TWO NEW INTERPRETATIONS OF MODALITY

James W. GarsoN

1. Topological logic (*)

It is possible to develop new semantics for modal logic by
taking our cue from semantics designed for topological logics.
In topological logic, an indexed operator ‘T' is added to the
notation of propositional logic, along with an infinite set
X = {x', x", ...} of index variables. The formula 'Txp' is read
'p is the case as of x', where the index 'x' might range over
dates, positions, coordinates of space-time, or the denotata
of indefinite expressions such as ‘forty years ago’ and ‘forty
feet from here'. Quantifiers are introduced over the index
variables, but there are no individual variables or predicate
letters.

Throughout this paper, the letter 'p’ ranges over proposi-
tional variables, the letter 'x', over index variables, and the
letters 'A’, 'B’, and 'C’, over formulas of topological logic. The
formulas of topological logic have the forms p, — A, (A — B),
TxA, and VxA. The other logical constants are introduced by
definition in the usual way.

To provide semantics for topological logic, let a D-model U
be a pair <D, u> consisting of a non-empty set D of conlex!s
(dates, places, or what have you), and an interpretation func-
tion u which assigns a truth value to each proposition in a
context. So u is a function from D X P into the set {0,1} of
truth values, where P is the set of propositional variables.
(u: D XP—>2) A valuation v is a function from X into D.
(viX—=D)

We use letters 'b’, 'c’, ‘'d’, and ‘e’ as metavariables over D,
and letters 'v' and 'w’ as metavariables over valuations. The
symbols ‘3, '(x)', ‘D', ‘&, ‘~', 'iff, and '€’ are used in the
metalanguage with their usual interpretations. A quantifier
which binds a variable in the metalanguage is taken to be
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restricted to its corresponding set; so, for example, '(d)’ abbrevi-
ates '(d)ED'.

The predicate |=‘;“A (read ‘the formula A is true on model
U at context d on valuation v') is defined recursively as
follows:

i. Eapiffu(d p) =1
ii. =y —B iff ~E=2'B
iii. g (B—>C) iff EYBD =4'C

iv, |=EVVxB iff (w)(w=,v>D |=ng), where w = v iff w
agrees with v for all values other than at x.

A final clause is need governing the truth conditions for
formulas of the form 'TxB'. If 'x’ is thought of as ranging over
dates or spatial coordinates, then we would like TxB to be true
in context d just in case B is true in the context denoted by x:

D-v. =4 TxB iff k=B

A formula A is D-valid iff (v)(d) 1=§"A on every D-model U.

However, x may range over the denotata of indefinite ex-
pressions (like ‘forty feet from here’), where the denotation
of x is not taken to be a context but rather a function from con-
texts to contexts. Then an F-model should be a triple <D, u, F>
consisting of a domain D of contexts, and an interpretation
function u as before, and a non empty set F of unary functions
from D into D. Then a valuation assigns to each variable a
member of F. We use letters 'f', 'g’, and 'h’ as metavariables
over F. The sentence 'B is the case as of forty years ago' is true
in the context 1970 just in case B is true in the context obtained
by applying the function denoted by ‘forty years ago’ (the func-
tion f(d) = d — 40) to 1970. So in this case the truth clause for
formulas of the form TxB should read:

F-v. 3 TxB iff £ B,
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where v(x)(d) is the result of applying the function v(x) to d.

A formula A is S(F)-valid (S(F)-satisfiable) iff =3 A at every
(some) v and d, on every (some) F-model U such that S(F). Let
C(F) be the condition that F is the set of constant functions
on D. It is not difficult to show that A is D-valid iff A is
C(F)-valid.

2. Semantics for modal logic

Now let us turn to modal logic. Suppose that D is the set of
all possible worlds, i.e. the set of all positions in logical space.
Then 'TxA' receives the interpretation 'A is the case as of
possible world x'. The box may be introduced by definition into
the notation of topological logic through the standard definition
of necessity:

Defd: OB = VxTxB.

So the formulas of modal logic are taken to be certain closed
formulas of topological logic. Semantics for modal logic may
be obtained simply by defining as valid the modal formulas
of topological logic which are either D-valid, or S(F)-valid.

