ALGEBRAIC ANALYSIS OF ENTAILMENT I

Robert K. MeYeR and Richard RouTLEY

In [1]-[4], the authors have developed a semantical analysis
of Ackermann-Anderson-Belnap style systems of entailment
similar to the well-known analyses of Lewis style strict implica-
tion due to Kripke, Hintikka, Lemmon, and others. The present
paper uses these semantic insights — in particular those of
[3] — to develop a general algebraic analysis of entailment
logics. Such an analysis has already been furnished by Dunn
in [5] for the system R of relevant implication, who interpreted
the system R in a certain class of partially ordered algebraic
structures, namely the DeMorgan monoids (). A similar ana-
lysis, as we report, will do for entailment logics generally.
This present analysis, as it remarkably turns out, is strongly
reminiscent of the very differently motivated connections
drawn between the theory of combinators and certain theorems
of intuitionist logic by H.B. Curry in [6] and [7]. The present
paper will analyze chiefly negation-free entailment logics,
which are the most natural algebraically; some remarks, how-
ever, will be inserted to show where the enterprise tends when
negation too is added. Our key algebraic notion will be that of
an Ackermann groupoid, defined below, which serves to ex-
plicate algebraically the minimal relevant logic B+ of [3] and
which comes on the addition of postulates to explicate also
more familiar relevant, modal, and intuitionist logics, such as
T+, E+, R+, S4+, and the intuitionist sentential calculus J.

1. Church monoids and Dunn monoids.

Dunn-style algebraizations were offered in [8] of the pure
calculus R; of relevant implication (identical with Church's
weak theory of implication) and of the positive fragment R+
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of the system R of relevant implication. Church monoids cor-
responded to R; and Dunn monoids to R+. These definitions are
recalled.

A Church monoid is a structure C = <C, <, o, —, 1>,
where C is a set, 1  C, < is a binary relation on C, and o, —
are binary operations on C, such that the following postulates
hold for all a, b, cin C.

P1. C is a partially ordered groupoid under < and o; i.e.,
< is reflexive, transitive, and antisymmetric; moreover, if
a<bthenaoc<bocandcoa<cob.

P2. C is a commutative monoid under o; i.e., for a, b in C,
1 0a = a; furthermore o is commutative and associative.

P3. C is residuated with respect to —; i.e,, for all a, b, ¢ in
C,aob<ciffa<b—c

P4. C is semi-idempotent; i.e.,, a < aoa, for all a in C.

Correspondingly, a Dunn monoid is a structure D = <D, o, =,
A, V, 1>, where with respect to the partial order < defined
for all a, b by a < b iff a V b = b, P1-P4 hold and moreover.

P5. D is a distributive lattice with respect to A, V,
< furthermore, D is lattice-ordered; i.e., for ab,c, in D,
ao(bVc = (aob)V(aoc)and (b Vc)oa = (boa)V(coa).

Evidently there are four principal constituents which go into
the making of Church and Dunn monoids. They are (i) the
identity 1, which may be interpreted as a logically true proposi-
tion which implies all other logically true propositions; (ii) the
residual —», to be interpreted as propositional implication;
(iii) the binary operation o, which may be interpreted as pro-
positional consistency and defined by aob = df — (a——Db)
in the presence of an operation corresponding to the negation
of R; (iv) the partial (or lattice) order <, including the mono-
tonic replacement properties imposed under P1 and PS5 (%);
where A and V are present, they correspond of course to
(truth-functional) conjunction and disjunction respectively.

We note that A and V enter explicitly only under point
(iv) of the last paragraph. To put the matter somewhat dif-
ferently, conjunction and disjunction are algebraically pretty
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trivial for relevant logics; to accomodate them, one strengthens
P1 to P5 — imposing tighter conditions on the order of what
one admits as models but leaving untouched the basic insights
about implication carried in P2-P4. This corresponds well to
what was intended by Anderson and Belnap in constructing the
logics E and R in particular, who wished to express their new
relevance-regarding insights about implication without up-
setting the purely truth-functional logic of &, V, and —; and
indeed the relative triviality of the move from P1 to P5 made
possible the proof in [8] that the accomodation of truth-func-
tional logic in a natural way in R conversely does not upset
the basic implicational insights of Church's R;. So we may
take & and V (and, in another sense, —, given the conserva-
tive extension results of [9]) as inessential to the basic insights
which relevant logics are trying to capture and in the algebraic
expression of these insights. So our guiding principle in the
search for a general algebraic analysis of relevant logics — not
simply one tailored to the particular character of the system R
of relevant implication — will be to leave P1 and P5 alone,
letting the latter in particular accomodate underlying intui-
tions about ordinary conjunction and disjunction.

