IDEALIZATIONAL LAWS AND EXPLANATION

Leszek Nowax

The issues of idealization are very rarely discussed in the
present-day methodology of sciences, and even if they are
taken up, they are treated with lesser precision than are many
other methodological problems. Yet, as it seems, idealization
is one of the fundamental, if not the fundamental, research
procedures used in advanced empirical sciences, whether
natural (such as physics) or social (such as economics).

The present writer's intention is (1) to suggest definitions
of the concepts of idealization, ideal type, and related ones;
(2) to answer the question about the purpose of idealization
procedures by pointing to the role played by idealization in
explanation procedures, which, as it seems, results in a new
model of explanation; (3) to illustrate the claim that the model
of explanation, as mentioned under (2) above, is being in fact
applied in empirical sciences. ()

Given a system of empirical knowledge KL which has as
its subset a set of laws NL (where the subscript 'L’ indicates
the language in which the statements that are in that set are
formulated). It is assumed about NL that it consists exclusive-
ly of laws which are non-vacuously satisfied in the intended
model of the system KL -of empirical knowledge, i.e. that
model of the system for the description of which that system
has been formulated. In other words, all those laws which
are elements of the set NL are non-vacuously satisfied in that
domain which a given scientist intends to investigate, Assume

that the following statements, logically independent of one
another:
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(1) (x) (ps(x) # dy),
(x) (p2(x) # dy),

are among the consequences of the set of laws. It is as-
sumed that the functional term ‘pi' stands for a function p:
such that the number d; is an extreme (the greatest or the
least) numerical value of that function.

In the set NL we can single out subsets whose consequences

are the statements (1) so that a subset N’ has as its conse-

quence the statement (x) (p;(x) = d;). Hence the set N"i con-
tains statements which are logically inconsistent with the
statement (x) (pi(x) = d;). We can accordingly single out in NL

the subset of those statements which are consistent with the
last-named one. That subset will be symbolized N"%, hence
N'"=N —N".

L

Assume that the sets Np‘, sz, i N’* are pairwise disjoint,
so that they have no elements in common. Since it is true for
any sets A,B,C that if B is disjoint with C and BUC = A, then
the sets (A — B) and (A — C) are not disjoint, hence it may be

assumed that if N1UN"2U ... UN"* = NL. Then there are in NL

statements which are in NMIHN”'?-, N'"nN""2n...n

N'?¢ Thus the set NL of laws contains statements which are

consistent with the statements: (x) (p;(x) = dy); (%) (pi(x) = d))
and (x) (ps(x) = ds)i ...; (X) (p1(x) = di) and (x) (pa(x) = db)
and ... and (x) (px(x) = dy).

The following definitions will now be adopted:
xeU® if and only if x satisfies every law in the set NL

and at least some of those laws are satisfied by x non-vacuous-
ly; hence, for every i: pi(x) # d.
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xeU® if and only if x satisfies every law in the set N*"!
and at least some of those laws are satisfied by x non-vacuous-
ly, and moreover p;(x) = d;; hence for every i > 1: pi(x) = d;.

xeU® if and only if x satisfies every law in the set N*”1n

N'" and at least some of those laws are satisfied by x non-
vacuously, and moreover p;(x) =d; and p:(x) = ds; hence,
for every i > 2: pi(x) # d,.

xeU® if and only if x satisfies every law in the set N**in

N""0...AN"" and at least some of those laws are satisfied
by x non-vacuously, and moreover p,(x) = d; and ps(x) = ds
and ... and pi(x) = d;.

The set U? is the set individual objects which forms the
universe of discourse of the intended model of the system of
knowledge KL' The set U® may consist of physical objects,

human beings, factories, etc.

The elements of a set U? will be termed ideal types of the
i-th order of objects from U on the strength of the set of laws
NL and the sequence of open sentences p;(x) = d;, ..., pi(x) = d..

These open sentences are idealizational assumptions.

