies are formed in the case of T?. The same is done in the
case of T" except in that the schema determined by the com-
prehension dummy is formed instead of the predicative
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schema. The resulting basic principles make up T® and T
respectively. ZF® and ZF" are von Neumann-Bernays-Godel and
von Neumann-Morse class theory. Notice that the form of
the principle of replacement with a functional variable is
provable in ZF? and ZF" because free variables can occur in
the formulas of the predicative replacement schema. The
principle of regularity with a general variable follows in the
same way from the predicative schema of foundation.

We denote the versions among formulas of the metalinguistic
statements on the right-hand side below with those on the left-
hand side for a given class theory T.

conr T is consistent.
modr T has a standard complete model.
smodr T has a strongly standard complete model.
dmodr T has a denumerable standard complete model.
imodr T has a standard complete model of any infinite
power.
ac Every set can be well-ordered.
AC Every class can be well-ordered.
c Every set is constructible (in the sense of
Godel [4]).

The results of the present study are the following.

Theorem 1. If T is a class theory, then the following condi-
tions are equivalent:

(1) T is founded.

(2) T has a countable standard complete model.

(3) T has a standard model.

This is a generalization and strengthening of the theorems of
Cohen [1] and [2] that ZF has a standard model if it is founded
and a standard complete model if it has a standard model. The
proof differs from those of Cohen in that no ordinals are em-
ployed. (')

(') Long after this study had been completed, the author found that
Andrzej Mostowski had employed methods occasionally analogous to those
of the study to establish some related results. In «An undecidable arithme-

tical statement» (Fund-Math. 36, 1949) and in the first chapter of Con-
structible Sets With Applicaions (Amsterdam, 1969), a collection of theo-
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Theorem 2. 1If T is a set theory, then
(1) T is consistent just when T? is.
(2) T is founded just when TP is.

Theorem 2 is a strengthening and generalization of the
theorem of Novak [8], Rosser and Wang [9], Shoenfield [11],
and Doets [3] that ZF and ZF® are equiconsistent. Of course,
the proof differs from the earlier ones.

Theorem 3. If T is an extension of ZF, then conr and con;?
are provable in T, x

This theorem was asserted to hold for T = ZF in Wang [14].
The assertion was based on a proof that T" implies con r if T is
the weaker Zermelo set theory by methods somewhat different
from the present ones.

With the aid of certain devices from Montague and Vaught

[6] and Tarski and Vaught [13], Theorem 3 can be strengthened
into

Theorem 4, If T is an extension of ZF, then

(1) smodr and modr? are provable in T,

(2) If ac is an axiom to T, then dmodr and dmod:® are

provable in Tv.

(3) imodr and imod:P are provable in T* + AC.

Thus, the slight modification of allowing unrelativized quan-
tifiers in the formulas which determine instances of the schema
of comprehension results in an enormous strengthening of a
normal class theory TP.

rems related to Theorem 1 are proved via ordinals. In «Some impredica-
tive definitions in axiomatic set theory» (Fund. Math. 37, 1950) and in his
book, Mostowski gave truth criteria within versions of ZFp and ZFu for
nameable formulas an dformulas of ZF respectively by methods similar to
those used by the author to give truth criteria for formulas within Tu in
the proof of Theorems 3 and 4. Finally, in the third chapter of his book,
some results reminiscent of special cases of parts of the consequent of
Theorem 4 are established from quite different assumptions by different
methods. Since the author's results are either new or quite differently
formulated and proved than Mostowski's, it seems worthwhile to publish
them. It should also be noted that the present study was completed several
months before the appearance of Mostowski's book.
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Theorem 5. If T is a founded extension of ZF and T + ¢ is em-
beddable in T, then there are unique U and U’ such that

(1) <U,ev> is a denumerable minimal model of T in which
is true.

(2) <U',ev’> is a denumerable minimal model of T? in
which ¢ (and so AC) is true.

3) U U andso U c U'.

