THE AXIOM OF REGULARITY

John H. Harris

1. This paper is a natural continuation of the work presented
in [4]. However, an attempt has been made to make it rather
selfcontained.

In [4; § 2] we tried to give some feeling for what the Axiom
of Regularity (REG) says and means. For one thing it is equi-

valent to what we called the Big Bang Axiom which says that
if

Ro((_))) = 9{ U u<ﬁRu(U.)) and V, = U BRO{[S)

then V = V,; here V denotes the class of all objects, with an
object being either a set or an urelement. The elements of V.,
we call regular sets (and the literature calls well-founded sets).

In [4; § 4] we gave an argument-from-evidence for the truth
of REG, at least for classical mathematical structures. Specific-
ally, in essence we argued as follows: consider any classical
mathematical objects which conceptually aren't regular sets
(e.g., the integers) and formally speaking are those objects
satisfying certain special axioms (e.g., Peano's axioms); then
it has been found that there are regular sets which satisfy these
special axioms.

We could show REG to be true in general if we showed that
for any objects introduced formally by special axioms we could
find regular sets satisfying these axioms. However, REG is not
true in this sense because what if the special axioms specific-
ally call for the existence of non-regular sets (e.g., sets xi, xz,

. such that ... Ex:€x). It has been well-known for some
time that one could formally add axioms for non-regular sets
without introducing any new formal inconsistencies. The point
of [4; § 5] was to show how to conceptually construct some non-
regular sets in order to make their existence reasonable.
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There is strong feeling among most logicians that REG is true

though no good intuitive reasons have been given, at least not
in the literature other than to say that sets are "obviously”
formed only as indicated by the Big Bang Axiom. In § 2 we will
prove and after that interpret a theorem which probably form-
alizes the content of this intuitive feeling.
2. Asin [4], let A(x) be the set of all -ancestors of object x
and let A*(x) = {x}UA(x). Note that A(x) is the same (viz.,
A(x) = ) whereas A*(x) = {x} is different for different ur-
elements x. This is one reason we use A*(x) rather than A(x) to
represent the structure of an object x.

A pictorial idea of what an object x “looks like" is given by
the notion of a skeleton of x which we define as a collection B
of points, some of which are connected by directed line seg-
ments; the points of B represent x and the =-ancestors of x;
for any two points pi,p: in B there will be a line segment
directed from pi to p: iff the object represented by p: is an
element of the object represented by pe.

Of course any object will have many possible skeletons. One
example of a skeleton of the von-Neumann integer 3 = {0,1,2}
consists of a set B = {po,p1,p2,ps} and the directed line segments
—_— — > —> > >
Pop1, Popz, pops, Pipe2, p1P3, P2ps.

In [4; p. 274] we defined an ordered set as an ordered pair
(b, r) such that r is a relation on b, i.e,, rSb X b. We can
rigorously and abstractly define a skeleton of an object x as
any ordered set (b, r) order isomorphic (~) to (A*(x), €), i.e.,
there exists al:1 correspondence f:b<> A%*(x) such that

urve (f(u) € f(v) for all u,vehb.

(In terms of our intuitive picture of a skeleton, we have urv
iff there is a directed line segment from u to v.) Finally, let us
define a regular skeleton of object x as a skeleton (b, r) of x
such that b and hence r also are regular sets, i.e., elements of
V.

THEOREM 2.1. Every object (set or urelement) has at least
one regular skeleton. In fact, given any object x, there are as
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many different regular skeletons of x as there are ordinals.
PROOF. Let us first find one regular skeleton (b, r) of x. Let

b = A*(x) = cardinality of A*(x).

Then b is a von-Neumann initial ordinal, cay vy, hence a regular
set, By the axiom of choice there is a 1 : 1 correspondence

f:vy e A*(x).
Now define ordering r on y by
r={{(o,p)lapfpesy & flu @)}

Clearly (b, 1) ~ (A*(x), &) under f, hence (b, r) is a regular
skeleton of x.