Let the set U be the union of the sets U@, UM, ., U®, and
let S; and S; be two ordering relations (i.e., relations which
are asymmetrical and transitive) defined in that set. A relation
Q; (for j =1, 2) is defined as a relation which satisfies the
condition: xQ;y if and only if ~(xS;y) and ~(yS;x). Assume
also that Q; is transitive. The relation Q; thus defined is an
equivalence relation in U, and hence divides that set into a
set A; of equivalence classes such that A; is a partition of
U. A; is ordered by an ordering relation C; which holds be-
tween two equivalence classes if and only if every element
of one class precedes, under relation S;, every element of the
other class.

Consider now two subsets L; and L; of the set R of real
numbers, which are ordered by the relation “less than" sym-
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bolized <. Let F and H be two functions defined on the set U
which take as their values elements of the sets L; and L,
respectively. Moreover, for any equivalence class Z of A;: if
xeZ and yeZ, then F(x) = F(y). The same holds for H.

Consider now the domain:

Dﬂ 7 <U(0)| RF Sl(o)r SE(O)I Llr I"2| F(n)l H(m >,
where

U® — the set of individual objects;

R — the set of real numbers;

S;@ — relation S; restricted to U® (i.e., xS;@y if and only if
xS;y and xeU®© and yeU®);

F©® — function F restricted to U® (i.e, F®(x) = n if and
only if n = F(x) and xeU®);

H®©® — function H restricted to U©,

The domain D, is termed an empirical domain if and only if
it is a submodel of the intended model of the system of knowl-
edge KL (which covers, among other things, the laws from the

set NL)’ i.e, if U® is a subset of the universe of that intended
model.

Consider further the domain:
Dj! = <U®M, R; $,M, $,, L, L, F®, HO >,
where

- UM — the set of ideal types of the first order (under NL

and the assumption p;(x) = d,) of individual objects which are
elements of U®;

S,V — relation S, restricted to U®;
F(" — function F restricted to U®;
H® — function H restricted to UM,
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The domain D,! will be termed a domain of ideal types of
the first order under Nr. and the idealizational assumption

p1(x) = d; if and only if it is a submodel of the intended model,

namely N'”1, to which the statement (x) (p:(x) = dy) is joined.
Domains of ideal types of higher orders, namely Dok P oo

D’o’l, ..;, Pr-1, are formed analogically until the domain

Dyl ...py = <U® R;S,® §,® L, Ly, F® H®>
is reached, where

U®W — the set of ideal types of k-th order (under NL and
the sequence of idealizational assumptions p;(x) = d, ..., px(x)
= d;) of individuals which are elements of U©; the other
constructs with the index 'k’ are restricted to U®,

That domain is termed the domain of ideal types of the k-th
order (under NL and the sequence of idealizational assump-

tions py(x) = dy, ..., px(x) = d;) if and only if it is a submodel

of the intended model of knowledge N*"*NN*"n..nN""%,
to which the statements (x) (pi(x) =dy), ..., (X) (Px(x) = di)
are joined.

An idealizational law (*), under the knowledge NL and the

sequence of idealizational assumptions p;(x) = dj, ..., px(x) =
d;, is a synthetic statement in the form:

(2) p1(x) = di/\...Apx(x) = dr — F(x) = H(x).
Or in the equivalent form:

(3) F®(x) = H® (),
interpreted in the domain of ideal types of the k-th order,
Do,

If an idealizational law is non-vacuously satisfied in that
domain, then that domain is termed an ideal model of that law.
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From a researcher's point of view, formulation of idealiza-
tional laws is not, obviously, a goal in itself. Idealizations
are used in order to construct a “model” of those empirical
facts in which the researcher is interested, a “model” which is
simplified enough to bring out certain simple relationships
which are hypothetically stated in the idealizational laws.
But such laws are merely points of departure toward a recon-
struction of the empirical facts in question. These laws are
accordingly subjected to concretization: the idealizational
assumptions are removed one by one, which brings the laws
closer to facts, and appropriate corrections of the laws, re-
sulting from the removal of those assumptions, are introduced.
Concretization thus yields an idealizational law (and, in the
limiting case, a law free from any idealizational assumptions,
i.e., a factual law) interpreted in a domain of ideal types of a
lower order (and, in the limiting case, in an empirical domain),
but at the same time more complex, i.e., taking into account a
greater number of those factors which determine the facts in
question. ()