(4) If <U",ey»> is a standard complete model of T" then
U e the union of U' € U" and so U'c the union of
u"cu.

Since ZF + c is embeddable in ZF by reasoning with con-
structible sets as in Gédel [4], Theorem 5 is a generalization and
strengthening of the theorem of Cohen [1] and Mostowski [7]
that ZF has a minimal model if it has a standard model. Notice
that this theorem complements Theorem 2 in stating that a
normal class theory TP is in a sense stronger than T although
equiconsistent with T. More explicitly,

Theorem 6. If T is a founded extension of ZF and T + ¢ is
embeddable in T, then T and T? are properly embeddable in
T? and T" respectively.

This is a generalization and strengthening of the theorem of
Takeuti [12] that, if ZF + ¢ has a standard complete model
M = <U,ev> (the U of which Takeuti called "Cantor's Abso-
lute”), then the system consisting of the M-truths is syntactic-
ally embeddable in another theory.

Suppose now that the assumption of the effective de-
terminability of the basic principles of a class theory are
dropped. In this way, even non-recursive sets of principles
such as the set of all sentences and schemas true in some model
of ZF are class theories. It is significant that Theorem 1,
Theorem 2, the statement that the antecedent of Theorem 5
implies (1) through (3) of its consequent, and the statement
that that the antecedent of Theorem 6 implies that T is properly
embeddable in TP and T? is embeddable in T" all remain
provable by exactly the same methods.

We now turn to the proofs. It can be shown that
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Lemma 1. If R is a founding relation and G is a term (of the
metalanguage) expressing an operation, then there is a unique
function f defined on the field of R which assigns G of
{f(w) : wRx} to any x in in its domain.

This is a recursion principle for founding relations from
Montague [5] which will not be proved here. For an idea of
how the proof goes without any use of ordinal numbers, the
reader is referred to the proofs of theorems 90 and 91 of
Schock [10].

Now assume that T is a class theory. If T is founded, T has
a countable model M = <U,R> with R a founding relation by
means of the version of the Léwenheim-Skolem theorem in
which a model with a well-ordered universe is restricted to
one of its countable submodels and the axiom of choice of the
metalanguage. By letting G express the operation which con-
verts an object into itself in Lemma 1, it follows from that
lemma that there is a function f defined on U such that f(x) =
{{(w) : wRx}for any x € U. Clearly, xRy just when f(x)
{f(w) : wRy} = f(y). Also, if x € U, y € U, and f(x) = f(y), then
f(w) € f(x) just when f(w) € f(y) for w € U and so wRx just
when wRy for w € U. Hence, x = y by means of the axiom of
extensionality of T. That is, if U' = the range of f and M' =
<U',€p>, then f is an isomorphism between M and M'. More-
over, if x ey = {f(w) :wRz} € U', then x = f(w) for some
w € U and x € U'. Thus, M’ is a countable standard complete
model of T and (2) of Theorem 1 holds. Also, (2) obviously
implies (3). If <U,ev> is a standard model of T, v is a
founding relation by the axiom of regularity of the meta-

language. Consequently, (3) implies (1) and Theorem 1 is
established.

Lemma 2. If T is a set theory, M' = <U',R'> is a model of
TP or T", U = {x: there is an m € U’ such that xR'm},R is R'
within U, and M = <U,R> then

(1) Mis a model of T.
(2) M is standard complete if M’ is.
(3) The power of M is not greater than that of M'.
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This lemma is obvious.
If U is a set, A(U) is the set of all functions from the variables

v
into U and a( ) is the function which is like a except for
m

assigning m to v for m € U, a € A(U), and variable v.ak=uF
just when M = <U,R> is a model, a € A(U), F is a formula,
and a satisfies F in M. Similarly, = #F just when M = <U,R>
is a model, F is a formula, and a=xF for any a € A(U); that is,
if M is a model and F is a formula, =xF means that F is M-true.
An M-expressible subset is an s such that M = <U,R> is a
model, there are a € A(U), distinct variables v and wi through
Wy, a formula F with just v or v through wa free, and x; through