2. Ackerman groupoids.

In accordance with the plan suggested in the concluding
remarks of the last section, we can accomodate & and V in
a fairly automatic fashion. The operation o is another story;
indeed, troubles over o are the root difficulties which it is
our present purpose to overcome. To see what these difficul-
ties are, we remark that o is triply motivated, in the case
— e.g. — of Church monoids. First, there is a formal algebraic
motivation springing from the theory of residuation; in proposi-
tional algebra, as Curry points out, — functions as a kind of
division; in o, Dunn found for R the corresponding multiplica-
tion, tied to — by the residuation postulate P3 (*). Second, there
is an evident syntactic interpretation of o, utilized by Dunn
in his Gentzen system [10] for R+; indeed, P3 looks like a
deduction theorem, which one might put by saying that the
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sequence of formulas A, B yields C if and only if A yields
B— C. We make here no claims to know what a proposition
is, but passing to the kind of talk which algebraic analysis
facilitates, a natural claim is that for propositions a, b, aob
is the conjunction of all propositions relevantly entailed by
a, b. Since a feature of a relevance-regarding entailment is,
according to the motivating remarks of [10], that all the pre-
mises of a deduction should actually be used in that deduction,
what is relevantly entailed by b alone need not be so entailed
by aob. Thus aob < b is no law for the algebras of relevant
logics, though aAb<b is a law. But otherwise, o functions in
relevant logics as a relevant, or intensional, conjunction, to be
sharply distinguished from ordinary conjunction (‘). Finally,
o has, as remarked under (iii) above, a straightforward inter-
pretation in the propositional algebra of the system R as pro-
positional consistency.

It is the final part of the triple motivation which breeds dif-
ficulty in extending the algebraic analysis of [5] to relevant
logics weaker than R. The point is that it must be viewed as a
happy formal accident that, in R, relevant conjunction and
consistency coincide. Thus it is a wild goose chase — various-
ly pursued by Dunn and by Meyer (e.g., in [11]) — to attempt
to offer algebraic counterparts of weaker relevant logics by
taking off from the operation of propositional consistency.
(One gets postulates, of course, but nothing is revealed.) Ac-
cordingly, to get interesting algebraic counterparts of relevant
logics in general it is necessary to take o as a new primitive,
interpreted not as consistency but as relevant conjunction.
There is no a priori objection to doing so; on the contrary, the
contrast between o and A makes a good hook on which to
hang the distinction between relevant and deductive conse-
quence which one wants to make on motivational grounds in
any event. The problem rather lies in showing that the axioms
and rules one wants for o on the syntactical level, and the
corresponding postulates on the algebraic level, are conserva-
tive, in that they do not disturb underlying implicational in-
sights (¥).
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Shockingly, particularly in view of the last footnote, not
only do correct views about o prove conservative for positive
relevant logics in general, but they offer the most succinct
way of differentiating formally among such logics. The attempt
to build algebraic counterparts of relevant logics got by
varying axioms provides as well the cheapest formal way to
characterize these logics.

Let us return to our postulates for a Church monoid. Where
are the underlying insights, given that we are bound and
determined to interpret o as relevant conjunction ? Evidently
these insights appear principally in P1 and P3. In the first
place, < gets naturally interpreted as the relation of entail-
ment between propositions. (In this guise it must be separated
from the operation —; the difference is that a < b either holds
or it doesn’t, but it is not itself an element of the algebra; for
elements a, b, on the other hand, a— b is of course another
element of the algebra.) One would hardly want to deny that,
as a relation, entailment partially orders propositions, which is
the first part of P1. One could deny the second part of P1, which
may be viewed as asserting in somewhat stronger fashion the
transitivity of the relation of entailment — namely, that cer-
tain monotonic replacement properties hold relative to o (and,
through P3, to —). This would make the algebra less pretty,
which is perhaps reason enough to reject such denial; a more
compelling reason, in light of motivation, is that if a entails
b we should expect to get from a, c jointly whatever we might
get from b,c jointly, and from c,a jointly whatever we might
get from c,b jointly. So P1, for the systems of this paper, is
firm; so also is P3, since o was motivated (as relevant con-
junction) by the desire to have a relevant deduction theorem
of which P3 is the algebraic analogue.