These somewhat intuitive formulations can be presented
in a more precise form: given an idealizational law in the
form

(4) FOx) = HO(x)

the principle of co-ordination of the term ‘Fé—1' with the term
‘F@" is a theorem in the form:

(C) Fi—D(x) = o(F?(x), O(llpi(x)] — Idill)),
such that
1. ¢, O are definite numerical functions,

2. the variable ‘'x’ in the contexts 'F—(x)" and 'p;(x)' ranges
over the set UD of ideal types of the i-1-th order, and in
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the context 'F¥(x)’ it ranges over the set U® of ideal types
of the i-th order,

3. if lIpi(x)| — Idill = 0, i.e., if pj(x) = d;, then
@(FP(x), O(lpi(x)| — Idill)) = F?(x).

Nor it is excluded that the function © may satisfy the condi-
tion:

O(lpi(x)| — Idll) = llpy(x)| — ldill.

Let the intuitive concepts which underlie the above defini-
tion be explained in the simplest case, when i = 1. Then, as
the principle of co-ordination indicates, the value of the func-
tion F for real objects (i.e., the value of the function F®) de-
pends on the value of that function for the ideal types of the
first order (i.e., on the values of the function F®") which satisfy
the idealizational assumption p;(x) = d;, and on the degree in
which those real objects come close to those ideal types with
respect to p;. That "degree of proximity” can be measured by
the absolute difference between the extreme value of the
function p, (which only ideal types have) and the value of
that function for real objects.

Now a sirict direct concretization of the idealizational law
(4), as restricted to the set of factual laws NL. is, under knowl-

edge KL. a theorem
(5) F(k—i)(x] = G(k—l)(x]

(for k=1, 2, ...), restricted to NL' such that knowledge KL

includes the principle of co-ordination of the term 'F*—1 with
the term ‘F®', The said principle, taken together with (4),
yvields (5). If a law T; is a direct concretization of a law Ts,
and if Ty is a direct concretization of a law T;, then T; is an
indirect concretization of T,. If a sequence of idealizational
laws Ty, Ts, ..., T,._1, such that each law is a strict direct con-
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cretization of the preceding law, ends with a factual law T,,
then T,, is termed the final concretization of T;.

Certain comments will now be added to the above. Note
first that when we construct an ideal model of an idealizational
law in the form of (3), i.e., when we construct the domain

Do "'k, we proceed in a sense in the reverse direction to that
in which we proceed when we concretize that law. This is so
because when we construct the domain of ideal types of the

first order, Dy!, we in a way “suspend’ that part of our initial
(factual) knowledge NL which is at variance with the first

idealizational assumption, namely p;(x) = d;. Thus the domain

Dgl resembles the factual domain Dy in all respects described
in theorems of knowledge NL and not questionated by the

said assumption. It differs, however, from D, in that the objects
which are in its universe, i.e., objects from the set U®, do not
have the properties described by statements in the set which
is questioned by the said assumption, i.e., statements in the

set N''. When constructing the domain D;'”? we move still
farther away from the domain Dy: the elements of the set U®,
i.e., ideal types of the second order, have still fewer properties
in common with the real objects which are elements of U®,
They have neither those properties of real objects which are
precluded by the idealizational assumption p;(x) =d;, or
those which are precluded by the idealizational assumption
pe(x) = ds. Nevertheless certain common properties do remain,
namely those which are described by those statements of the
set N which are not questioned by either of these two idealiza-
tional assumptions. The ideal types of the k-th order, i.e.,
elements of U%®, have fewest properties in common with real
objects; they accordingly bear least analogy (if compared with
ideal types of lower orders) to the real objects from the set
U®, Nevertheless certain common properties do remain even
here, namely those which are described by those statements
in N which are not questioned by any of the k idealizational
assumptions adopted. Now when concretizing an idealizational
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law we pass from those objects which least resemble real ob-
jects to objects which bear more and more resemblance to the
latter as they have an increasing number of properties in com-
mon with real objects. While previously, when carrying out the
idealization, we were in a position — at the cost of moving
away from facts H to formulate simple relationships between
the magnitudes we are interested in, now, coming closer to
facts (i.e., taking into consideration objects which bear more
and more resemblance to real ones), we must make those
simple relationships more and more complicated by intro-
ducing appropriate corrections. In the limiting case of final
concretization we remove all the idealizational assumptions of
the idealizational law now subject .o concretization and we
deduce a factual law from it. The degree of the resemblance
the objects studied in the successive stages of concretization
bear to real objects increases in the process from a minimum
(in the case of the ideal types of the highest order) to a maxi-
mum, i.e., identity (when the last stage of concretization has
been achieved). The conceptual construction described above
accordingly guarantees the preservation of the intuitive idea
that when concretizing an idealizational law we speak, ia the
successive stages of the process, about objects (which, useless
to add, are 'fictional constructs” as are numbers and other
similar concepts) bearing increasing resemblance to real ones.