V Wi...Wpn
Xn in U such that s ={m:m e U and q( ) EnF} If
mixi...Xn

M = <UR> is a model, then Us(M) is the set of all M-ex-
pressible subsets. Notice that {m:mRx} € Us(M) for xe U
since these sets are expressible by any formula vew (v and w
distinct variables). Rs(M) is the relation R' defined as follows.
(1) The field of R' € Us(M).
(2) If 5 is in the domain of R’, then s = {m : mRx}
for some x e U.
(3) f x€U and y e U, then {m: mRx} R'{m: mRy} just
when xRy.
(4) If x € U, there is no y € U such that s = {m : mRy}, and

V Wi...Wn
s={m:me U and q( ) EnxF} for some a € A(U),
mXi...Xn

distinct variables v and wi through ws, formula F with
just v or v through w, free, and xi through x» in U, then

V W1...Wn
{m : mRx}R' s just when af ) ExF.
X X1...Xn

Lemma 3. If T is a set theory, M = <U,R> is a model of T,
and M' = <Uy(M},Rs(M) >, then
(1) M'is a model of TP,
(3) M'is finite if M is and equipollent with M if M is infinite.
(2) M'is standard complete if M is.
(4) If M" = <U",ev > is a standard complete model of T?
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or T"U = {x: there is an m € U" such that xRm}, and
R © €y, then Us(M) € U"” and Rs(M) € €y,

Assume the antecedent. By elements, we mean members s
of Us(M) such that s = {m : mRx} for some x & U. Given that F
is a formula with only relativized quantifiers, F has no more
distinct free variables than xi,...,Xm,w1,...,Wn,a € A(Us(M)), a(x1)
through a(x») are elements, a(wi) through a(w,) are not ele-
ments, and, for any i such that 1 <i<n, aw) = {x:x€ U

ZiVi ... Vi
and a'(x '_1 S"] =wuFi} for any a € A(U) where F; is a for-
:1... a‘k

mula, z; through vi_are just the distinct variables free in Fi
and occur neither in F nor in Frif 1 € h < i and si through 8i,

are members of U, construct F? by altering subformulas of F as
follows for variables u:

(1) First unrelativize all the quantifiers in F.
(2) Then replace any formula wie u for 1 < i < n with nulu.
(3) Then replace any identity wilu or ulw; for 1 < i< n with
Azi(zie u <> F)) if u is not ws for h such that 1<h<n
and with Azi(Fi<> Azi(zs 1 zi—> F,)) otherwise for h # i,
If h = i, use Azi(F: e F)) instead.
(4) Finally, replace any formula uew;: for 1 < i< n with
Nzi(zilu— F).
Now let a' € A(U) be of a kind that a'(v;-)_) = si, for i and
j such that 1<i<n and 1 £j<k, and also a'(xi) = the
x € U such that a(x:) = {m : mRx} for i such that 1 <i < m.

By an induction on the complexity of relativized formulas, it
can be shown that

(5) @ EwF just when a' E=uF".

This is clear by an inspection of the various cases for atomic
F with respect to the definition of Rs(M) together with the facts

v
that F has only relativized quantifiers and a( )' (v) = thex € U
e

such that e = {m : mRx} for elements e and relevant variable v,
Consequently, if F* is an axiom of T which is in a schema, then
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its relativized version holds in M’ since a’' = y F*, Also, if vand w
are consecutive variables such that w does not occur in F? and

y={x:xe€ U and a'(v) EuVwvewaF} e U(M), a(v) =
X S

v
VwvewAaF just when a'( ) ExVwvewaFe for x e U and
X

vw
s={m:mRx} by (5, and so a( )EwveweVwvewAF
sy

for elements s. But then, if F is a relativized formula,

6) ExVwAvV(veEw eVwvewaF)

and the axiom schema of comprehension of TP holds in M.
If a(v) is an element for any variable v free in F, F* is simply
the result F' of unrelativizing F. Hence, by (5),

() a=w F justwhena' =n F

for such an a. In other words, even a formula with free vari-
ables which is just about sets of M" according to a holds in M’
just when its unrelativized version holds for the corresponding
sets of M. But then, if F is a sentence,

(8) =wm F just when =u F'

and so the relativized versions of all axioms of T which are
sentences hold in M’ since the axioms hold in M. Because the
axiom of extensionality obviously holds in M, it follows that
M’ is a model of T».