Having constructed one regular skeleton (b, r) of x, we can

now make copies of (b, r), one copy for each ordinal. In detail,
let

be =b X {a}, . ={({u,a), (v,a))l{u,v)er}

Clearly a = implies b. # bg if b= &; and for any x,

x} =1, henceb = &. QED.

=gl
>

=

~—
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—

One way of looking at set theory is to think of it as a
language and mode of thought for representing mathematical
relations. (It is not the only one; and for very complicated
modern mathematical relations it is not as convenient to use
as another one, viz.,, category theory.) In this case our main
concern is that we have enough sets to represent all possible
relations. Now 2.1 implies that any relation that can be repre-
sented by a set can already be represented by a regular set,
Put another way the class of regular sets is just as adequate
for representing mathematical relations as is any class of sets.
Thus when presenting an axiomatic development of mathe-
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matics from a set theoretic viewpoint theorem 2.1 gives a
metamathematical proof that one can assume REG without any
loss of generality.

3. After the argument just given, together with the well-
known result that REG is relatively consistent with the other
more standard axioms of set theory, is there any point in
studying set theory in general and allowing the possibility of
non-regular sets ? We claim that there definitely is.

If our goal is to use set theory in order to do mathematics,
then 2.1 essentially shows that one can assume REG without
loss of generality. However, what if our goal is to study set
theory in order to understand the notion of a set ?

We know that at the formal level it is safe to assume the
existence of non-regular sets; put another way, various formal
“non-regular” axioms (from which the existence of non-reqular
sets can be formally derived) are known to be relatively con-
sistent with the standard axioms of set theory (cf. [1], [2], [3]).
The point of [4; § 5] was to show how to conceptually construct
some non-regularsets in order to make their existence intuitive-
ly reasonable, not just formally acceptable. If the objects of
[4; § 5] aren't sets, why not ? If they are sets, why ? In general
what is the informal concept of set in our heads which guides
us to accept one conceptual construction process as forming
sets and another as not ? A foundation study of sets surely
should have as one of its goals its explicational of the concept
of a set, not just the study of a certain canonical familiy of sets.
There may be several acceptable non-equivalent formalizations
of the informal concept of a set; in that case, each of these
formalizations should be investigated. To deal with such ques-
tions and topics one must study sets from a framework more
general than the class of regular sets.

4. Our general framework, at least in this paper, will be that
of the Generalized Big Bang (GBB) conception of a set, first
introduced in [4; § 3]. Say we build sets by stages indexed by
the ordinals. At stage § we allow the introduction of objects,
called aloms, created by some conceptual process P other than
just collecting previously formed objects; let Cp() be the set
of all such atoms. The elements of Cp(f}) could be sets and/or
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urelements. The function Cr: On — V will be called the
creation function for process P. Also at stage } we form sets
made up of objects (i.e., atoms and/or sets) introduced in earlier
stages. Let us define the P-stage function Rpy: On — V such
that Re(3) denotes the set of all objects introduced (not ne-
cessarily for the first time) in stage 3. Then we have

xeRr(f)e2xe Cr(fl) or x © U,Re(w)
hence Rr(f) = Ce(B)VUP(U ,sRp(a)).
Let Vr = UgRe(f). Any x € Vi will be called a P-object and

Vr is called the universe of P-objects or the P-universe; if x is
also a set, then we call it a P-set; if x is not a set, it is called a
P-urelement. Finally we define the P-rank functions op: Vi —
On so that gr(x) equals the first ordinal § such that x € Rp(f) :
or(x) is just the P-stage at which x is first introduced. The GBB
axiom with respect to process P would be that V = V.

A very natural special case of GBB is obtained when we let
Cr(f) = & for all B. The corresponding stage function, rank
function and universe will be denoted by Ry, go and Vy respect-
ively. V) is of course just the class of regular sets.