If we choose the first alternative, the truth condition for
modal formulas of the form OB is

D-vi. =y OB iff (e) =y B,
Uv _ ., Uv . Uw "
for =4 OB iff =4 VXTxB iff (w)(w =,vo k=, TxB)iff

(W)(W =x VO EmoB) iff (e)=2"B iff (e)l="'B, since B is a
modal formula, and hence contains no free variables. We may
design a semantics specifically for modal formulas using the
notion of D-validity, by choosing truth clauses i, ii, iii, and
D-vi, deleting mention of valuations. The result is the familiar
semantics for S5, hence the D-valid modal formulas are exactly
the theorems of S5.

Weaker modal systems may be captured semantically using
the notion of S(F)-validity. Then the truth condition for OB is:

F-vi. f=y OB iff (f)l=pyB,
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since k=4 OB iff =y VXTxB iff (W)(w =.v>D =y TxB) iff

(W)(W =< VD Ewto@B) iff (f)=rB iff (f)i=1pB. Semantics for
modal formulas alone is obtained by deleting mention of valua-
tions in truth clauses i, ii, iii, and F-vi.

The resulting semantics is a denotational version of the
transformation semantics developed by van Fraassen (%), al-
though it was discovered independently. Here we introduce a
set F of unary functions (transformations) where Kripke would
introduce a binary relation R. Kripke semantics may be defined
in a simplified version (*) as follows: A K-model is a triple
<D, u, R>, where D and u are as before and R is a binary
relation on D. The truth clauses are i, ii, iii, (with mention of
valuations deleted) and

K-vi. =y0B iff (e)(RdeD ="B).

In Kripke semantics each axiom (A) of modal logic corres-
ponds to a condition A(R) on R so that when KS is the system
K plus axioms (A4), ..., (A,), and S(R) is the conjunction
A{(R)&...&A,(R) of their corresponding conditions on R, then
FksA iff A is S(R)-valid. (The system K consists of the prin-
ciples of propositional logic, the necessitation rule: ~A>
~0A, and the axiom O(A — B) - (OA — OB))

The same is true of the modal semantics just presented. Each
modal axiom (A) corresponds to a condition A(F) on F so that
when DS is D plus axioms (Ay), ..., (A,) and S(F) is A(F)&...&
A.(F), then rpsA iff A is S(F)-valid. (D is K plus the axiom
(D): OA—<A) A list of some common modal axioms and
their corresponding conditions on R and F follows: (¥)

(D) OA—> A D(R) JeRde D(F) F = 0 ()

(T) DA—>A  T(R) Rdd T(F) 3f(f(d) = d)

(4) OA— OOA 4(R) Rbc&RcdDRbd 4(F) I f(g(h(d)) = £(d))
(B) A— OOA  B(R) RdeoRed B(F) 3f(f(g(d)) = d)

(E) OA— OOA E(R) Rbc&RbdSRed E(F) I f(f(g(d)) = h(d)).



TWO NEW INTERPRETATIONS OF MODALITY 447

In general we may produce A(F) from A(R) by the equi-
valence:

RF Rde iff Jf(f(d) = e).

The reader may easily verify that the conditions on F in the

above list are equivalent to the result of replacing 3 f(f(d) = e)

for Rde throughout in the corresponding condition on R.
‘We now intend to prove the above assertions. We will prove

Theorem 1. A is S(F)-satisfiable iff A is S(R)-satisfiable, where
S(F) is the translation of S(R) by RF, and where S(R) entails
D(R).

Proof. (left to right) We are given that A is S(F)-satisfiable, so
there is a model Ur = <D, u, F> and a context d such that

S(F) and I=§FA. ‘We may produce a Kripke model Ui from Uy

such that S(R) and 1=EKA, by letting Uy = <D, u, R>, where
R is defined by RF: Rde iff 3 f(f(d) = e). Clearly S(R) holds in

this model. We prove that t:EKA by showing }:EKA iff I=§FA
for all deD, using an induction on the form of A. The proof is
straightforward, and the only case worth reviewing is the one

where A has the form [B. But lngDB iff (e)(Rde> l:SKB} iff
(e)(Rde> t=EFB) (by the inductive hypothesis) iff
(€)(3f(f(d) = e)D=4FB) (by RF) iff (f) |=:’(§)B (by identity

i
theory) iff =4FOB.
(right to left) We are given that A is S(R)-satisfiable, so
there is a model Uy = <D, u, R> and a context d such that