If M is standard complete, R = €y and so x = {m : mRx} for
elements x. Consequently, x R' y implies x € y for x and y in
in Ui(M) and conversely. That is, R' = &€uv an. Since every

member of a member of Us(M) is a member of U and U is now
included in Us(M), it follows that M' is standard complete.

If M is finite, M clearly is so since the set of all subsets of
U also is. On the other hand, if M is infinite, then the set of
all n-term sequences of members of U is equipollent with M
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for any positive integer n. Since there are only denumerably
many formulas with n free variables, the number of n-ex-
pressible subsets determined by any such sequence is equi-
pollent with M and the union of all those determined by n-term
sequences of members of U is as well. Since there are only
denumerably many positive integers, it follows that U,(M) and
M' are equipollent with M.

‘We have now shown that (1)-(3) of the lemma hold. To show
that (4) holds, assume its antecedent. It follows that M is stan-
dard complete and so M’ is standard complete by (2) of the
lemma. But then the consequent of (4) must hold if the schema
of comprehension of T? is to hold in M".

Now assume that T is a set theory. If T is consistent, T has
a model by the Gédel-Henkin completeness theorem and so TP
has a model by Lemma 3 and is consistent. On the other hand,
if T? is consistent and so has a model, T has a model by Lemma
2 and is consistent. Finally, by lemmas 2 and 3, T has a count-
able standard complete model just when TP does. But then T is
founded just when T? is by Theorem 1 and Theorem 2 is proved.
Lemma 4. If T is a set theory and M is a model of T* then M is
a model of T".

This lemma is obvious.

Assume now that T is an extension of ZF. By Theorem 2,
Theorem 3 holds if conr is provable in T" Since our meta-
language is a definitional extension of ZF with the axiom of
choice, '€’ instead of ¢, the logical constants of metalanguage
instead of I through V, and the variables of the metalanguage
instead of the variables, we can momentarily assume that just
all the metalinguistic versions of the axioms and inference rule
of T" hold in the metalanguage. Thus, the axiom of choice is
now only assumed if it is assumed in T", As usual, a set is a
class which is a member of something. We assume that our
previous definitions have been given for classes in general
rather than just for sets and understand S to be the class of all
sets. A satisfaction function for H is a function f of the fol-
lowing kind.

(1) His a formula, the domain of f = the class of all ordered
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pairs a,F such that a € A(S) and F is a subformula of H,
and f assigns 0 or 1.

(2) If a,H is in the domain of f, then, for any variables v and
w and formulas F and G,

(@) If H = vew, f(a,H) = 1 just when a(v) € a(w).

(b) If H = vIw, f(q,H) = 1 just when a(v) = a(w).

(c) If H = NF, f(a,H) = 1 — {(a,F).

(d) If H = F— G, f(a,H) = the smaller of 1 and (1 — f(a,F))

+ f(a,G).

(e) If H = FAG, f(a,H) = the smaller of f(a,F) and f(a,G).

(f) If H= Fv G, f{(a,H) = the greater of f(a,F) and f(a,G).

(9) If H= F & G, {(a,H) = (1 — the greater of f(a,F) and
{(a,G)) + the smaller of f(a,F) and f(a,G).

(h) If H = AVF, f(a,H) = the smallest member of

{f(a( ),F) im & S},

m
(i) If H= V' VF, {(a,H) = the greatest member of
{ia(’),F) :m S},

m

It can be shown that

(3) If f and f" are satisfaction functions for H, then f = f.