This leaves us P2 and P4 to play with. P2 is almost completely
R-specific; while it may be nice to build commutativity and
associativity into o — they aren't, after all, bad properties for
a conjunction to have, even a relevant one — there are good
reasons not to have such properties, too. In the first place E,
anyway, is supposed to be a modal logic in the sense of Lewis,
and since Lewis arguments have been advanced that, when
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one's implication is strict, A — (B— C) does not necessarily
come to the same thing as B— (A — C). By our motivating
remarks, aob does not accordingly come to the same thing
for the algebra of E as boa. So commutativity goes, in the
general case. Associativity is even shakier; it goes, too (%).
Finally, to turn to P4, there is no general reason why we should
be stuck with that strange semi-idempotence condition; it
goes (7). Truth-functional conjunction and disjunction are not
our present concern, since we intend to add them trivially;
the instrument for so doing is P5, which we accordingly leave
untouched for roughly the reasons we left P1 untouched.

Only the identity 1 has thus far escaped comment. Like o,
1 keeps turning up (°). It is wanted in the present context for
two reasons. First, its presence enables us to relate entailment-
as-a-relation with the operation —, since by P3 and P2, 1 <
a— b iff a = 1 0 a < b; this gets us past the annoying problem,
pointed out by Dunn in [5], that an algebraic analogue of
modus ponens is otherwise hard to come by. Second, 1 is of
particular use in formulating those systems — e.g., E — which
have an explicit Lewis-style modality. A warning is in order,
however; commutativity makes 1a two-sided identity when
algebraizing R. But though 1 oa = a is in general well-moti-
vated, ao 1 = a is not; defining Na following Ackermann as
1 — a, from the latter equality the fallacy of modality a < Na
follows. Thus in general 1 is to be a left identity, but not a right
identity. Similarly, — is a left residual when defined by P3;
to be also a right residual — will have to satisfy also boa < ¢
iff a < b—> ¢, which in the absence of commutativity in general
it will not (°).

We arrive at length at the generalizations we have been
seeking. We call the most basic relevant algebras Ackermann
groupoids (). A structure G = <G, <, o, =, 1> is an Acker-
man groupoid provided that

(1) G is a partially ordered groupoid under < and o; i.e.,
P1 holds.
(2) loa=aforallainG.
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(3) G is residuated with respect to — (more accurately, lefi-

residuated); i.e., P3 holds.

Like Church monoids, Ackermann groupoids are introduced
for the specific purpose of explicating pure implicational cal-
culi; when we want to emphasize this point, we shall call them
implicational Ackermann groupoids. Similarly explicating posi-
tive relevant logics in general are positive Ackermann group-
oids, which are structures G = <G, o, =, A, V, 1> satisfying
(2)-(3) just above and strengthening (1) to

(4) G is a distributive lattice with respect to A, V, and <
defined as before; i.e., P5 holds.

An interpretation of a sentential logic L in an Ackermann
groupoid is a function I defined on all formulas of L and such
that, whenever the corresponding connectives and constants
are present in the language of L, the following hold, for all
formulas A and B:

(i) I(A—>B) = I(A) = I(B);
(i) I(A oB) = I(A) o I(B);
(iii) I(t) =1

(iv) I(A & B) = I(A) A I(B)
(v) I(A V B) = [(A) V I(B)

Under (iv) and (v), we presuppose a positive Ackermann
groupoid. A formula A of L is frue on an interpretation I in an
Ackermann groupoid iff 1 < I(A) and is otherwise false on I;
A is valid in G iff A is true on all interpretations therein.

3. Ackermann groupoids algebraize B+

In this section we prove algebraic consistency and complete-
ness results for the minimal positive relevant logic B+ intro-
duced in [3]. We recall that a positive model structure (+ m.s.)
is a triple <O, K, R>, where K is a set, O € K, and R is a
ternary relation on K, such that the following definitions and
postulates hold for all a, b, ¢, d in K and with quantifiers
ranging over K.
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dl. a < b =df R0ab

d2. RZabed =df Jx(Rabx & Rxcd)

d3. R%a(bc)d =df 3 x(Rbcx and Raxd)
pl.a<a

p2. a < b & Rbed imply Racd

p3. b < ¢ & Racd imply Rabd

p4. ¢ < d & Rabc imply Rabd

(We note that the antecedents of p2-p4 may be succinctly
expressed by R®0acd, R%a(0b)d, and R?0(ab)d respectively; we
confess, too, that we were postulate-chopping in [3], so that
p3-p4 were not assumed there at full strength. Thus, despite
our use of “recall” above, the postulates have been slightly
strengthened, for a + m.s.; since all postulates hold in canonical
model structures, this does not increase the stock of wvalid
formulas; moreover, it more correctly expresses the under-
lying semantical insights on which B+ rests — essentially,
that R is monotone decreasing in its first two arguments and
monotone increasing in its third relative to the quasi-order
<)

We recall also that if <O, K, R> is a + m.s. and SL+ is a
sentential language, a valuation v of SL+ in <O, K, R> is
a function which assigns a truth-value to each sentential vari-
able p in SL+ at each point a of K, subject to the restriction

(a) a < band v(p,a) = T imply v(p,b) = T.