5. In [4] no mention was made of how to determine at what
stage to introduce a particular atom. In this section we will
show that, technically speaking, any stage will do. Put another
way, given a class C of atoms, we can break up C into sets
Cr(B) any way we please so long as C = UCp(). (We might
even put C = Cp(0), Cp(f) = @ for § > 0; but then Cp(0) might
be a proper class rather than a set; e.g., consider the case
where we want an urelement for each stage.) More generally,
we will show that we can even add and/or subtract to a certain
extent from a given class of atoms and the resulting universe
will remain unchanged. First we need the following result.

LEMMA 5.1 x € Ve = x € Vp; i.e,, any set of P-objects is a
P-set.
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PROOF. Let f} be the least ordinal greater than all the ordinals
or(u) for uex. Then uex implies pr(u) <p, hence
u € UqRe(a). Thus x © UacgRe(a), hence x € Re(f).

THEOREM 5.2, Let C;, Ce be creation functions. Fori = 1,2
let

Ri() = Ci(B) V(U asRi(e)) and Vi = UgRi(f).
Then UgCy() € Vi=>V:.C Vi,
In words, if type-2 atoms are type-1 objects, then all type-2
objects are type-1.
PROOF (by induction). Assume that Rz:(a) € Vi for all « < f.
We have Cz() € Vi by hypothesis. We also have

2(U.agRo(0)) € Vi

since x € P(U.pRz(a)) implies x © U.R2(a) € Vi, hence

x € Vi by 5.1. Thus Rz(f) € V.
COROLLARY 5.3. UyC:(f) € Vi & UCi(f) € V2= Vi = Va.

6. In [4; p. 43] we introduced two candidates, WO* and WBB,
for axioms of set theory.

DEFINITION. Consider any V* € V. We will say that V=*
satisfies WO+ if V* can be well-ordered. We will say V* satis-
fies WBB iff there exists a function G: On — V such that (i)
a < B= G(a) € G(f) and (ii) V* = UG(p).

We will now show that GBB, WBB and WO* are all equi-
valent, assuming the class form of the axiom of choice.

THEOREM 6.1. V* satisfies GBB « V* satisfies WBB.
Proof of =: Let G() = U .<sRe(a).

Proof of <: Let Cr(8) = G(B). Then Cr() € V*, hence Vp C V=
by 5.2. Conversely, x € V* implies x € G(f) for some B, hence
x € Cp(f) € Vp; thus V* C Vp,
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THEOREM 6.2. V¥ saiisfies WBB & V* satisfies WO+,
Proof of «: trivial.

Proof of =: The idea is simple. Let
F(B) = G(B) — UacsG(a).

Then the F(p) are mutually disjoint and
UgF(B) = UsG(p) = V=

Well-order (w.o.) each set F(8), say —3s; that this is possible
will be shown below. Then w.o. V* by x 3y iff

i) xeFo) & ye F(B) & a < B
or (ii) x,y € F(f) & x=3sy.

To show —3 is a w.o0. of V* consider any & = K € V*, Let §§ be

the least ordinal such that KNF({3) == &. Then the 3-first
element of K is the —3g-first element of KNF(p).

To show the existence of the well-orderings 33, let W(f) be

the set of all w.o. of F(8). The set form of the axiom of choice
implies that each W(f}) is non-empty. We must now choose one
w.0. =3 from each W(f). To justify this we note that the class
of all W(p) is a class of pairwise disjoint sets. Hence by the
class form of the axiom of choice (c.f. [4; p. 274]) there exists
a choice class C which has exactly one point in common with
each W(}): such a point is the desired w.o. =3z of F(3). QED.
7. Consider now the idea of our proof of REG given in § 2.
We showed that any one of many regular skeletons could be
used as a representation of an object (set or urelement). It
would be nice if we had a way of choosing once and for all
a representation of each x € V in such a way that if two
objects are related, then so are their chosen representations.
E.g, if x € A(y) or x € y, we would like the regular skeleton
representing x to be a subskeleton of the skeleton representing
y. If our universe V satisfies GBB, then we can show how to
find such a uniform canonical representation.
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Let us say that skeleton (b, r) is a subskeleton of skeleton
(c,s) (and denoted by (b, 1) E (c,s)) iff bS c and r C s.