Assume the antecedent and let K = {F : F is a subformula of
H and f(a,F) = f'(a,F) for any a € A(S) }. By an induction on the
complexity of subformulas of H, it is clear that every sub-
formula of H is in K and so f = f.

In addition,

(4) If H is a formula, then there is a unique satisfaction func-
tion for H.

Assume the antecedent and let K = {F : F is a subformula of
H and there is a unique satisfaction function for H}. Notice that
the construction of K requires the schema of comprehension of
the metalanguage and involves a bound class variable. Since
any atomic subformula of H clearly has a unique satisfaction
function by (3), and since any obtained such functions for
formulas F and G can be combined and extended by adding
appropriate ordered pairs into unique satisfaction functions
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for subformulas nF, F— G, and so on up through VvF of H by
(3), it follows from an induction on the complexity of sub-
formulas of H that every subformula of H is in K and so H has
a unique satisfaction function.

If a =A(S), H is a formula, and { is the satisfaction function
for H, then a satisfies H just when f(a,H) = 1. Clearly, (4) im-
plies that all the usual recursive clauses of satisfaction hold.
Consequently, for such a and H,

(5) a satisfies H just when a does not satisfy NH.

A formula F is true just when every a € A(S) satisfies F. By
(5),

(6) For any formula F, either F or nNF is not true.

Given any structural descriptive name N of the metalanguage
of a formula with the free variable numerals iy through i» and
variable a of the metalanguage, let N* be the formula of the
metalanguage obtained by relativizing any quantified variable
numeral i with the structural name <'V'ji 'e'j> (j the variable
numeral next after i), replacing all constants and bound vari-
able numerals with the corresponding constants and wvariables
of the metalanguage, and the numerals iy through i» with the
terms <a'('i1')’> through <a’('i»')'> of the metalanguage. By
an induction on the complexity of structural descriptive names
of formulas, it can be shown that the metalinguistic formula

(7) If a = A(S), then a satisfies N just when N,
is provable for any structural descriptive name N of a formula.
Consequently, if N is the name of a sentence and N’ is its
translation in the way given above into the metalanguage, then:

(8) N is true just when N'.

is also provable in the metalanguage. Now, any axiom ,of T
which is not an instance of a schema of T has a structural
descriptive name in the metalanguage. Since there are only
finitely many such axioms with names N; through N, the
statement of the metalanguage that they are all true is by (8)
equivalent to the conjunction of the metalinguistic axioms Ny’
through N»', a statement which obviously is provable in the
metalanguage. Consequently, it is provable in the metalan-
guage that:
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(9) Every axiom of T which is not an instance of a schema of
T is true.

Assume now that H is an instance of the schema of founda-
tion. Then H is a formula VXF—->Vx(FANVY(YexAAx(xIy
—> F))) where x and y are the second and third variables and F
is a formula in which y does not occur. If a € A(S) and there

X
is an m = S such that a( ) satisfies F, then there is anm € S
m

X
such that a( ) satisfies F and there is no n & m such that

m
X

n e S and a( ) satisfies F by means of the schema of founda-
n

tion of the metalanguage. That is, a satisfies H and so H is true.
By reasoning in the same way for any of the finitely many
schemas of T, all the members of each can be shown to be true
in the metalanguage. But the conjunction of these statements
is equivalent to the statement that any member of any schema

of T is true. Consequently, it is provable in the metalanguage
that

(10) Every axiom of T which is an instance of a schema of T

is true.

Assume now that F and G are true formulas and that H is
derivable from F and G by the rule of true consequences. Since
the class of all ordered pairs ,F such that a € A(S) and F is a
formula which a satisfies exists by full strength comprehension
and so is a satisfaction relation, H is also true, In other words,
it is provable in the metalanguage that

(11) The rule of true consequences preserves truth.
Also, by full strength comprehension, both the set of all true
formulas and the set of all formulas in every set including the
axioms of T and closed under the rule of true consequences
exist. From (6) and (9) through (11), it follows that the con-
sistency of T is provable in the metalanguage. Since the meta-
language is assumed to be a version of T* this establishes that
conr is provable in T" and Theorem 3 is proved.