Idealizational laws are sometimes applied to real objects if
the latter come “sufficiently close” to corresponding ideal
types, but, strictly speaking, in such a case what is applied is
not idealizational laws but certain theorems connected with the
latter.

Given an idealizational law (4), a theorem in the form:
(g ) (%) (P S AL APi(x) S = [FO(x) — FO(x)[<e),

or in the abbreviated form:

.....
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(where ay,...,a;¢ are numbers, fixed in advance, which indicate
the measures of permissible deviations) is termed an ap-
proximation principle for the idealizational law (4). In current
language, that principle might be formulated thus: if the real
objects under consideration have properties that come ‘‘suf-
ficiently close” to the extreme properties shared by ideal types,
then the real value of the function F is “sufficiently close” to
the theoretical value of that function, as established by the
idealizational law. Obviously, it depends on the researcher's
decision what definite value is assigned to those deviation
measures. He usually sees to it that they be not “too large".
Nor are such numbers always fixed explicitly: in the human-
ities and the social sciences that approximation principle
works only roughly.

Assume now that idealizational law (4) has its approximate
concretization ,formulated under an approximation law) in a
law in the form:

(6) (x) (P1(¥)SuN...Api(x) <o; = [FO(x) —H?(x)|<¢)
or in the equivalent form:

(x) (F© (x):H(f))
b O g

which follows from (4) and from (K, ).

The concepts introduced above make it possible to formulate
a model of explaining empirical facts by means of idealiza-
tional laws. The explanation follows the schema:

T® JTED | ATO~TOAP > E,

where T is an idealizational law with k idealizational assump-
tions, T* is an idealizational law with k —1 such assump-
tions, T® is an idealizational law with i idealizational assump-
tions, T® is factual law (i.e., a law free from idealizational
assumptions), P stands for the initial conditions of the factual
law in question, E is the explanandum, — stands for the rela-
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tion of strict concretization, and ~, for that of approximate
concretization.

The above schema is, obviously, not quite general as it
pertains to explanation of observation theorems (or, at least,
factual theorems) by means of single laws. It is, however,
possible to make it so general that it should cover explanation
of idealizational laws by means of sets of idealizational laws.

Note also in this connection that concretization of idealiza-
tional laws is a method of testing them. This is so because
from an idealizational law treated as the initial law and from
the appropriate principle of co-ordination we deduce a less
abstract idealizational law (one with fewer idealizational as-
sumptions). The latter, taken together with the appropriate
principle of co-ordination, serves us to deduce a still less
abstract law, etc. If the final concretization is possible, then we
we arrive at a factual law which can be tested in the ordinary
way by deducing observational consequences from it and by
finding out whether they really are true. If this is so, the entire
hierarchy of idealizational laws, including the initial one, is
thus confirmed, If not, then at least one element of that hierar-
chy (not necessarily the initial idealization law: it may be,
for instance, one of the principles of co-ordination) is a false
statement. If such a final concretization cannot be carried out
(and this seems to be an exception-free rule in the social
sciences), then after a number of steps consisting in strict
concretizations an approximate concretization is carried out
as the last step, which does not affect the above argumentation
in any way whatever.