I is the interpretation associated with v in <O, K, R> provided
that I is a function from SL+ X K to {T, F} satisfying the
following conditions, for all p in SL+, AB in SL+, and a in
K (when listed connectives are in SL+).

(i) I(pa) = v(p.a)

(ii) I(A&B,a) =TiffI(A) =1B)=T

(iii) I(A V B,a) =FiffI[(A) =1I(B) =F

(iv) I(A—>B,a) =T iff, for all b,c in K, if both Rabc and
I(A,b) = T then I(B,c) = T.

(v) I{A oB,a) = T iff, there exist x,y in K such that Rxya
and I(A,x) = Tand I(B,y) = T.

(vi) I(t,a) =Tiff 0 < a.
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A formula A is frue on a valuation v (or on associated I) iff
I(A,a) = T; A is verified on v (or I) iff [(A,0) = T; A is valid in
a + m.s. iff A is verified on all valuations therein,

B+ was formulated in [3] without o; the recursive condi-
tion (v) comes from [1]. Without o, B+ may be formulated with
the following axiom schemes and rules ():

Al. A A

A2. A&B— A

A3. A&B—B

A4 (A>B)&(A—>C)—> (A—>B&C)
A5. A—>A VB

A6. B>A VB

A7. (A>C)&(B—>C)—> (A VB—C()
AB. A&(BVC)->A&BVA&C

A9. t

Al10. t—> (A= A)
Ri. AandA—=B=B (modus ponens)
R2. AandB= A &B (adjunction)

R3. A»B= (B—>C)— (A—>C) (suffixing)
R4. B>C= (A—B)—> (A—>C) (prefixing)

A basic result of [3] was

Lemma 1. A formula A is derivable in B+ iff A is valid in all
+ m.s., if o does not occur in A.

Proof in [3].

The exception is made in lemma 1 simply because it did not
occur to us to include o in [3]. Using < to indicate a two-sided
rule (either side to be inferred from the other), we may extend
lemma 1 simply by incorporating in B+ the rule

R5. (AoB)»Ce®A—- (B—>Q) (residuation)

Lemma 2. If B+ is formulated with A1-A10, R1-R5, a formula
A is derivable in B+ iff A is valid in all + m.s.
Proof. The proof is as in [3], making the necessary adjustments
to accomodate R5 and the semantic condition (v).

Lemma 2 is, if one pleases, a conservative extension result
for B+ relative to the addition of o. It also makes trivial the
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main business of this section, showing that Ackermann group-
oids algebraize B+.

Theorem 1. A is a theorem of B+ iff A is valid in all positive
Ackermann groupoids.

Proof. We show first that an arbitrary theorem of B+ is true
on any interpretation I in any positive Ackermann groupoid
G = <G,0~>,A,V, 1>. Suppose first that A is an axiom. Then
A is of the form B— C, and we must show () 1 < I(A) =
I(B) > I(C); ie., by (3) of the last section, 10I(B) < I(C)
ie, since 1 is a left identity by (2), I(B) < I(C). This
is trivial by the fact that G is a distributive lattice except in
the cases A4, A7, A10; the first two are dual so we examine
only A7. Given the residuation postulate 3, evidently it suffices
to show, for all a,b,c in G, that (a—>¢c) A (b—>c)Jo(a Vb) <c.
But o distributes over V by (4), which by lattice and order
properties reduces the question to whether (a—c)oa < ¢,
and similarly with b for a; but this is an immediate conse-
quence of (3), ending the verification of A7.A10, since I(t) =1,
reduces similarly to 1 0 a < a by residuation, an evident truth
by (2). This ends verification of the axioms. To verify the
rules, we assume their premises true on arbitrary I and show
the same for their conclusions. For R1, assume 1 < a and
1 £ a—>b; as above, a < b, whence 1 < b, which is what is
wanted. R2 is trivial by lattice properties. To verify R3, we
may assume a < b; we must show b—>c < a—c; i.e, by (3),
(b—>c)oa < c But (b—>c)ob < ¢, whence on assumption the
desired conclusion follows from the order postulate included
in (1), and lattice properties. R4 is similar. (Note, however, that
to get both R3 and R4 we must have both coa < cob and
aoc < boc whenever a < b; or, what implies this conclusion,
that o is as stated in P5 both left- and right-distributive over
V) This ends the proof of semantic consistency of B+ relative
to the algebraic interpretation.