A set is designated if there is a formula F with just the
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v
variable v free such that m is the unique m for which a( )
m

satisfies F where a € A(S). Since the class of these exists by
full strength comprehension and has denumerably many mem-
bers, it and its union U are sets. Let M= <U,ey>. If
x € Yy € Uxx € the union of a designated set. Since the union
of a designated set is designated, it follows that x € U. Simi-
larly, if x € y € U,x € the power set of the union of a design-
ated set. Since the latter set is designated, it follows that x € U
in this case as well. Thus,

(12) M is a strongly standard complete model.

Also, as shown in Montague and Vaught [6], if F is a formula,
v and w are distinct variables, and w does not occur in F, then
there is a formula G in which w does not occur whose free
variables are v and those of F such that

(13) VVF=>VV(FAVW(AV(Ge viw)Aavew)) is provable

inT.

Intuitively, G is the formula expressing that v is the set of all
sets of least rank which satisfy F. Assume now that a € A(U)
and that vi through vs are all the variables free in VVvF. Let H
be a formula whose only free variable is w which expresses
that w is the union of the range of the function which assigns
to any n-term sequence <m;...m.> of members of the design-
ated sets di through dx of which a(vi) through a(vs) are mem-

VVi...Va
bers the set of all sets of least rank s such that a( ' )

Smy...Mp

satisfies F. Such a formula exists because d; through d. are all
designated by particular formulas. Also, by means of the
schema of replacement and the union axiom among the mem-

w
bers of S, there is a unique u € S such that a( ) satisfies H.
u

v
Thus, u is designated and so u € U. Also, if m& S and a( )

m
satisfies F, then, by (13), there is a member m' of u and so of U

Vv
such that a( ) satisfies F. If it is assumed that a = F just
m
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when a satisfies F for a € A(U), it follows that

(14) a =uxVVF just when a satisfies V' vF.

Consequently, since the class of all formulas which a satisfies
exists for a € A(S) by full strength comprehension, it can be
shown by an induction on the formulas that, if @ € A(S) and F
is a formula,

(15) a k=wn F just when a satisfies F,

Thus, via (9) through (12),

(16) M is a strongly standard complete model of T.
Consequently, by Lemma 3, if U’ = U;(M) and M' = <U',ep>,
then

(17) M'is a standard complete model of T®
and (1) of Theorem 4 is established. But then, by (16), (17), and
Theorem 1, if the axiom of choice for sets is an axiom of the
metalanguage,

(18) T and TP have denumerable standard complete models.
That is, (2) of Theorem 4 also holds. Finally, assume that the
axiom of choice for classes holds in the metalanguage. Let R
be a well-ordering for S, let k be any infinite cardinal = S, and
let K be a subset of S of the power k. Also, let u be a denumer-
able sequence such that uo = K and u..: = {m : there are an
a € A(un) ,a variable v, and a formula F such that m is the

v o
R-first member of {m:me& S and a( ) satisfies F}} for a
m

natural number n. Finally, let U be the union of the range of
u and let M" = <U,ey>, Notice that this construction of M"
requires the schema of comprehension with bound class
variables. If n is a natural number and x € u,, then x is the

w

v
R-first member of {m:me& S and a( ) satisfies viw} for
X.

