ON AXIOMS AND THEIR CORRESPONDING DEDUCTION
RULES: A SURVEY

by E. William Cuarin, Jr.

In the construction of various axiomatizations for systems
of mathematical logic, the situation often arises in which, for
a certain purpose, we could either add an axiom or else a
deduction rule that corresponds to this axiom in some obvious
sense. For many purposes, these two processes are equivalent,
but this is not always the case. In the course of this paper,
we will investigate this situation and determine how the
presence of the rule modus ponens and the deduction theorem

as rules (or “derived rules”) of a given axiomatization affect
the situation.

I. Terminology. By modus ponens, we mean the usual rule:
“From ADB and A infer B".

By the deduction theorem, we mean the following: given
an axiomatic system W, let W* be the system that has the
same rules of deduction as W and the axioms of W plus the
new axiom X; suppose that Y is a theorem of W*; then X2V
is a theorem of W. Except where specifically noted, we shall
assume that all deduction rules are finitary, i.e., that they
have a finite number of formulae as hypotheses.

The deduction rule “from hypotheses Aj, ..., A, infer B"
is said to be a weak derived rule of the axiomatic system W
if it is the case that whenever the hypotheses of the rule are
theorems of W, it happens that the conclusion is also a theorem
of W. The same deduction rule is said to be a derived rule of
the axiomatic system W if it is a weak derived rule of the
axiomatic system W' which arises from W by adding Ai, A,
..., An as additional axioms. The same deduction rule is said to
be a strong derived rule of the axiomatic system W if it is a
weak derived rule of all extensions of W by the addition of
new axioms.
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Given a deduction rule D of the form “from formula P,
infer formula Q", the formula P>Q is called the formula
corresponding to D and D is called the deduction rule corre-
sponding to P2 Q. Correspondences for deduction rules with
more than one formula as hypotheses will be defined later,
‘We assume that the rule “an axiom is a theorem' is available
in all our systems.

Il. The Classical Case. First we consider the most obvious
situation, the complete classical propositional calculus with S
present as one of the connectives. No matter what formulation
of the axioms and rules is chosen for this calculus, modus
ponens is always a derived rule in the weak sense. This is
simply one way of considering the completeness theorem for
the classical propositional calculus, remembering that the
rule modus ponens takes tautologies into tautologies.

Trivial examples show that modus ponens is not always a
strong derived rule in the case of the complete propositional
calculus. Consider a formulation in which all tautologies are
axioms and there are no deduction rules (i.e., only the axioms
are theorems). If we add to this system the two additional
axioms p and p>gq, the rule modus ponens is no longer a weak
derived rule of the expanded system, and hence not a strong
derived rule of the original system.

The case of the deduction theorem, as defined, is even less
satisfactory, since for certain complete propositional calculi,
it is not even a weak derived rule. The most obvious example
is the case of systems having the rules modus ponens and
substitution and any suitable set of axioms. For, in such
systems, if we take as additional axiom the propositional
variable p and construct a proof in the augmented system
with first line p (now an axiom) and second line q (by substitu-
tion), the deduction theorem would give us poq as a theorem
of the original system, a rather unwelcome development. For
a more interesting example, consider the following rule.

R1: "from the formula P, deduce as a new theorem P, if P is
a tautology, and deduce — P if P is not a tautology".
Now this rule is a weak derived rule of all of our (complete)
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propositional calculi, since it always results in a tautology
as a theorem if the formula of its hypothesis was a tautology.
However, if we add the propositional variable p as an addi-
tional axiom to a system with R1 as one of its actual rules,
applying the rule once gives us — p as a theorem. Hence if
the deduction theorem were true as a weak derived rule, we
could conclude that p> —p were a theorem of the original
system and thus a tautology. A fortiori, the deduction theorem
is not always a strong derived rule,

As is well-known, however, for systems that are suitably
formulated, e.g., with axiom schemata and with modus ponens
as the only rule, the deduction theorem does hold as a weak
derived rule. In other cases, restrictions must be made in the
formulation of the deduction theorem itself so that a corre-
sponding correct derived rule may be formulated. The follow-
ing proposition is an example of such a modification of the
deduction theorem that is true not only for propositional
calculi. For convenience, however, we state it for such calculi.
In certain particular cases, stronger theorems can be proven,
but in general this proposition is the most that one can expect.
It is rather easy to concoct examples with rules similar
to R1 showing that any use of the original rules of the system
other than modus ponens after the introduction of the new
axiom as a theorem may lead to disaster.