Conversely, suppose A is not a theorem of B+4. There is,
by lemma 2, a + m.ss. <OKR> and an interpretation I on
which I(A,0) = F. A subset J of K is a strike provided that,
whenever a€ J and a < b, b € J. It is readily verified that
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the set of all strikes — call it S(K) — determined by <0,K,R>
is a positive Ackermann groupoid <S(K),0,—>,A,V,1>, given
the following definitions for all J;J; in S(K):

JijoJ; ={c: c= K and for some a € J;, b € J; Rabc}
Ji=J=U{J:JeSK)andJo J; € Js}
J;/\J2=Jiﬂ.12

J] VJ2=J1UJ2

1={a:aesKand0 < a}

Define now an interpretation I which refutes the non-theorem
A by setting, for each sentential variable p, I(p) ={a: a€ K
and v(p,a) = T}. The restriction on what counts as a valuation
assures that this will be a strike, and one proves on inductive
hypothesis that, for each formula B of B+, I(B) is the member
of S(K) consisting precisely of those elements of K at which B
is true on the valuation v; since in particular the non-theorem
A is falsified on v at 0, 0 & I(A) and so 1 ¥ I(A). This ends the
proof of theorem 1.

Theorem 1, in a sense, is arrived at by cheating, since we
might have shown in a direct manner (by forming the Linden-
baum algebra of B+ and showing that it is an Ackermann
groupoid) that B+ is complete relative to the algebraic inter-
pretation. Thus the proof of completeness actually chosen rests
on something else — specifically, a kind of Stone theorem,
which shows that every Ackermann groupoid can be repre-
sented as a sub-groupoid of S(K) for some + m.s. <0KR>.
Moreover, given a positive Ackermann groupoid G, a + m.s.
<0,K,R> can be constructed in a natural way where K is the
set of prime filters of G. Similar moves were made in [1], and
we can derive here too the conclusion that every Ackermann
groupoid may be embedded in a complete Ackermann group-
oid; as in [1], this means that sentential quantifiers may be
added conservatively to B+ if desired.

B+ came with & and V; let B; be the system determined by
Al, A9-A10, R1, R3-R5. Then
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Theorem 2. A is a theorem of B; iff A is valid in all implica-
tional Ackermann groupoids.
Proof. Like theorem 1. A slightly sticky point concerns the
question whether B+ is a conservative extension of Bj; adjust-
ment of the completeness proof of [3] answers this question
with a straightforward “Yes,” after which there are no difficul-
ties in the proof of theorem 2,

B; contains t and o, to accord with the algebra. It needn't,
however, as the following satisfying theorem, in support of the
claim that By is really minimal, makes plain.

Theorem 3. Let A be a formula of B+ in which no connective
or constant but — occurs. Then A is a theorem of B+, or By, iff
A is of the form B — B.
Proof. We form a + m.s. as follows: Let K be the set of formulas
containing all sentential variables and closed under —; i.e., K
is the set of pure implicational formulas. Let P(K) be the power
set of K. Let 0 be the set of all formulas of the form B — B.
For all a,b,c in P(K), let Rabc iff whenever B— C is in a and
B is in b, C is in ¢, for all formulas B,C in K. Verify that
<0,P(K),R> is a + m.s. (This rests on the rather trivial fact that
ROab iff a © b, for all a,b in P(K).) Set v(p,a) = T iff p € a, for
all sentential variables p and sets a of implicational formulas in
P(K), and show then for any formula A in K, and for each a in
P(K), that A is true on v at a iff A € a. Since in particular 0
contains just the identities, only identities are verified on this
interpretation, ending the proof of the theorem.

This concludes our investigation of B+; we turn in the
sequel to its extensions.

II

4. Every positive relevant logic has a natural algebraic counter-
part.

In [3], we got extensions of B+ by keeping the axioms and
rules of B+ and choosing additional axioms from among the
following:
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Bl. A&(A—>B)—B

B2. (A-»B)&B—=>C—>(A—>CQ)
B3. A=»B)—»(B—>C)—»(A—>Q)
B4 B—-C) = (A—=>B)—>(A—>C
BS5. (A—> (A—>B))— (A—>B)

B6. (t—A)— A

B?. A— ((A—>B)—B)

B8. A— (B—B)

Axioms whose addition we might have contemplated, but
didn’t, might include

B9. A—> (B—A)

B10. (A— (B— C)) = ((A —>B) = (A — Q)
Bll. A->B—=>C)—>(B—>(A—>0Q)

B12. A—» (A— A)

Corresponding semantical postulates for Bi-B8 were given in
[3] as follows:

ql. Raaa

g2. Rabc = R%a(ab)c
g3. R%abcd = R®b(ac)d
g4. R%abcd = R2a(be)d
g5. Rabc = R?abbc
g6. Rala

g7?. Rabc = Rbac

g8. R00a

Corresponding to B9-B12, we might have chosen

q9. Rabc =R0ac
q10. R%abcd = Ex(R2%acxd and Rbcx)
gl1l. R%abcd = R?*acbd
q12. Rabc= R0Oac or RObc
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Corresponding algebraic postulates are as follows:

rl.a<aoa W*
r2. aob<ao(aob)

