RESTRICTED INFERENCE

Nicholas RescHEr and Zane PARks

1. The Concept of Restricted Proof and Restricted Consequence

Given a system L of deductive logic, it seems natural that one
should be interested not only in the question of what can be
demonstrated but also in that of what can be demonstrated
simply. The idea of a simple proof or demonstration as such
is very vague and imprecise. We shall introduce some formal
machinery for its precise articulation.

Let L be a system of natural deduction based on the rules
Ry, Ry, ..., Ry. We may now introduce the following definitions:

1. Let S= (my, my, ...,m,;) be a sequence of non-negative
integers, each correlated with one of the R; and let k be
any integer greater than or equal to 2. Then an (S, k)-
restricted proof of the proposition § from the premisses
dy, ..., 0y is one that (i) applies any rule R; no more than
m; times, and (ii) is no longer than k lines in length (so
2<k<n+my+ms+ ... +m,). We shall write

ag - oy [S, k}B

to indicate that § is (S, k)-restrictedly provable from the
premisses ay, ..., o, ().

2. B is an (S, k)-restricted consequence of the premisses
ay, ..., o, if there exists a restricted proof that moves to p as
conclusion from ..., a, as premisses in no more than k
steps, i.e., when

oty [S,k + n} P

In the special case that k is so fixed that no restriction over

(') Note that the inference-claim is automatically false when k<n.
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and above that inherent in S itself is imposed — i.e., when
k =m; + my + ... +m, — we shall speak simply of S-restricted
proofs and consequences. In the special where the set S =
(my, ..., m,) is such that all the m; are equal, j = m; = ... = m,,
we shall speak simply of (j, k)-restricted proofs and consequen-
ces.

When the above two special cases are combined — i.e., when
the proof of § from «; ... a, is no longer than k lines in toto or
when the inference to f§ from the «; proceeds in no more than
k steps — we may speak simply of a k-restricted proof or
consequence, respectively,

The relationships inherent in the above may be summarized
as follows:

(1) ap ooy, [S, k} B This is basic

(1 al. oy (Sk)YB =prog, ..., 0, [S,n + k}B

(2) ag ..., 0, [S} B =pray, .oy 0y [S;my + ... +m,]} B

(2} oy e @y (SY B =proy, o0y [S,n +my + ...+ m,} B
) oy .o n [i kB =proy ..., a, [{Js Jeeenn ) KT B

{3’] gy eeey Uy {.}r k} B TDF Gy oeeeg Oy [(kr k,..., k), k} [3
4) oy .oor0n [k} B =pray, ..., g [(K, Kk, ..., k), k]} B
{4') Qfy voey Oy k)-f) DF Oy« .,(L,l[(k,k,...,k},n"‘ k}ﬁ

The following remarks are in order:

1. There is a uniform modification (viz., the addition of n)
in going from an unprimed relationship to its primed
counterpart.

2. This relationship is such that in the primed version the
number of premisses is immaterial: it is only the number
of inferential steps beyond the premisses is here at issue.

3. In cases (4)-(4') it is only over-all length of the proof or
consequence-deduction that matters. All other cases con-
template a more restrictive limitation on the number of
times a given rule can be used.

4. Cases (1)-(1') and (2)-(2') are prepared to treat the rules
of inference differentially. The other cases treat all rules
alike.

5. Cases (1)-(1') and (2)-(2') are prepared to let m; be 0, thus
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in effect proscribing the use of certain rules in drawning
inferences.

6. Although none of these notions of inference allows un-
restricted application of a rule (the m; are integers), this
case can be covered in either of two ways — (i) by letting
the m; be either integers or ¥, or (ii) by taking the existen-
tial quantification of the relevant notion of inference with
respect to the m; in question,

The idea underlying this articulation of various modes of
restricted proof (or consequence) is a restriction in the number
of times that the several rules of inference can be employed
in a proof — and correspondingly a restriction in the over-all
length of the proof itself. When that restriction is tight enough,
we obtain a correspondingly restrictive notion of simplicity
of proof.

One obvious application of this machinery is as follows:
Given two systems L and L’ such that every rule of L is a rule
of L', but not conversely, any inference relation for L expres-
sible in terms of the preceding concepts will be identical with
some inference relation for L'. If S= {my, ..., m,) and §' =
(ny, ..., ny), where each of the m; is correlated with a rule R; of
L and each of the n; is correlated with a rule R’; op L', and
n; = m; if R’; is R; but if R’; is none of the R;, n; = 0, then we
have

Gy, oty [S, K B FE @y, ..., o [S, K] B

Consider the notion of (S, k)-restricted proof so introduced and
those n; corresponding to R’; not occurring in L. By setting these
n; =012 ..., we get closer and closer approximations to L’
beginning with L.