Note also that this approach to testing makes it possible to
explain the role of experiments in the empirical sciences. It
seems that experiments are made in order to test those ap-
proximation laws which are not applicable under natural con-
ditions, so that their corresponding idealizational laws are not
subject to empirical verification. In other words, an ap-
proximate concretization in the form of (6) is deduced from
an idealizational law in the form of (4). If no real objects such
that satisfy the antecedent of (6) can be found, then the re-
searcher tries to ensure such experimental conditions that
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certain specified objects should satisfy that antecedent (thus,
for instance, to ensure that given objects be “sufficiently
black"”, as it is known in advance that they would never be
perfectly black, that the resistance of the air be “sufficiently
small”, as it is known in advance that physical vacuum is not
obtainable, etc.). If such conditions are ensured, then the re-
searcher can find out whether the consequent of (6) is satis-
fied. If it is not, and if the researcher does not decide to apply
less stringent criteria of testing by adopting a weaker prin-
ciple of approximation, then he must reject law (4) as false.
It is useless to add that testing may apply not to a statement
in the form of (6), but to a consequence of such a statement. (¥

3

It will be demonstrated now that the concepts introduced
above make it possible to reconstruct the structure of certain
laws of science and the method of explaining empirical facts
by means of those laws.

Consider Clapeyron's law, which in handbooks on physics
is formulated thus:

() pv = NT,

where p stands for the pressure of a portion gas, v stands for
its volume, N, for the gas constant, and T, for temperature.

Now, as physicists claim, Theorem (7) is not satisfied for real
gases as they occur in nature. In other words, Theorem (7) does
not hold in the empirical domain

Fo= <U®©, R; $,©,8,® S, L, L, Ly N, p@, v, TO>,

where U@ stands for the st of portions of real gases; R, the
set of real numbers; $;@, S,©@, S;(@, the relations, defined on
U®, of having a lower pressure, smaller volume, and lower
temperature, respectively (these relations make it possible to
define ordered sets of equivalence classes, A;©@, A;©@, A;©@,
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of sets of portions of gases having the same pressure, volume,
and temperature, respectively); L;, L;, L;, definite subsets of
the set R of real numbers; N, the number 22.4/273, designated
in R; p©, a function defined on A;® and with values in L;;
v(®, a function defined on A,©® and with values in Ly; T©®,
a function defined on A3 and with values in L.

But the phycisists claim at the same time that Theorem (7)
does hold for what they term perfect gases, i.e., gases which
have the following two properties: their particles are mate-
rial points, and there are no interactions between those
particles, so that the inner pressure of those gases equals zero.
Thus the physicists adopt the following two idealizational as-
sumptions:

P1: Pu(x) =0,
pe: Vup(x) =0,

i.e., the inner pressure of gas particles x equals zero, and
the proper volume of gas particles x equals zero. These as-
sumptions are, obviously, not satisfied by any gas portion in
the set U®, as the domain F, is a submodel of the intended
model of physical theory TL which includes, inter alia, the

following two factual laws:
(8) (x) (Pu(x) > 0),
(9) (%) (vu(x) > 0),

Thus, by adopting the idealizational assumption p; the physi-

41

cist pass to a system of knowledge T'", ie., that part of TL

which does not cover statements which are inconsistent with
the statement

(10) (%) (Pu(x) = 0).

The intended domain of that system of knowledge with the
statement (10) joined to it is the domain:
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le = <UD, R; §;D, S, §;M L, Ly, Ly, N, p®, v, TO >

the universe of which are the first-order ideal types of real
gases (under the assumption p;). U® includes those gases
which satisfy the idealizational assumption p;, i.e., which have
particles that are material points. Apart from this and from
those properties which are incompatible with having particles
in the form of material points (such as the compressibility and
expansibility of particles, the fact that the particles occupy a
part of the container in which the gas is kept, etc.) those ideal
types have all the properties of the portions of real gases in
U®, in particular, definite interactions take place between
the particles of those gases (in accordance with (8)). Thus the
gas portions in U® differ from the real gases as to the property
described in p;, while they resemble real gases as to the pro-
perty described in p;. The other constructs which occur in the

domain le are analogous to their counterparts in F, with
the proviso that they refer to the set U®,