THEOREM 7.1. Consider any GBB universe Vp. Then we can
find regular skeletons (bx, rx) for each object x € Vp such that

X e A(Y)j (bx, r:() c (_\' ’ I'y).

PROOF. By 6.1 and 6.2 the proper classes Vr and V, can be
well-ordered, hence both can be put in 1:1 correspondence
with class On and hence with each other. Let F: Vr & Vj be
such a 1 : 1 correspondence. For any x let

bx = {F(u) lu € A*(x)}
r« = {(F(u) ,F(v))lu,veE Axx) & ue v}.

If x € A(y), then A*(x) € A*(y), henc: by € by and rx C 1y.

8. An obvious restriction we want to place on Vp is that
every €-ancestor of a P-atom be an element of Vp: in symbols,
A(Ce(B)) € Vr. We showed in §5 that, technically speaking,
it doesn’t matter at what stage we introduce a P-atom. How-
ever, it would be very natural to require that no P-atom be
created earlier than the creation or construction of its =-an-
cestors; also one should leave open the possibility that a set
and some of its =-ancestors could be introduced in the same
stage, as was done with the simultaneous construction process
in [4; § 5]. We will in fact require that an -ancestor of P-atom
x be either a P-atom introduced at same stage as x or some
object introduced at an earlier stage: put symbolically,

A(Ce(f)) < Cr(B) Y (VacsRe(a)). (¥

The next result shows that we can assume Cp satisfies (*) with-
out any loss of generality.

THEOREM 8.1. Assume A(Ci(8)) € Vi for all f. Then we can
find a new creation function C: such that V:= V; and C:
satisfies ().
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PROOF. Let C:() = A(C1(B)). Then C:() €S V1 by hypothesis.
Also Ci(f) € A(Ci(B)) = C2(B) € V2. Hence V:=V: by 5.3.
QED.

Assuming Cp satisfies (*¥) not only insures that we don't
introduce any P-atom before introducing its &-ancestor; it
also insures the same result for any P-set, as we now show.
THEOREM 8.2. Assume (¥). Then if yeVp, and x € A(y), we
have (i) x € Vr and (ii) or(x) < or(y).

PROOF. In [4; p. 284] we showed that (even if we allow the
existence of infinitely descending &-chains) if x € A(y), then
XE X1 €... € Xy =7 for some finite number of sets xi,...,Xn;
hence it is clearly sufficient to prove x e ye Vr=>x € Vr &
or(x) < op(y). Assume pr(y) =f, hence ye Re(f). f x ey e
Cr(B), then x € A(Cr(B)), hence x € U.gRr(a) by (*), hence
or(x) S B. If x € y € Z(U.Rp(a)), then clearly x € U.<pRe(a),
and or(x) < .

COROLLARY 8.3. Assume (*). Then y € Rp(}) =y € Ueugs
Re(u) if y is a set.

PROOF. See proof of 8.2.
Thus let us agree on the following formal

DEFINITION 8.4. V* C V is called a GBB universe iff we can
find a creation function Cp:On— V (which in turn uniquely
determines Rp and Vr) so that we have

(i) Re(f) = Cr(B) VP(U a<gRe(w))
(i) A(Ce(B)) S Cr(B)V (U a<sRe(a))
(iti) Ve = UgRp(f) = V*

We say that V satisfies GBB iff V = Vp for some GBB universe
Ve.

It may happen that x € y, yet op(x) % or(y); e.g., a subset
of Cp(f) might possibly not occur until stage § + 1. If one wants
X € y or X & y implying or(x) < gr(y), then one could define

Re(B) = Ce(B) U2 (Cr(B) Y UacsRr(a)) and Ve = UgRe(B).



330 JOHN H. HARRIS

However, the improved relation x € y= ¢p(x) < or(y) hardly
seems worth the added complication.
The regular stage function Ro has the property

a < p=Ro(@) S Ro(f). ()

In general, the same is not true of Rp since we could have
x € Ce(a), yet x & Cp(B); then if x is not a set but an urele-

ment, we have x & Re(8). However, we do have the following
result.