S(R) and thA. Now we define Uy from Ui so that S(F) and

=9FA, by letting Ur = <D, u, F>, where F is defined by
Defy: f€F iff f: D — D & (d)Rdf(d).
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Now we show that Uy is such that S(F) by proving RF. (Clearly
if S(R) holds and RF holds, then so does S(F), since S(F) results
from replacing 3f(f(d) = e) for Rde in S(R).) The proof of RF
follows: Suppose Rde. Let the function g be defined by
g(d) = e and g(c) = b, for ¢ #+d, where b, is a member of D
chosen so that Rcb,. That such a b, can be located for each
ceD is a consequence of the assumption that S(R) entails
D(R), hence JeRce. Now geF, for Reg(c) for all ceD, because
when ¢ =d, g(c) =e, and we have that Rde, and when
c*d, g(c) =b, and b, has been chosen so that Rcb,.
So it follows that 3If(f(d) = e), namely g. Now suppose
1(f(d) = e). Then Rdf(d). But f(d) = e, so Rde. With RF in hand

we may prove lngA exactly as in the previous case.

Theorem 1 amounts to a consistency and completeness proof
with respect to the semantics of this section for any modal
system DS (as strong as D) for which we know the corres-
ponding condition S(R) on R in Kripke semantics. We may
simply use RF to produce the appropriate conditions on F for
this system, and then the completeness proof is a corollary of
Theorem 1 as follows: We will know that g iff A is S(R)-
valid. By Theorem 1, A is S(R)-valid iff A is S(F)-valid, hence
psA iff A is S(F)-valid.

The conditions on F resemble, but are weaker than the
following: '

T(F) 3f(d)(f(d) = d), (F contains the identity function.)

4'(F) 3f(d)(g(h(d)) = f(d)), (F is closed under composition
of functions.) '

B'(F) 3f(d)(f(g(d)) = d), (F contains inverse functions.)

E'(F) 3f(d)(f(g(d)) = h(d)).

It turns out that these stronger and more interesting condi-
tions may be substituted for their weaker counterparts, for
when this is done, the set of modal formulas defined as valid
remains unchanged. (°)

This is immediately apparent in the cases of T'(F) and 4'(F).
The proof that A is T(R)-satisfiable iff A is T'(F)-satisfiable
may be carried out as in Theorem 1, with the additional remark
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that since R is reflexive, it follows by Defy that the identity
function f; is one of the members of F. From fj(d) =d and
Rdd, it follows that Rdf(d). In the case of 4'(F), the proof is the
same save that now we must show that given Defr and the
transitivity of R, it follows that F is closed under composition
of functions. Let g and h be arbitrary members of F. By Defy,
Rdh(d) and Rh(d)g(h(d)). R is transitive so Rdg(h(d)); hence the
function goh such that goh(d) = g(h(d)) is a member of F.
The case of B'(F) involves complications because in order
for F to contain inverse functions, F must contain one-one
functions only. In this case we may define F in Uy so that
feF iff f is a one-one function from D to D and (d)Rdf(d). ()
This added restriction leads to difficulty, for we can no longer
show that RF, since the function g used to establish this might
not be one-one, and so not a member of F. (We have no as-
surance that b, = b; for any ¢ =+ d.) However, when we know
that R is reflexive as well as symmetric, (when the modal
system at issue is B or stronger) then we may let g be defined
so that g(d) = e and g(c) =c for ¢ = d. This function is clearly
one-one, and since Rcg, it is in F. Given a proof of RF we may

show that |=§FA as before. We must also show that S(F), which
will require (at least) a demonstration that F contains inverses.
But let g be any member of F, and let g be its inverse. Then by
the definition of F, Rg(d)g(g(d)), and by the symmetry of R,
Rg(g(d))g(d). Since g(g(d)) = d, we have Rdg(d), hence g=F.

