PREDICATE CALCULUS WITHOUT FREE VARIABLES

M. W. BuNDER

In this paper we develop a predicate calculus in which all
well formed formulas are closed and which therefore requires
no generalisation rule. We show that the closure of any
standard predicate calculus theorem is provable in this system.

In this closed system we cannot obtain predicate calculus
formulas by straight substitution into propositional calculus
theorems. The axioms of propositional calculus, therefore,
have to be changed as follows:

1. —(x4g)...(x,): ADBDA,

where xy, ..., X, include the free variables in A and B.

2, F(xy)...(x1): AD BDC:D:ADB.0.ADC,

where x;, ..., X, include the free variables in A, B and C.

3. —(x1)...(%Xn): ~AD ~B.D.BDA,

where X;, ..., X, include the free variables in A and B.

A, B, C, etc in the above stand for well formed formulas in
the ordinary predicate calculus; here we could call them well
formed predicate expressions (wipes).

In the case where the wipes have no free variables the
above axioms can reduce to the standard propositional calculus
axioms,

Also we require a predicate calculus version of modus
ponens (‘'closed modus ponens"):

If ~(x4)...(xn).ADB, where xi, ..., %, include the free vari-
ables in A>B, and ~ (xi)...(x;)A, where X, ..., X; include the
free variables in A, then  (xy)...(x;)B, where xx, ..., x1 include

the free variables of B.
Note that this version of modus ponens, together with
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Axioms 1 and 2 allows us to prove K (xX,)...(XJADA, where
Xp, ..., Xq include the free variables of A.

If then we have  (xi)...(xi)A, where x;, ..., X; also include
the free variables of A, we can by this modus ponens, conclude
F (X1)...(xs)A, where xr, ..., Xs include the free variables of A.

If %, ..., xs are part of xj, ..., x;, then we have dropped
some vacuous quantifiers. If xi, ..., x; are part of xi, ..., Xs, we
have generalised with respect to some variable; this quantifica-
tion is of course also vacuous.

Alternatively we could state the axioms and modus ponens
with the variables ranging only over the free variables of
the wipes concerned. In this case Theorem 1 below can only
be proved for formulas containing no vacuous quantifiers.
The rest of this work can easily be altered to satisfy this
alternative.

Now we state the axioms proper to the predicate calculus.
There is one more than the usual two, this allows us to prove
theorems otherwise proved using the generalisation rule.

4, - (x1)...(x0). (X)ADA*,

where x;, ..., X, X include the free variables in A, and A¥* is
the result of replacing all free occurrences of x in A by a
term having some or all of x;, ..., xn as free variables, x in A
however must not be in the scope of one of the quantifiers

(x1), .. (X0)-

5. F(x1)...(%0):(x). ADB: 25 :AD(x)B,

where xi, ..., Xn,X include the free variables of ADB, x being
not free in A,

6. +(X1)...(%a).(X) (V) AD (V) (X) A,
where Xxi, ..., Xp,X,y¥ include the free variables of A.
We call the predicate calculus based on these axioms and

closed modus ponens, ‘‘closed predicate calculus’. We now
prove:
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Theorem 1: If D is a theorem of first order predicate
calculus, where yy, ..., v, are the free variables of D, then

= (v1)...(Ym)D

is a theorem of closed predicate calculus.

Proof: Consider ordinary first order predicate calculus based
on the propositional calculus axioms similar to Axioms 1, 2
and 3, modus ponens, generalisation,

(@) ~(xi) A(xi)DA(t),

where A(x;) is a well formed formula (wf) and t is a term of the
system free for x; in A(xi), and

(b) + (xi)(A>B) > (A> (x)B),

where A is a wf of the system, containing no free occurrences
of xi.

‘We then perform the proof of the theorem by induction on
the proof of D, Consider first the steps of the proof which
are instances of the axioms of first order predicate calculus.

If the axiom is a propositional calculus axiom, then any
instance of it is given by Axiom 1, 2 or 3.

If the axiom is (a), the closed version is our Axiom 4. If it
is (b), we have Axiom 5.

In the inductive step assume that all the steps in the proof
to a certain point have corresponding statements provable in
the closed predicate calculus.

If the next step is made using two earlier statements and
modus ponens, i.e. ADB and A then B, then by our inductive
hypothesis we have as theorems of the closed predicate
calculus:

 (X1)...(X2). ADB,
where xi, ..., X, are the free variables of A>B and
F (XE)...(x1).4A,

where Xy, ..., x; are the free variables of A.
Then by closed modus ponens we have:
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= (Xp)... (xq) B,

where Xy, ..., Xq are the free variables in B.

This is the closure of —B.

If the next step is made by generalising A to (x)A,
then by the inductive step we have:

- (x1)...(X0) A,

where X, ..., Xn are the free variables in A.
If x is one of these, say X, then by repeated use of Axiom 6
and closed modus ponens we obtain:

= (X1) o (i 1) (X 1) - () (X) A

which is what is required.

If x is not one of xi, ..., X,, we can of course generalise using
closed modus ponens and shift x to the front as before.

Thus the theorem is proved in all cases.

Closed predicate calculus can now be applied whenever
ordinary first order predicate calculus could be applied. Where,
such as in the proof of Godels Theorem (see [1]), we use a
well formed formula containing a free variable, we must of
course use a well formed predicate expression.
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