THEOREM 8.5. If a <, then any sets in Rp(a) are also in
Re(f), even if the sets are atoms.

PROOF. Assume x is a set. Then x € Rp(a)

= x € UseaRe(d) by 8.3
= x € UigRe(d) for any f > a
= x € Re(f) QED.

Of course we could easily redefine Rp so that it would
satisfy (*); e.g., let

Re(B) = U «gsCr(a)U P (U opRr(a)).

9. We are now ready to show that a GBB universe is closed
under various set theoretic operations. We will show that if
X,y € Vp, then {x,y}, Ux, Z(x), and #(F| x) with function
F C Vp are elements of Vp; also x € Ve & x € Vr if x is a set.
In fact we show the following.

THEOREM 9.1. Any GBB universe satisfies
(i) x € Re(f)=x S U.pRp(a) if x is a set
(ii) x € Uu.gRe(a) = x € Re(f)

(iii) x € Re(f) & Yy € Re(y) = {x, v} € Re(d + 1) where
% = max {f, v}

(iv) x e Re(B)= Ux € Re(f + 1)
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(v) x € Re(B) = 2(x) = Re(B + 2)
(vij xe Ve & FC Ve=> Z(F|x) € Vp

PROOF. Part (i) is just 8.3. Part (ii) is trivial and (iii) is easy.
Parts (iv), (v) and (vi) each have two cases. In one case x is a
P-urelement; then

Ux = 2(x) = Z(F x) = @ = Re(a) for alla = 0 by 8.5.

This leaves us with the case when x is a P-set. To prove (iv)
assume x € Rp(f}); thenu e Ux

= or(u) < fby82

= u € U.gRr(a)

= Ux € UagsRe(o)

= Ux €Re( + 1).
To prove (v) assume x € Rp(B); then u € Z(x)

= u S x € Re(f)

= u € x & UqgRp(a) by part (i)

= ueRe(f +1);
thus 2(x) € Re(f + 1), hence 2(x) € Rp(f + 2). Finally, to
prove (vi) note that function F € Vp and u € x insures that

F(u) € Vp; let v be the least ordinal greater than all the
ordinals or(F(u)) for u € x; then

u e x = F(u) € Re(f) & UacyRe(e) for somef <y
= R(F!x) € U.yRe(a)
= Z(Flx) € Re(y).
10. Let us say K is €-irreflexive if x ¢ x, all x € K and

e-cycle-free if x & A(x), all x K; also say K is almost-=-
cycle-iree if the only -cycles in K are of the form x € x, i.e.,
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xeExne.exnexeK=2xi=xfor1<i<n.

THEOREM 10.1. If Cp is =-irreflexive, -cycle-free, or al-
most-& cycle-free, then so is Vp.

PROOF. We will consider the third case. The other cases
have similar or even easier proofs. So assume Rp(a) is almost-
e-cycle-free for all o <f. Now consider any e&-cycle
XExE..€x1ex e Re). If x =Cp(B), then x; = x, since
Cr is almost-e-cycle-free. If x & U.,Re(a), then x1 € Rp(a)
and X1 € X € X € ... € X1, hence by induction hypothesis
xi=x1for2<i<nandx=x.

11. In [4; p. 290] we introduced the STRUCTURE AXIOM
which says

(A¥(x), €) ~ (Axy), e)=x =y, allx,ye V
or put more suggestively
Ax(x) ~ Axy)=x=v,allx,yeV

If the universe V of all objects contains at lease one urelement,
then V doesn't satisfy STRUCTURE: in detail, if b is any ur-
element, A*(b) = {b}UA() = {b} ~ {D} = {TIVA(D) =
Ax(J), yet b = @. (We might even have a proper class of sets
all with the same structure; e.g., this would occur if we intro-
duced some new urelements at each stage f in GBB.) However,
we can introduce two related ideas, one if which is applicable
to urelements,

DEFINITION Class K is

weakly structural  iff Ax(x) = A*(y)=>x =y, allx, ye K
(strongly) structural iff A*(x) ~ A*(y)=> x =y, allx,y K

The notions of weak structurality and €-cycles are closely
related as the next two results show,
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THEOREM 11.1. If Cp is almost €-cycle-free, then Vp is
weakly structural,

PROOF. Forany x,y € Ve we have A¥(x) = A*(y)

= {x}UA(x) = {y}UA(y)

= xeAy)and ye A®x) if x 2y

2 xe.eye..exifx=y,
hence Vp is not almost-&-cycle-free if x # y; but Vp is almost-
€-cycle-free by 10.1.