In cases where we do not know that R is reflexive, but that
it is symmetric, we must resort to a more complicated strategy
involving two stages. First, for each K-model Ug, we show
how to define a new K-model U'x = <D’, u’, R"> which leaves
the set of valid formulas unchanged. This new model will be
constructed so that there are enough members of D' to insure
(in effect) that b, # by; then it will be possible to define a
one-one function g with which to demonstrate RF. U'k is defined
from Uk as follows. D' is defined recursively from D by sti-
pulating that D € D' and deD’' 5 {d}eD'. Then we provide
an association function a, which maps D' into D as follows:
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a(d) = d, ford=D, and
a({d}) = ba(d)r fordeD'.

So, for instance {{d}} (for deD) is associated with b”a by a,
where bbd turns out to be the member chosen for by such that
Rbdb,,d.

Now we may define u’' and R":

u'(d, p) = u(a(d), p) fordeD'.
R'de iff Ra(d)a(e) for d, eD".

A thoughtful inspection of this definition should convince one

v
that it is possible to prove k=a KA iff biﬁ)A, for deD’ by
induction on the form of A. As a special case of this we have

=1 EA iff E=4KA for deD (since a(d) = d, for deD.), whick
is all we need for the remainder of this proof. Now we define
Uy from U'g exactly as we did before. We let U'x and Uy agree
on their domains and interpretation functions, and we let F be
the set of one-one functions such that (d)Rdf(d). RF is then
proven as before save that g is defined so that g(d) = e and
g(c) = {c} for ¢ # d. This function is clearly one-one ({c} #
{d}, for ¢ = d.), so to show that it is in F, we need only show
that R'cg(c) for all ceD’. When ¢ = d, then g(c) = e, and we
have R'de; and when c = d, then g(c) = {c}, hence we must
prove that R'c{c} for all ceD'. But R'c{c} iff Ra(c)a({c}), and
a({c}) = by). Furthermore b,, has been chosen so that
Ra(c)bg, hence R'c{c}. Now that RF is established, we prove

that |=g’KA iff =gFA as before, which together with a pre-

vious result yields [=0KA iff [=uFA, hence k=sFA. Finally we
must show that Uy has the property S(F), which entails showing
that F contains inverses. But this proof may be supplied exactly
as before, once we note that the symmetry of R entails the
symmetry of R'.

In the case of E'(F) similar difficulties arise, and they may
be disposed of using the same strategies.
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So it is possible to provide consistency and completeness
proofs on F-semantics for the strong conditions on F for any
modal system DS, where S is a selection of the axioms T, 4,
B, and E. The proof may be carried out for any such system
using the two-stage strategy just outlined. When conditions
on R other than B are present, these conditions will remain in
force for R' and the corresponding conditions on F will follow
without difficulty. As we have seen, for most selections of
axioms, there are less complicated methods available.

3. A group theoretic semantics for modal logic (*)

Another semantical approach for topological logic has been
investigated. () It is somewhat less satisfying intuitively, but
it yields interesting results for modal logic. An F-model con-
tains a set F of unary functions on D. Instead, let us provide a
binary operation o on D, so that a o-model U is a triple
<D, u, o>, where D and u are as before. Then a valuation
assigns to each variable a member of D. (v: X — D.) The truth
clauses remain as in F-semantics save that the clause for
formulas of the form TxB reads:

0-v. 4 TxB iff |=urywB.

So TxB is taken to be true in the context 1970 just in case B
is true in the context one gets by applying o to 1970 and the
denotation of x. When x denotes — 40 (40 years ago), then
19700-40 might yield 1930.

If we define the box in topological logic by Defa, we obtain
the following truth condition for modal formulas of the form
OB:

o-vi. =g OB iff (¢) k=u,B.

The predicates S(o)-valid and S(o)-satisfiable are defined on
analogy with S(F)-valid and S(F)-satisfiable. Again modal
axioms correspond to conditions on o as follows:

D(o) 3edc(doc = e), But this is guaranteed, as o is an
operation.
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T(0) Je(doe = d),

4(0o) de((boc)od = boe),
B(o) 3Ie((cod)oe = c),
E(o) de((cod)oe = cob).