13. (@aob)oc<bo(aoc) B'

4. (aobjoc<ao(boc B

15. aob < (aob)ob w
r6. asaol

r7.aob<boa C*
8. aob<h K'
9. aobh < a K

rl0. (aob)oc< (aocjo(boc) S

ri1. (aob)oc < (aoc)job C

rl2. aca<a

Capital letters written after algebraic postulates are com-
binators in the sense of Curry; the point in each case is that
the cited combinator, applied to a left-hand side of an in-
equality in question, will produce what stands on the right-
hand side. We note moreover that combinators attached to
algebraic postulates are in general exactly those attached by
Curry to the corresponding implicational formulas as their
functional character; e.g., W, associated by us with 15, is
associated by Curry with the scheme B5, and similarly for
B, B, C*, K, S, and C. (We owe the observation of this con-
nection to Belnap.)

As in [3], we call a + m.s. fitting for a logic L+ got by
adding axiom schemes from among B1-B12 provided that
corresponding postulates from among ql-q12 hold in the m.s.
Similarly, we call an Ackermann groupoid, or a positive Acker-
mann groupoid, fitfing for L+ provided that corresponding
algebraic postulates from among r1-ri2 hold for the groupoid.
We may now state the principal result of the paper.

Theorem 4. Let L+ be a positive relevant logic got by adding
axioms schemes from among B1-B12 to B+. Then A is a
theorem of L+ iff A is wvalid in all positive Ackermann
groupoids fitting for L+.
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Proof. The proof of theorem 1 will do in outline. Semantic
consistency with respect to the algebraic interpretation may
be determined by verifying axioms in an arbitrary fitting
Ackermann groupoid, rules having already been dealt with
in theorem 1. In each case it will be seen that the algebraic
postulate in question suffices to verify the corresponding
axiom. Semantic completeness, too, may be proved as in
theorem 1. Indeed, given the semantic completeness results of
[3], extended as necessary for the axioms B9-B12 newly con-
sidered here, it turns out in each case that the semantical
constraints placed on positive model structures enforce the
corresponding algebraic constraints on the positive Ackermann
groupoid S(K) got on application of the technique of theorem

1 . (18]

II1

5. Algebraizing entailment logics with negation.

Like conjunction and disjunction, as we have suggested,
negation does not add new kinds of problems. The essential
point is merely to add negation to the underlying lattice
structure, making it a DeMorgan lattice rather than simply a
distributive one. We add at the same time excluded middle in
view of the intended logical interpretation, though from a
purely algebraic point of view this assumption is not required.
(Even for weak relevant logics, we are sticking here to the
truth-functional view of truth-functional connectives, following
Anderson and Belnap.) Thus we arrive at the notion of a
DeMorgan groupoid G = <G,0,~,/N\,V,—,1>, where G is a
positive Ackermann groupoid (i.e., satisfying (1)-(4)) with
respect to the positive operations, < is defined in the usual
lattice-theoretic way, and the following additional postulates
hold:

5) aVb=—(—aA —Db), and
6)1<aV—a,
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for all a,b in G. Correspondingly, we get the basic logic B by
adding to B+ the following two axioms and rule:

Cl. AVA

C2. A—>A
R6. A>B=>B— A

As possible additional axioms we list the following:

DI. (A>A)—>A
D2. (A—>B)— (B— A)

D1 and D2 may be thought of as strengthened forms of C1 and
R6 respectively. The possible additional algebraic postulates
corresponding to D1-D2 are

sl. aob € —bimpliesa < —b
s2. aob < cimpliesao—c < —b

The DeMorgan monoids that stem from Dunn's [5] are simply
DeMorgan groupoids that satisfy rl1, r11, and gq2; as is proved
in [5], these structures algebraize the system R of relevant
implication. Similarly, extending the definitions of preceding
sections mutatis mutandis,

Theorem 5. A formula is derivable in the minimal relevant
logic B if and only if it is valid in all DeMorgan groupoids.
Moreover, any extension of B got by adding new axiom
schemes from among B1-B12, D1-D2 to the axioms and rules of
B contains as theorems just those formulas valid in all fitting
DeMorgan groupoids.

Proof. All the axioms are valid and the rules preserve this
property. Conversely, the Lindenbaum algebra of the extension
in question is a fitting DeMorgan groupoid in which all non-
theorems are invalid, ending the proof of theorem 5.