Since, as the physicists claim, two conditions are necessary
to define a perfect gas for which the Clapeyron equation holds,

it is obvious that the domain F:‘ also is not a model of Theo-
rem (7). This is why the physicists, by adopting the idealiza-

tional assumption p,, pass to a system of knowledge T "' NT" ",

that is, that part of T'"t which does not cover statements
incompatible with the statement

(11) (x) (vu(x) = 0).
The domain
Flz:]'pz = <U(2)| Ri Sl(z)l S2(2)r S3(2)r Lll LE: LS! Nr p(z)r v(?)' T(2)>v

the universe of which are second-order ideal types of real
gases, i.e., perfect gases (in view of the assumptions p; and ps),
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is a submodel of the intended model of that knowledge with the
statements (10) and (11) joined to it. This is so because the
elements of U® are those gases which satisfy the assumptions
p1 and p: and also satisfy those statements in TL which are

compatible with (10) and (11), i.e., those gases which satisfy

the statements in the set T INT"%,. They do not have those
properties of real gases only which are described by state-

ments in the set TFIUT”?, that is, those factual laws which
are incompatible with (10) or with (11). Theorem (7) is true in
that domain, since such is a possible explanation of the phy-
sicists’ claim that Theorem (7) holds for perfect gases.

The above shows that Clapeyron's law is an idealizational
law, whose full formulation is:

(12) (%) (Pw(x) = 0AVu(x) = 0—> (p(x) v (x) = NT(x))).

That law is accordingly satisfied vacuously in the domains F,

and F;!, and is nonvacuously satisfied in the domain Fo''.
Consider now how real facts in the sphere of gases are ex-
plained by reference to Clapeyron's law (12).

Law (12) may also be written thus:

(13) p@(x)v@(x) = NT® (x).

Now physicists do not use Clapeyron's law in direct explana-
tion of empirical facts, but deduce from it van der Waals’
equation which they claim to be applicable to real gases.
Hence Clapeyron’'s equation is termed the equation for per-
fect gases, and van der Waals’ equation, the equation for real
gases. Now, as handbooks on physics usually inform, van der
Waals arrived at his equation by taking into account two
differences between the real and the perfect gases. The first
of them, namely the dimensions of the particles, is manifested
in the fact that the particles move less freely in the container
in which a given portion of gas is kept than they would if they
were points. The volume left for the free movements of the
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particles is less than the geometrical volume of the container,
the difference being a certain magnitude b. Hence when taking
into consideration the effect of the proper dimensions of the
particle the researcher ought to replace the volume of the
molecule v by the magnitude v—b, which yvields

(14) p(v—Db) = NT. ()

Note in this connection that fairly complicated calculations
show that the said magnitude b equals the fourfold proper
volume of the particles.

The second difference between the real and the perfect
gases consists in the interaction forces between particles. This
results in the fact that those particles which are at a certain
distance from one another attract one another. Because of
these attraction forces a given portion of gas occupies a volume
v which is less than Clapeyron's law would indicate. It is
so as if the gas were under a greater pressure p' than the
external pressure exerted by the walls of the container. Hence
in formula (14) the external pressure ought to be replaced by
the magnitude p° = p + p,,, which yields

(15) (p+ pw) (v—b) = NT.

The magnitude p,, is termed the inner pressure of a gas. (*)

This method of deducing van der Waals' law, which was pre-
sented above in a rather intuitive way, will now be recon-
structed with greater precision.

Clapeyron's law (13) may also be written thus:

NT®(x)

p(2) (X)

(16)

= vO®(x).

Now, as physicists claim, Theorem (7) is not satisfied for
concerned with the proper volume of the particles, the re-
searcher assumes the following theorem
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NT®(x)  NT®(x)
() pP(x) " pP(x) — s(v(x)),

where s(v,(x)) may be interpreted as that magnitude by which
the volume left for the free movements of the particles is less
than the geometrical volume of the container (); in other
words, it is the magnitude of the volume occupied by the
particles of a gas portion x with a proper volume v,,. It turns
out that

(17) S(Vo(X) = 4V, (x).