The condition A(o) may be obtained from A(R)} by the equi-
valence

Ro: Rde iff dc(doc = e),
which we will demonstrate in

Theorem 2. A is S(o)-satisfiable iff A is S(R)-satisfiable, where
S(o) is the translation of S(R) by Ro, and S(R) entails D(R).
Proof. (left to right) Let U, = <D, u, o> be a o-model which
satisfies S(0), such that |=IdJ°A. Let Ug be <D, u, R>, where

R is defined by Ro. Clearly S(R). We prove that =3KA iff [=u°A
by induction on the form of A, the interesting case being when

A has the form [OB: I:EKD‘B iff (e)(Rde> I"_-EKB] iff (e)
(Fc(doc = e)>k=,B) iff (¢)(c)(doc = eD=,°B) iff ()= o B iff

=q°OB.
(right to left) Let Ux = <D, u, R> be a K-model which

satisfies S(R), such that I=EKA. Let U, = <D, u, o> where
o is defined in terms of R by

doc = ¢, when Rdc, and
doc = by, when ~Rdc.

(We remember that by is chosen so that Rdbg.)

Now we must prove that S(o) by demonstrating Ro; Suppose
Rde, then doe =e and hence 3Jc(doc =e). Now suppose
dc(doc = e). Then either Rdc and e = ¢, or ~Rdc and e =b,.
In the first case Rde, and in the second Rdb;, hence Rde. Now
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we may prove ]=ldJKA iff E=3°A as in the previous case.
The conditions presented for o remind one of the stronger
conditions from group theory which follow:

T(o) 3 ieD (doi = d & iod = d), (D contains an identity ele-
ment.)

4'(0) (boc)od = bo(cod), (o is associative.)

B'(0) de(doe =1i), (D contains inverse elements.)

E'(0) Jde(doe = c).

Certain selections of these conditions may be substituted for
the corresponding selection of weaker conditions without
affecting the set of formulas defined as valid. There is no
problem with replacing T(o) with T'(0) as we show in

Theorem 3. A is T(o)-satisfiable iff A is T'(o)-satisfiable.
The proof from left to right is trivial. Now suppose that A is
T(o)-satisfiable, and let U = <D, u, 0> be a model such that

T(o), and let d be a context such that #-—-EA. Now we define

a model U’ such that T'(0) and k=4 A,by stipulating that U’ =
<D’, u', 6>, where D' = DU{i}, for some i not in D, where u'
agrees with u on arguments from D, and u’'(i, p) = 1 for all p,
and where 6 agrees with o for arguments in D, and i6d = d and
doi = d for all deD'. Now U’ satisfies T'(0), for i is an identity

element. We must now show that l=£ A, by proving that

(d)eD(th iff |=§ A), by induction on the form of A. The
interesting case is when A has the form [OB: I=§EITB iff (e)eD
|=§.,,,B iff (e)ethg.;eB (since 6 agrees with o over D) iff

(e)EDl=gée (by the hypothesis of the induction). All that is
needed to complete this case is a demonstration that (e]eD

=B iff () _ k4B, since (e) _ ksx%B iff =y OB. The
€D €D
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proof from right to left is trivial, and since D' =DU{i} we

need only show (e) o tzclijéeBD t=.lxj.siB. But do6i = d, and by T(o),

de _doée = d; hence () |=}ijéeBD |=3 B. As an immediate
€D eD

corrollary of Theorem 3 we have that A iff A is T'(0)-valid.
We turn now to the proof that the axiom (4) corresponds to
the associativity of o on this semantics.

Theorem 4. A is 4(o)-satisfiable iff A is 4'(o)-satisfiable.
The proof from right to left is again trivial. Let U = <D, u, 0>
be a model such that 4(o) and let d be a context such that

I=gA. Let U = <D’, u', 6>, where D’ is the set of all non-null
sequences d;...d, of members of D. To define u’, we provide an
association function a from D’ to D defined as follows:

a(d) = d, fordeD; and

a(de) = a(d)oe, for d=D' and e<D.
So, for instance, a(bcd) = a(bc)od = (boc)od, for b, ¢, dD.
Now we let u'(d, p) = ufa(d), p) and we define 6 so that
dée = de. Clearly 6 is associative, so we need only show that

t:g'A, which is a consequence of
L: oA iff =y A,

for since deD, and a(d) = d, we have LA iff =LA, L is
proven by induction on the form of A, the interesting case

being when A has the form OB: k0B iff ©_, = m@oeB

iff (e) s r:f(de)B (by the definition of a). Now if we can show
U . .