For its interest, theorem 5, like its predecessors, rests on
conservative extension results. At this point, we abandon
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our lingering interest in systems formulated with axioms B8-B9,
since, as is well-known, in the presence of others from among
our possible axioms, systems formulated with these axioms
break down into classical logic; similarly, though B12 is
relevance-preserving when added to the system R+, it breaks
the full logic R down into Dunn's system RM, which permits
fallacies of relevance. Our chief interest, accordingly, lies in
sub-systems of R — i.e., systems formulated with any of our
other axioms — for which the conservative extension results of
[9] are at hand to limit collapse. In particular, we note that the
systems E, T, R, and B are conservative extensions with respect
to negation of the corresponding positive systems listed above.
The methods of [4] will show also that these systems are con-
servative extensions of the systems got by dropping the con-
nective o and the accompanying rule RS. (For R this is known,
since o is there definable as relevant consistency.) But the
following results are new and interesting.

Theorem 6. Let the systems T of ticket entailment and E of
entailment be formulated as in [15] with —, &, V, —. The
theorems of T are exactly the formulas valid in all DeMorgan
groupoids satisfying r4-r5, s1-s2; the theorems of E are exactly
the formulas valid in all such groupoids that satisfy 16 as well.
Proof. As indicated, depending on the conservative extension
results to be proved in [4].

Once Dunn monoids are stripped of commutativity, as we
noted in I, = becomes merely a left residual. Question: is there
in a natural way to be found also a right residual, call it
—>p, satisfying the law

(i) aob<ciffb<a—pc?
The answer, given s2, is "yes"; — (a o — c) will do.

v

When he first noted these connections, Meyer was so excited
that he dubbed them the Key to the Universe. They may fall
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somewhat short of thaf, but the connections are interesting and
unifying. They would seem to lie behind the semantical ana-
lysis of [3], presenting in a more direct way the conditions
that are put there on our ternary relation R. Cut-free Gentzen
formulations of positive logics weaker than R are still wanted;
hopefully the methods used by Dunn in Gentzenizing R+, which
made essential use of both o and &, and passing use of 1 as
well, are hereby rendered straightforwardly applicable to
kindred relevant logics. Decision problems, too, are hopefully
rendered more accessible, though we suspect that these will
prove trivial only for systems that no one has thought or
cared much about. What appears to be the most fun, though,
is to take a course converse to the one adopted by Curry in
directly introducing combinators into propositional algebra.
(Dunn has made a related suggestion, though the scheme
adopted here is our own.) Let a combinatory Ackermann
groupoid, implicational or positive, be an Ackermann groupoid
G in whose base set G occur some (possibly all) of the com-
binators of pure combinatory logic, governed by the usual
rules, stated as conditions on G. As is well-known (cf. e.g. [6])
all combinators can be defined in terms of S and K, so let us
take these as primitive and as elements of G, subject to laws

(Koa)ob < a, and
((Soa)ob)oc < (aob)o(aoc).

The combinator I may be identified with the identity of G,
in view of its governing law

Ioa=a.

We note then that, using the general order principles imposed
under (1) on an Ackermann groupoid, we can state the postu-
lates corresponding to particular logics very simply. Take, for
example, E; we may formulate the class of algebras corre-
sponding to E+ as the set of positive Ackermann groupoids
satisfying
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13. (@ob)oc<hbo(aoc) B
15. (aob) € (aob)ob W
16, a<aol CI

The combinators in question are as noted those that, applied
to the left-hand side of an inequality, yield the right-hand side.
Identifying 1 and I, it would suffice to adopt instead

3. I<PB
5. I<W
6. I<Col

For, dropping o in favor of simple juxtaposition and associ-
ating to the left, we should have derivations as follows:

Derivation of r3 from 13":

1) IL<B r3'
(2) Ia=a < B'a By (1), postulate P1
(3) abc < B'abc <b(ac) By (2), P1 [twice],

reduction rule for B'.

Derivation of 15 from r5’ in like manner.

Derivation of 16 from r6'.

MIiI<Cl 16’

(2) Ila=1a=a < Clla (1), P1 [twice], reduction

rule for I [twice].

(3) a<Ial (2), reduction rule for C
(4) a < al (3), reduction rule for I

Thus, if this line of thought proves fruitful, the algebras of
particular positive relevant logics are got simply by imposing
an order on combinators; for the other cases are similar. The
paradoxes of implication are blocked, not by banning the
combinator K, but simply by holding I¥K and similarly for
related evil combinators.