THEOREM 11.2. If Cp is weakly structural, then Vp is almost-
e-cycle-free.

PROOF. Assume Rp(o) is almost-=-cycle-free for a < p. It is
now sufficient to show that

xe..eyexeR@)=x=y.

Case I. y € x € Cp(f). By 8.4 (ii) we have two possibilities.
The firstis y € Cp(); butthenx € ... ey e x

= x € A(y) and y € A(x)

= Ax(x) C A*(y) and Ax(y) © A*(x)

= Ax*(x) = A*(y) where x,y € Cp

= x = y by weak structurality of Cp

The other possibility is y € U.<sRe(a), hence
YEXE..EY < Re(a) for some a < B,

hence y = x by induction hypothesis that Rp(a) be almost-&-
cycle-free.
Case II. y & x & ?(UogRre(0)). But then y e U.Rp(a), a
possibility already considered. QED.

We can now derive several corollaries of 11.1 and 11.2.
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COROLLARY 11.3. If Cp is weakly structural, then so is Vp.

COROLLARY 11.4. If Cp is &-irreflexive and weakly struc-
tural, then Vp is =-cycle-free and weakly structural.

COROLLARY 11.5. If Cp contains at most urelements, then Vp
is €-cycle-free and weakly structural.

PROOF. x € Cp=x is urelement 2 A(x) = @ = x & A(x);
thus Cp is e-cycle-free, hence Ve is &-cycle-free by 10.1 and
weakly structural by 11.1.

12. 'We now wish to investigate under what conditions on Cp
we can conclude that Vp is (strongly) structural. Without loss
of generality we assume Cp, and hence Vp, contains no urele-
ments, for otherwise structurality fails. Our chief result will
be that if Cp is =-irreflexive and structural, then Vp is struc-
tural.

LEMMA 121. A*(x)~A%(y) = f(v) = {f(u) lu € v} for any
v € Ax(x).

PROOF. Since A*(x)—iA*(y‘) we have u e v&efu) e f(v),

hence {f(u) |u € v} € f(v) .Conversely, assume w € f(v); then
since v € A*(x), we have w € f(v) € A*(y), hence w € Ax*(y),
hence w = f(z) for some z € A*(x), hence w = f(z) € f(v),
hence z € v, hence w € {f(u) lu € v}.

THEOREM 12.2. If A*(x) —f-A*[y} and f(u) = u for all u € A*(x)
NCp, then f(u) = u for allu € A*(x) N Vp.

PROOF. Assume f(u) =u for all u € A¥x)NRp(e) and all
a<p. Now we consider any v € A*(x) "Rp(B). If v € Cp(f), then
f(v) = v hy hypothesis. If v € U.gRp(a), then

u € v=u € A*(x) NRe(a) for some a < f
= fu) = u
Thus f(v) = {f(u)lue v}={uluev}=yv.

COROLLARY 12.3 If A*(x)~A*(y), then f(u) = u for all u &
Ax(x) NV
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LEMMA 124 [A%(x) ~A*(y) and x ¢ A(x)] = f(x) =y

PROOF. Assume f(x) #y. But f(x) € A¥(y) ={v}IVA(y),
hence f(x) € A(y). Since f is 1:1 onto, there is a unique
u € A(x) such that f(u) = y. It is easy to show that for any
u, v € A*¥(x) we have

v e A(u) &1f(v) € A(f(u)).

Thus from f(x) € A(y) = A(f(u)) we get x € A(u). Butu € A(x),
hence x € A(x), a contradiction. QED.