that (e)eD Fa@e)B iff [e)eD, l=f(.,e,B, the proof will be com-

plete since (e)eD_ I=E(de)B iff (e) - :=§LB (by the hypothesis

of the induction) iff (¢) _ k=B iff =4 OB. The proof of the
missing equivalence is trivial from right to left. Now suppose
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[e)ED t=g(de)B. Let c be any sequence d;...d, of members of D.

Then we must show that |=E(d,,]B. Now a(dc) = (...(a(d)od,)
...od;). By applying the condition 4(0): 3e((bocjod = boc) to
(-..(a(d)od;)...od,) n times, we may prove that there is a member
b of D such that a(d)ob = (...(a(d)od,)...0d,;). Now it follows

from (e)ED |=E(de)B that (E] &1 |=0:](d)0eB! and so ':tﬂd)ohB. But

a(d)ob = a(dc), hence I=E(dc)B, which is the desired result. As
an immediate corollary of Theorem 4, we have a consistency
and completess proof for the system D4, for by Theorem 2 we
have that A is D(R)&4(R)-satisfiable iff A is D(0)&4(o)-satis-
fiable. But D(o) is guaranteed by the definition of an o-model,
so A is D(o)&4(o)-satisfiable iff A is 4(o)-satisfiable iff A is
4'(0)-satisfiable. So it follows that - psA iff A is 4'(0)-satisfiable.

We will now provide what amounts to a consistency and
completess proof for the system S4 by proving

Theorem 5. A is T(o)&4(o)-satisfiable iff A is T'(0)&4'(0)-

satisfiable.
The proof is identical to that for Theorem 4, save that D' is the
set of all sequences of members of D, including the null
sequence - such that d - =d for deD’; and when it comes
to proving the missing equivalence, we must let ¢ be any
sequence of members of D, including -. When c¢ = -, we
procede as before, and when c = -, we have to show that

I=E(dc)B or }:E(G)B. But we know that o satisfies T(o) so

Je(a(d)oe = a(d)). So from (e)_ =@eB, We obtain B,
the desired result.

Unfortunately, similar results are not available for the condi-
tion B’(0), as the axiom (B) is not B'(0)-valid. (**) However, in
the presence of both T'(0) and 4'(0), matters improve, so that we
will be able to provide a consistency and completeness proof
for S5 by demonstrating
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Theorem 6. A is T'(0)&4'(0)&B’'(0)-valid > A is D-valid.
Proof. Suppose A is T'(0)&4'(0)&B'(0)-valid, i.e. — A is not
T'(0)&4'(0)&B’(0)-satisfiable. Suppose for reductio that A is
not D-valid, so there is a model U = <D, u> and a context d

such that |=§_ A. Now let us define a model U, = <D, u, 0>,
where o is defined as follows: First, we provide a one-one
mapping a from Re (the set of reals) to D. We may assume that
D is of the appropriate cardinality without cost, for if D is
smaller than Re, standard techniques will provide a model
with a larger domain on which — A is true at d, and further-
more D need never be of higher cardinality than Re, as those
who are familiar with Henkin-style completeness proofs for
modal logics will see, for the set of all maximally consistent
sets is equinumerous with Re. Now let us index each member
of D by letting d; be the unique d such that: a(d) = j. The
operation o is defined by:

djodx = dj+«k.

This operation has the three properties T'(0), 4'(0), and B'(0),

since + does. All that remains is a demonstration that l=g°— A,
for once this is shown, we will know that — A is T'(0)&4'(0)&

B'(v)-satisfiable, which completes the reductio. 1=g°—A may
be proven by showing E4A iff =u°A for all deD, the in-
teresting case being when A has the form OB. Then t=gl'_"|B iff
(€) =oB iff () v B (by the inductive hypothesis). Once we
show that (e) I:EIB iff (e) r:ff;eB, we will have completed the
proof of Theorem 6, for (e) k=B iff =° OB. The proof from

left to right is trivial. Now suppose (e) rzf;.,B, then (k) -
=

r=§’_.,d B, where d; = d. So (k) I=g; B. But the set of reals
ik €Re itk
has the property HIERe(j +1=m) for any j, m =Re. So
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’

U’ . U u’
(k) I=dj+kB entails I=dj+]B, hence I=de, for any meRe.