Putting the combinators in algebras and subjecting them to
algebraic constraints would seem like dangerous business. In
fact, in crucial cases we get the kind of conservative expansion
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central to completeness proofs. For, given propositional quanti-
fiers, conservatively addable as in [1], we can interpret the
combinators: e.g., B’ as (p)(q)(r)(pgr—> q(pr)), and similarly
in other cases. [This shows, among other things, the undecid-
ability of some of our thus extended logics — in particular, the
system BP+ got by adding propositional quantifiers to B+,
since the pure combinatory logic, known to be undecidable,
can be interpreted therein.]

Short of this move, a word of caution must be entered. For
our propositional algebras, a, b, and ¢ are supposed to be
propositions, but what sort of proposition, really, is B' ? Never-
theless, what hangs together formally sooner or later hangs
together intuitively, and the coincidence of several independent
lines of investigation is surely more than sheer coincidence.
Meanwhile, the purely algebraic results are themselves firm
and solve the principal outstanding algebraic questions for
logics weaker than R in the family of relevant logics; the
proof that as such they constitute the Key to the Universe must
wait for a sequel. (**)

(Indiana University, U. of Toronto) Robert K. MEYER
(Australian National University) Richard RouTtrLEY
NOTES

(!) The theory of residuation, on which Dunn's and the present work
rests, was developed by Warp and DiLwortH; cf. [7] for references.

() P5, in fact, implies P1. For a general study of partially ordered
algebraic structures, v, L. Fucus, Partially ordered algebraic systems,
Oxford, 1963, and G. BirkHorF, Lattice theory, Providence, 1966.

(®) As noted below, P3 is a postulate for a left residual; we use a—b in
place of some typographical variant of the algebraically natural b/a, in view
of the intended logical interpretation of — , as implication.

() When we speak of conjunction, we always mean the ordinary
truth-functional conjunction & unless the contrary is explicitly indicated.
(Thus the characterization of o a sentence ago is not circular) And on
algebraic interpretation it is & which is linked to the lattice-theoretic
meet, A, while we use o both syntactically and for the corresponding
algebraic operation. Note, too, that it is not necessary to be so agnostic
as above about propositions, since the semantical analysis of [1]-[4]



ALGEBRAIC ANALYSIS OF ENTAILMENT 1 427

enables one to take the UCLA view that a proposition is a function from
reference points to truth-values.

(5) Thus Dunn's Gentzenization of R+ in [10] employs two kinds of
sequences — extensional ones, to be interpreted as ordinary conjunctions,
and intensional ones, to be interpreted as relevant conjunctions. We note
too that ordinary deduction theorems using & are by no means inexpress-
ible in relevant logics; they merely correspond to a different kind of con-
sequence relation, called in [11] and [12] deductive consequence and tied
to a relevantly definable, intuitionistically acceptable connective O. Not
disturbing underlying implicational insights in one's choice of axioms for
o is, by the way, an important point, those given for R++ in [1] being
too strong in general (though O. K. for R); the weakening of the axioms
for o in [1] to rule form is what is wanted and is accomplished in R5 below.

() Even for R, proof that o as naturally defined is associative takes
some work and proceeds most naturally through the commutativity of o;
failure of the commutative law for o being as suggested, the hallmark of
Lewis-style modal logics, including E, proof of associativity of o breaks
down also.

() There are reasons of a sort to keep P4; it guarantees that theories,
in the sense of [3], should be closed under modus ponens. The well-known
relevant logics E, R, and T satisfy this condition, but we do not impose it
in general, here or in [3].

(® 1 turns up syntactically as t, going back in principle to Ackermann;
cf. [13].

(°) But there is still room for a theory of the right residual, as we note
below.

(1Y) The connection is not, however, Ackermann-specific, Ackermann
groupoids (not otherwise restricted) being linked to our B+ rather than
his IT' and II", identifiable with E.

(") Notational conventions are as in [3].

(*) Except for A9, which is trivial.

(**) The utility of this theorem lies in the eliminability of o, and, to a
lesser degree, of 1. Syntactically, we note that o only occurs in R5; striking
o (and R5) from the syntax, the completess proofs of [3] show for all
systems that the set of o-free theorems is not affected. 1, and its syn-
tactical mate t, may be eliminated in interesting cases as in [13], [8],
[12], and theorem 3 above. The arguments of [8] may also be applied to
show pure implicational systems algebraized by fitting implicational
Ackerman groupoids, eliminating & V, and the distributive lattice structure
introduced to accomodate them. Adequate postulates for specific logics
are, in addition to (1) — (4), as follows: for T+, r3—r5; for E+, r3,15,16;
for R+, ri,r11; if all postulates hold, we have J+; dropping r7,r9,r11, we
have S4-+.

(1Y) Thanks to Anderson, Belnap, Dunn, and, for partial support of Meyer,
to NSF grant GS-2648.
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