The magnitude s(v,(x)) thus corresponds to the correction b,
mentioned above. Now, in view of (16) and (17), (k2! yields:

(18) PP (x) (V¥ (x) — 4vy(x)) = NT®(x).

Theorem (19) is, as can be seen, a reconstruction of Theorem
(14). That theorem has as its ideal model the domain of first-

order ideal types, Fo'. It can also be seen that Theorem (18)
is a concretization of Clapeyron’'s law (16) under the idealiza-
tional assumption ps.

Theorem (18) may also be written thus:

NT®(x)

= pd
19) vA(X) — 4v,,(x) PO).

The removal of the idealizational assumption p, assumes the
adoptation of the following theorem:

NTO(x) _ NTD(x)

(kl_o) 2)
VO(X) —4v,(x)  VO(x) — 4v,(x)

+ Pu(X),

which, together with (19), yields:

(20) (PP (x) + Pu(x)) (V®(x) — 4vy(x)) = NTO(x).
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Now Theorem (20) is precisely a reconstruction of van der
Waals' law (15), which law is said to be a factual law, non-
vacuously satisfied in the empirical domain F,.

It can easily be noted that the above analysis leads to the
conclusion that van der Waals' law is a concretization of
Clapeyron's law. The statements (k') and (k') are co-ordina-
tion principles for the terms in question, and Theorem (20) is
a logical consequence of Theorem (16), and hence van der
Waals’ law is a concretization of Clapeyron's law.

Van der Waals' law, being factual in nature, serves directly
to explain empirical facts. Hence the full schema of the ex-
planation of the behaviour of real gases, as observed by the
physicists, may be reconstructed thus:

(16) —(18) = (20) AP — E.

As can be seen, this is a special cases of the schema of explana-
tion as described in the preceding Section, a case in which we
can do without an approximate concretization, so that the
factual law in question is a concretization sensu stricto of
idealizational laws (of course, on the assumption that condi-
tions p, and p, are the only idealizational assumptions in
Clapeyron's law).

Leszek Nowak

NOTES

() What is claimed in this paper is more e)&.tehsively presented and sub-
stantiated (with examples drawn from the various empiﬁcal disciplines) in
The Foundations of the Marxian Methodology of Sciences by the present
writer (in Polish), Warsaw 1971. .

(*) The concept of idealizational laws as counterfactual conditional sen-
tences was formulated independently by J. Kmira in Selected Methodological
Issues of Interpretation in the Humanities and the Social Sciences, (in
Polish), Warsaw 1971.

(}) The present writer is indebted to J. Kmita for the basic idea of this
concept of concretization, which consists in correcting the theorems sub-
jected to concretization.



IDEALIZATIONAL LAWS AND EXPLANATION 545

(*) Note that Hempel's model of explanation does not cover explanation
by reference to idealizational laws. According to Hempel, a theorem which
is idealizational in nature is valid as an instrument of research if it is a
special case of a non-idealizational theorem (cf. C.G. HemPEL, Problems
of Concept and Theory Formation in the Social Sciences, in: Science,
Language and Human Rights, Proceedings of the American Philosophical
Association, Vol. 1, Philadelphia 1952, pp. 81 ff.). Hence, should an idealiza-
tional law I imply any statement E, then it could be an explanation of E
on that condition only that a non-idealizational (i.e., factual — in the termi-
nology adopted in the present paper) theorem F, of which I is a special
case, has been proved. But then E is explained by F which bears out the
fact that according to Hempel idealizational theorems do not participate
in explanation. But if this is so, then it is difficult to say what purpose they
serve in science. A more comprehensive criticism of C.G. Hempel's ideas
on idealization and explanation is to be found in The Problem of Explanation
in Carl Marx's ‘Capital’, by the present writer, "Quality and Quantity", vol.
V,n" 2,

(®) The discussion of the problem in the physics of gases is based on
a Polish translation of the Russian-language Course in Physics, Vol. 1,
by S. Frish and A. Timoreva, mainly on the data to be found on pp. 237-8
of the Polish version, Warszawa 1962.

(%) Ut supra.

() Ut supra.