€Re
Since every member of D is indexed, it follows that (e) |=33J B.

Now that we have shown Theorem 6, we may show that
A iff A is T'(0)&4'(0)&B’'(o)-valid. The proof from left to
right may be carried out in standard fashion by induction on
the form of the proof of A. Now suppose A is T'(0)&4'(0)&B’(0)-
valid. Then by Theorem 6, A is D-valid; but we remember that
A is D-valid iff g5A.

We will now review the results concerning the strong con-
ditions when using o-semantics:

Modal System Conditions on o
T o has an identity element (Thm. 3)
D4 o is associative (Thm. 4)
S4 o is a semi-group (Thm. 5)
S5 o is a group (Thm. 6).

The author has verified that modal systems which contain
axiom (B) or axiom (E), and which are weaker than S5, are
not consistent when the strong conditions are used with
o-semantics.

4. Modality within topological logic

Once we have defined the box in topological logic via Def(d
it becomes possible to capture modal systems axiomatically
by choosing the appropriate system of topological logic. We
have proven in [3] that ~rqA iff A is D(F)-valid (iff A is
D(o)-valid), (') where TQ is the system formed from the prin-
ciples of quantificational logic plus the rule R: A > - TxA and
the axioms:

(—A)Tx—A—>—TxA

A—) —TxA—->Tx—A

(A=) Tx(A — B) — (TxA — TxB)
(AQ) VxTyA—>TyVzxA, forx #v.
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It follows by Theorem 1 (Theorem 2) that rrgA iff -pA when
A is a formula of modal logic.

Modal systems stronger than D can be captured in topo-
logical logic simply by adding the modal axioms not in D to the
system TQ. Let S be a selection of modal axioms and TQS and
DS, the systems that result from adding S to TQ and D res-
pectively. Then

Theorem 7. +psA iff +rqsA, for any modal formula A. (**)
The proof is trivial from left to right, for all the principles of
D are present in TQ, and axioms in S appear in TQS. The proof
from right to left is not trivial, for it might turn out that by
using principles and formulas of TQS not available in DS, one
might prove a modal formula not provable in DS. Suppose
FrqsA. It is easy to show the consistency of TQS with respect
to F-semantics (or o-semantics), hence ~rqsA DA is S(F)-valid.
But by Theorem 1, A is S(F)-valid © A is S(R)-valid, and this,
we know, entails that ~ psA.

University of Pennsylvania James W. GarsoN
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NOTES

() Topological logics and their semantics are discussed more thoroughly
in [2], [3], [4], and [5].
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(%) see [6], p. 151 ff.

(® The semantics here presented eliminates Kripke's G (the actual
world). It is easy to show that the two versions are equivalent.

(*) van Fraassen reports virtually the same conditions for (D), (T), (4),
and (B) in [6], p. 152. Our results will be a bit more general than his.

(}) The condition D(F) is a consequence of the way we have defined
an F-model. There are no difficulties in retracting the stipulation that
F # O in the semantics for modal logics. When this is done, we obtain a
semantical characterization of the theorems of K. It is not difficult to

show that | gA iff (d) =3A on every F-model, where F is possibly empty.

(® van Fraassen reports similar results in [6], pp. 152-153. Again, our
results are a bit more general.

() The stipulation that f be a one-one function in the definition of F
was suggested to me by Bas van Fraassen.

(8) My thanks to Nuel Belnap, who was extremely helpful during my
early research on the results of this section.

(* It appears in [4], Chapter 5.

() In [1), we reported mistakenly that the system B = KTB is such
that - gA iff A is T'(0)&B’(0)-valid.

(") See Theorem 2 of [3].

(**) This theorem supports claims made on pp. 545-546 of [5].