In [4; p. 290] we proved that Vy is structural using the Mos-
towski-Shepherdson theorem. Using our above results we now
give a direct proof of this fact. In fact we prove a slightly
stronger result about V.

THEOREM 12.5. [A¥*(x) LA*(y) & x € Vo]= x = y. (Note that
we have not assumed y € Vp.)

PROOF. We have f(x) = x by 12.3; and since x ¢ A(x) by 11.5
we have f(x) = y by 12.4.

COROLLARY 126. Cp= @ = Vp is structural; i.e., Vo is
structural.

LEMMA 127. If A*(xi)~A*(x2), u € A¥(x1), and uz = f(ui),
then A*(ui) '-EA*(m) where g = f| A*(ui).

PROOF. Clearly u1 € A*(x1) implies A*(ui) € A*(x:), hence f
is defined on all of A*(ui). Let g = f]' A*(u1). Obviously g is 1:1
and an €-isomorphism between A*(uj;) and #(g). To show g
is into A*(uz), consider any v € A*(uw). If v = uy, then

g(v) = g(u) = f(u1) = uz € A*(us)
If v=vi€ .. €vievo=uwheren = 1, then all vi € A*(ui),
hence

g(v) = g(va) € ... € g(v1) € g(vo) = g(u1) = us,

hence in summary, v € A*(u1) = g(v) € A*(uz). To show g is
onto A*(uz), consider any z € A*(u:). Since u: € A*(x:) we
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have A*(uz) € A*(xz), hence z € A*(x:), hence z = f(v) for some
unique v € A*(x1). Say z = zn € ... € z1 € zp = uz. Then

v=1) = ) € ..o i) € Fiz) = Fiu) = u,

hence v € A*(uwi), as desired. QED.

We are finally ready to prove our main theorem of this
section.

THEOREM 12.8. If Cp is structural and =-irreflexive, then Vp
is structural.

PROOF. Assume there are sets x1, X2 € Vp such that A*(x;) ~
A*(x2) yet x1 # xz2. Since Cp is structural and -irreflexive, Vp
is e-cycle-free by 11.4, hence f(x1) = x2 by 12.4, hence
f(x1) = x1. Let § be the first ordinal in the set

{or(u) lu & A*(x1) & f(u) == u}.

Let u1 be some element of A*(xi) such that f(ui) # ui and
or(w) = B. We have w € Cp(f); for if not, we must have
u1 € U.cpRe(a), hence v € ui = gp(v) < p= f(v) = v, hence by
121

f(u)) = {f(v) | v € ui} = {vIv € w1} = us; contradiction.

Using 12.7 we have A*(u1):A*(uz] where uez = f(u1) =+ w1 and

h

g = f] A*(ui). Then Ax(uz)~A*(us;) where h = g—'. Now apply
above procedure again to get ve € A*(u2) with h(ve) = vz and
op(ve) = vy where y is the least ordinal in the set

{or(u) lu € A*(uz) & h(u) = u}.

Show vz € Cp(y) in same way we showed vi € Cp(f). Using 12.7
we have A*(vz) ~A*(vi) where vi = h(vg). Also vi = h(vs) # v2
implies f(v1) = g(vi) = vz = vi, hence gr(vi) 2 § but vi € A*(uy)
implies pr(vi) < op(u1) = B; thus pp(vi) = p. Then show vi
Cr(B) just as we showed in w € Cp(}). In summary we have
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vi, v € Cp with A*(vi) ~A*(vs), hence vi = vz by structurality
of Cp, contradicting vi # va. QED,

COROLLARY 12.9. If Cp is structural and €-irreflexive, then
Vp is structural and -cycle-free.

COMMENT. Clearly 12.6 is a corollary of 12.8 as well as of
12.5. We presented 12.5 because it is a stronger result about V,
then just showing Vo is structural. Question: does an arbitrary
Vp satisfy a similar property; in detail, if Cp is structural and
€ -irreflexive, can we say

[A¥(x)~A*y) & x E Vp]=x =Y

without assuming y € Vp ?

University of Otago John H. Hagris
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