Proposition 1: Given the axiomatic system W for the
complete classical propositional calculi with finitary rules
and give the formula A, suppose that B is a theorem of
the axiomatic system W' whose axioms are the axioms
of W plus the formula A and whose rules are the rules of
W plus the additional rule of modus ponens with the
restriction that once the axiom A has been listed as a
theorem in the course of a proof, only the rule modus
ponens may be applied; further suppose that the connec-
tive O ("implies”) is present in W; then ADB is a
theorem of the original system W.

Proof: This follows more or less as usual, by induction on
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the number of lines in the proof of B. If B is proved in one
line, either it is one of the original axioms or else it is A.
In the first case, B is a tautology, so that ADB is a tautology
and hence a theorem, since our axiomatization is complete.
In the second case, the formula in question is A>A which is
also a tautology. Now suppose that for all formulae B’ provable
in fewer than n lines in the new system, the formula ADB is
provable in the old system W, Also suppose that B is probable
in n lines in the new system W', If the new hypothesis A is
not used at all in the proof of B, then B is a theorem of the
old system (since modus ponens is a weak derived rule) and
hence a tautology. Hence, as before, A D B is also a tautology
and hence a theorem of the old system W. If the last line of
the proof of B is the new axiom A, the formula to be proved
in W is ADA, again a tautology. Otherwise, the formula A
has been introduced earlier in the proof and the last line of
the proof results from two previous lines say C and CoD, by
modus ponens. Thus we know, by the induction hypothesis
that AoC and A>(C>oD) are theorems of the original system
and thus tautologies. Hence, as a check of the truth tables
shows, ADD is also a tautology and hence a theorem of W
as desired. Q.E.D.

III. The General Case: Deduction Rules with One Formula
as Hypothesis. Here we consider more general calculi, includ-
ing partial propositional calculi, modal logics, cut logics
[cf. 2], first order logics. Any one of these calculi will be
called simply an axiomatic system in what follows. For con-
venience, we shall also assume that the connective > is
always present. As the section title indicates, we consider
here the relationship between deduction rules with one formula
as hypothesis and their corresponding formulae (cf. I: Termi-
nology).

Proposition 2: Given axiomatization C, suppose that
for every theorem of C of the form PoQ, the correspon-
ding rule is a weak derived rule of C. Then modus ponens
is a weak derived rule of C. Conversely, if modus ponens
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is a weak derived rule, then, for every theorem of C of
the form P> Q, the corresponding rule is a weak derived
rule.

Proof: Given the theorem P> A which is to serve as the
major premiss for modus ponens, by assumption, the rule
"from P, infer A" is available as a weak derived rule. Hence
the (weaker) rule "from P, PoQ, infer Q" is also valid. But
this says that modus ponens is available for all the cases that
its premisses are available, so that modus ponens is a weak
derived rule. Conversely, if modus ponens is available and
P>Q is a theorem of C, we have the rule "from P>Q, P,
infer Q". But PoQ is known to be a theorem. Hence we have
the rule "from P, infer Q", as desired. Q.E.D.

Proposition 3: Given an axiomatic system W, if the
deduction theorem is a (meta)-theorem for W, then for each
derived rule D of W of the form "from P, infer Q", the
theorem corresponding to D is a theorem of W. Conver-
sely, if for each such derived rule D, the corresponding
formula is a theorem of W, then the deduction theorem
is a (meta)-theorem for W.

Proof: This follows immediately from the definitions of
derived rule and deduction theorem. Q.E.D.

Thus we see, as a consequence of these propositions that the
free interchangeability of axioms and deduction rules, at least
in the case when the deduction rules have exactly one formula
as hypothesis, is possible precisely when the rules modus
ponens and the deduction theorem are both available in the
system in question.

It should be noted that these two rules are rather indepen-
dent; i.e.,, we may have both of them available or neither,
or either singly. The examples of the complete propositional
calculus formulated with axiom schemata and modus ponens
is an example of the first case, and the corresponding calculus
with modus ponens and substitution is an example in which
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modus ponens holds but the deduction theorem does not. The
calculus with pop and (pop)2(p2(q>p)) as its only axioms
and substitution as its only rule satisfies neither modus ponens
nor the deduction theorem. Proposition Four below gives as
example of a calculus which satisfies the deduction theorem
but not modus ponens. Note that for any such calculus all the
instances of the schema P>P must be present as theorems,
assuming the rule that any axiom is a theorem.