m
distinct variables v and w and any a € A(u.) and so x € ua.1.
Also, each member of the range of u and so U has the power k.
Assume now that F is a formula and a E=u» F just when a
satisfies F for any a € A(U). As Tarski and Vaught showed in
[13], it follows that, if a € A(U) and v is a variable, then
(19) a E=u»V VF just when a satisfies VVVF.
Assume the antecedent. It is clear that the equivalence holds
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from left to right. Assume then that a satisfies VVF. Let
n be the greatest n such that a(w) € u» for some variable
w #+ v free in F if there is such a w and otherwise 0, and
let @ be in A(us) and assign a(w) to any w #* v free

v v

in F. Clearly, a'( ) Eu» F just when a( ) =wu» F for any m
m m

v

S. Now, there is an R-firstm € us.1 € U € S such that a'f )

m

v v
satisfies F and so a'( ) k=wx" F and a( ) E=wx F. That is, a &=y~
m m

VVF and (19) holds. Consequently, via the existence of the
class of formulas F which a satisfies for a € A(S) by full
strength comprehension, it follows by induction that, if a
A(S) and F is a formula,

(20) a =wm F just when a satisfies F.
But then, by (9) through (11),

(21) M" is a standard model of T of power k.
Consequently, since €v is a founding relation by the schema
of foundation of the metalanguage, M" is isomorphic to a
standard complete model M"' by reasoning as in the proof of
Theorem 1. But then

(22) M is a standard complete model of T of power k.

Consequently, by Lemma 3, if U" = Us(M'") and N = <U",
€y»>, then

(23) N is a standard complete model of T? of power k.
Thus, (3) of Theorem 4 and so the theorem as well are
established. It should be observed that the axiom of choice
need not be assumed in parts (2) and (3) of the theorem if T
is ZF or like ZF in that all the axioms of T hold among the
constructible sets of T. This is because the proofs of these parts
can then be carried out from a € A(K) rather than from
a € A(S) where K is the well-ordered class of all constructible
sets.

In what follows, it is no longer presupposed that the meta-
language is a version of T*.

Now define the operation L by transfinite recursion on
ordinal numbers as follows.
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(1) Lois the empty set.

(2) If n is an ordinal and M = <Ln,ELn>, then Ln:+1 = the
of all M-expressible subsets of L.

(3) If nis a limit ordinal, then L, = the union of {L. : m € n}.

The members of the values of L are, of course, the construct-
ible sets of Godel [4]. Let ord and lev be formulas with free
variables v and v and w respectively which express ‘v is an
ordinal' and 'v € Lvw, w is an ordinal, and both v and w are
members’ respectively. It can be shown that
Lemma 5. If T is an extension of ZF and M = <U,ev> is a
standard complete model of T or T? or T", then, for any x.and y
inUanda € A(U),

\4
(1) a( ) =~ ord just when x is an ordinal.
X

vw
(2) a( ) E=wlev just when w is an ordinal, x € L,, and both
Xy

x and y € the union of U.

In other words, both ord and lev are absolute. If the ante-
cedent is assumed, then (1) holds because M is standard com-
plete and so (2) holds because the formulas expressing the rela-
tions and operations involved in the definition of L are them-
selves absolute,

v
If M is a model, let Ox = {x:a( ) Exord} for arbitrary
s

a € A(U). Thus, Ox is the set of ordinals of M. It can be shown
that

Lemma 6. If T is an extension of ZF and M = <U,ey> is a
standard complete model of T + ¢, then

(1) Ou is the smallest ordinal & U and a limit ordinal.
vw

(2 If yeOn then Ly ={x:a( ) Euxlev}
Xy

for arbitrary a € A(U).
@) U=L,

4 If U = L“M” and M' = <U',epr >, then
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(a) M’ is a standard complete model of (T + c)? and
(b) Oy + 1 = O = the smallest ordinal &U".