Proposition 4: The partial propositional calculus with

no deduction rules (i.e.,, only the axioms are theorems)
and with the axiom schemata listed below does not have
modus ponens as a weak derived rule but does satisfy the
deduction theorem.
Ag: PoP; A Qo (PoP); and for n>1 Ax: Q,DA,_q;
By: (PoP)D (P> (Q>2P)); and for n >0, B,: RD A, _y; where
the P's, Q's, and R's are, as usual arbitrary formula of the
calculus.

Proof: If modus ponens were a weak derived rule, from
axiom schemata A, and B, we could conclude that (p>(q>p))
was a theorem of the calculus. But this is impossible since that
formula is not an instance of Aq nor of A; and all of the other
A’s and all of the B's of length greater than the length of
(p>(g>p)), using anyone's definition of the length of a formula,
so that this formula cannot be a substitution instance of any
of those axioms.

On the other hand, the deduction theorem holds. For suppose
that the formula T is taken as an additional axiom. If, in the
extended system, the theorem proved is T itself, then the
theorem to be proven in the original system is To>T, an
instance of Ao. The only other theorems provable in the
expanded system are theorems provable in the original sys-
tem, i.e., instances of some axiom schemata A, or B.. Then
the corresponding theorem to be proved to verify the deduc-
tion theorem is the theorem T>A, or else T>B. But these
are respcetively instances of A,+1 and Bn.;, so that they are
theorems of the original system. Q.E.D.
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IV. Deduction Rules with More than One Formula as Hypo-
theses.

In the case of rules which have more than one formula as
hypotheses, there are several alternatives as choices for the
corresponding theorem of the language. We will consider
here two of the possibilities. To the rule D “from A;, Asg, ...,
A, infer B" might correspond the formula A1 AAzA...ANA, DB
or else A;>(A2>(...2(A,DB))...). We call the first of these
the corresponding conjunct formula to D and the second the
corresponding implicational formula to D; D will be called
the deduction rule corresponding to either of these two
formulae. Thus a formula may correspond to more than one
rule. (The formula (p/Aq)>r corresponds to the rules “from
pAq, inpfer r'" and the rule "from p, q, infer r"))

The conjunct formula seems somehow more natural if the
connective A (“and") is present, but even in that case the
implicational formula has advantages.

Proposition 5: A. Given a logical system W, if the deduc-
tion theorem is valid for that system, then for every
derived rule C of the form "from A;, As, ..., A,, infer B,
the corresponding implicational formula to C is a theorem
of W; conversely, if for every derived rule of W of the
form C, the implicational formula corresponding to C is
a theorem of W, then the deduction theorem holds.

B. If modus ponens is a weak derived rule of the logical
system W, then given a formula P of W of the form
A;D(AsD(...2(A,DB))), the corresponding deduction rule
is a weak derived rule of W; conversely, if for each
such P, the corresponding deduction rule is a theorem of
W, then modus ponens is a weak derived rule of W,

Proof: A. If the deduction theorem is valid and C is a derived
rule, apply the deduction theorem n times to get the corre-
sponding implicational formula. Conversely, the hypothesis is
logically stronger than the deduction theorem which is the
special case of it forn=1,
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B. Given modus ponens, to get the rule, as a weak derived
rule, use the corresponding theorem as major premiss for
modus ponens and A; as minor premiss, then use the conclu-
sion as major premiss again with Az as minor premiss, etc.
Again for the converse, the case n=1 suffices as was shown
in Proposition 2. Q.E.D.

If one uses the corresponding conjunct formulae, The situa-
tion is not quite as satisfying as that in Proposition 5. The
converse sections of both parts A and B still hold, again
because the assumptions made are formally stronger than
the corresponding assumptions in Propositions 3 and 4. How-
ever, neither of the direct parts of the theorem holds. In the
case of the deduction theorem this is inevitable from the
definition of deduction theorem which perforce handles the
introduction of one new assumption at a time. In the case
of modus ponens, the direct part of the theorem goes through
exactly as before if the rule Cn below is assumed, as a weak
derived rule, as the reader may easily verify.

Cn: "From Aj, As, ..., A, infer A;/AANA...AA,.
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