Assume the antecedent. Since Ox includes its union and is
well-ordered by €, it is clearly an ordinal and so the smallest
one & U. Since Oy is not empty and has no greatest ordinal in
it, it is also a limit ordinal. By means of the axioms of ZF, all
formulas as well as all the usual notions of proof theory and
semantics are present in M, Consequently, if m € U and m is
a model, then the set of all m-expressible subsets of the uni-
verse of m is also a member of U. But then (2) holds by means
of transfinite induction up to O and Lemma 5. In other words,
the operation of M corresponding to L is in fact L restricted
to Ox. Consequently, since the axiom of constructibility holds
in M, every member of U is a member of Lo via (1) and (3)

holds. By reasoning from (3), the assumptions of the present
proof, the fact that Lo, +1 = the set of all M-expressible sub-

sets of LDM' and the antecedent of (4), it is clear by Lemma 3

that (a) of the consequent of (4) holds. Since the only set of
ordinals in U' which is not a member of U and includes its
union is Oy and is M-expressible, Ox is the only ordinal in U’
not in U. But then the antecedent of (4) also implies (b) of the
consequent, (4) holds, and the lemma is established.

Lemma 7. If T is an extension of ZF and M' = <U',ep>, then
M' is a minimal model of T? just in case the following condi-
tions are satisfied:

(1) M'is a standard complete model of T®.

(2) If U = the union of U', then M = < U,er> is a minimal
model of T.

(3) For any standard complete model M" = <U",ey»> of
TP, if the union of U’ © the union of U, then U’ € U".

Assume the antecedent. If the left side of the equivalence
holds, then (1) follows from the definition of minimality. As-
sume the antecedent of (2). By Lemma 2, M = <U,er> is a
standard complete model of T. If N= <V,ev> is a stan-
dard complete model of T and V' = Us(N), then N' =
<V',€pr> is a standard complete model of T* by Lemma 3.
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From the definition of minimality, it follows that U’ € V' and
so U € the union of V' = V. That is, M is a minimal model
of T and (2) holds. For (3), assume that M"' = <U",€y»> is a
standard complete model of TP, From the definition of minimal-
ity, it follows immediately that U’ € U" and (3) holds. So as-
sume instead that (1) through (3) hold. To establish that M’ is
a minimal model of TP, it is by (1) and (3) sufficient to show
that, if N'= <V',e»> is a standard complete model of Tr,
U = the union of U', and V = the union of V', then U € V., By
Lemma 2, M = <U,=ery> and N = <V,=r> are both standard
complete models of T. But M is minimal by (2) and so U < V.
Thus, M' is minimal and the lemma is proved.

Now assume the antecedent of Theorem 5. If T and T? have
minimal models, it is clear that they are unique. By Theorem 1,
T has a denumerable standard complete model and so T + ¢
does as well by embeddability. Consequently, the least ordinal
m such that M =< Lm,ELm> is a standard complete model of

T + c exists by Lemma 6. If M' = <U,e¢> is a denumerable
standard complete model of T, then there is a V € U such that
N = <V, ev> is a standard complete model of T + ¢ by em-
beddability and so L» © L, =VCU by Lemma 6. Conse-

quently, L» is denumerable and M is a denumerable minimal
model of T. Again by Lemma 6, it follows that M" = <Lu.1,
€L,,,> 1s a standard complete model of (T + ¢)r. If M' =

<U,ev> is a standard complete model of TP such that L. =
the union of Lwx.i € the union of U, then L» € U and so
Ln+1 € U and M" is denumerable by Lemma 3. Consequently,
since M is a minimal model of T, M" is a denumerable minimal
model of T? by Lemma 7. Since Lm SLu.1 and L» € Ln-1 while
Lm & Lm, Lmw © Ln+1. Finally, assume that N = <U",ep> is
a standard complete model of T". By Theorem 4 and the ab-
soluteness of being a standard complete model of T* among
standard complete models of T% U" has a standard complete
model of TP as a member of a member. Since the minimal model
of T? and so Lu+: are then members of the union of U” by the
completeness of N and the union of WU" & U" since Vw
Av(vew eVwvewAvlv) is an axiom of T, Ly, 1 the union
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of U" < U" by the axiom of regularity of the metalanguage.
Thus, (1) through (4) of Theorem 5 are established and the
theorem is proved. Theorem 6 is an immediate consequence of
Lemma 2, Lemma 4, and Theorem 5.
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