2. Some examples

Let Ri-R; be respectively the rules Ul, EG, TF, Cd, UG, EI,
and CQ of Quine's natural deduction system (*). The notion of

(*) W.V. Quing, Methods of Logic, revised edition (New York: Holt,
Rinehart, and Winston, 1959).
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a 2-restricted proof for this system is captured by the fol-
lowing schemata (where o' is like a except for containing free
x” where o contains free x):

(i) (¥)o 2}
(ii) «'[2}(@X)a
(iii) If a>f is a truth-table tautology, then «[2}(
(iv) ~(®)a[2} (Fx)~a
(v) (Fx)~al2} ~ (X)a
(vi) ~(Hx)a2}(x) ~a
(vii) (x) ~a[2} ~ (x)a

The definitive character of the 2-restricted system is re-
presented in the result that:

There is a 2-restricted proof of  from the premiss « iff a[2}f
is an instance of one of (i)-(vii).

There are no inference schemata corresponding to UG and EI
since no 2-line deduction using either of these is a finished
deduction (see Quine, ibid., p.162). (There is no inference
schema corresponding to Cd since correct 2-line deductions
using Cd have no premisses — a case lying outside the scope
of the notions introduced in § 1.) It should be noted that it is
by no means common that the restricted proofs or consequen-
ces of a given system can be so easily schematized.

So much for an example based on Quine's system; let us
consider a different point of departure. Let R;-Ry3(m;-my3) be
respectively the rules (integers) reit (2), imp int (1), imp elim
(1), conj int (2), conj elim (2), dis int (2), neg elim (1), neg, int
(2), neg; elim (1), neg conj int (2), neg conj elim (2), neg dis
int (2), and neg dis elim (2), of Fitch's system (%), (So that S =
(2,1, 1,2,2,2, 1,21, 2 2, 2, 2).) Rather than attempting to
axiomatize some notion of restricted proof or consequence for
this system, we simply list some examples of (S, k) and S-re-
stricted consequences for various k and then note some general
relations among such (for this system). Letting I" be an arbitrary

(*) Frederick B. Firch, Symbolic Logic (New York: Ronald Press, 1952).
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string of premisses (I" may be empty in the presence of other
premisses), we have:

(1) T, «&B (S, 3} p&eo.

(2) T, a(S, 4) ~aDp.

@) Tavp (S S)pve.

4) I'avp, ~a(S, 5)8.

(5) If I'(S, k}«a, then I'(S)a.

(6) If I'(S, 1}y and I', B(S, 1}y, then T, a v B(S, 5}y.
With respect to (6), it might be noted that the more general

(7) If I'a(S, ki }y and I', B(S, ka}y, then I', a v (S, k; + ke +
3}y does not obtain since, although we can find a deduction of
vy from I',a v given that the antecedent of (7) obtains, we
have no guarantee that this (or any) such deduction meets the
conditions for (S, k; + ke + 3) restricted consequence given S
as above. For example, both «(S, 2} (avy) v (3 vd) and (S, 2}
(@avy) v (B vd) obtain, but it is false that a v(S, 7} (a vYy) B.

It might be noted that for any system L which contains
(analogues of) Fitch's rules imp int and imp elim we have the
following quasi-deduction-theorem. Let m; and m; be the in-
tegers in S corresponding to imp int and imp elim respectively,
let S’ be like S except for having m’; = m; + 1 where S has m;
and let S” be like S except for having m’; = m; + 1 where S
has m;. Then we have:

(8) If I', a[S, k}B then I'[S, k + 1} aDp.

(9) If I'[S, k}a>p then TI', «[S”, k + 2}8.

3. Application I: Epistemic Logic

According to one concept of belief, all of the logical con-
sequences of beliefs are themselves believed. This view of
belief is sometimes expressed by saying that the believers
at issue in a logical theory of the subject are to be logically
omniscient, and finds its formalization in the meta-principle:

(1) If B is a logical consequence of ay, ..., oy,
then Bxo;& ... &Bxa,>Bxf} is a theorem.
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The logic of this concept of belief has been extensively in-
vestigated by Hintikka (‘). According to a second and more
restricted construction, one believes all and only those things
to which one would be prepared to give explicit assent if
questioned. The logic of this concept has not (to our knowledge)
been investigated and, indeed, it seems doubtful that this con-
cept can have an "interesting” logic. (It is readily conceivable,
for example, that a person can believe a&f in this sense, and
yet fail to believe avy.) With this overt sense of belief, we
must be prepared to encounter believers who are "logically
blind."

It seems desirable to explore the possibility of a middle
course between these extremes, to investigate a belief con-
struction such that, to put it metaphorically, believers are
neither logically omniscient nor logically blind but rather have
a logical vision of limited range. Rescher (*) has proposed a
system of epistemic logic for this kind of construction in which
(1) is replaces by the weaker:

(2) If B is an obvious consequence of ay, ..., a,, then
Bxog & ... & Bxa,©Bxfp is a theorem,

where the following rough characterization of "obvious con-
sequence” is given: B is said to be an obvious consequent of
oy, ..., oy if B is deducible from ajy, ..., @, in some small number
of inferential steps. It is further specified that (2) is not to
be used more than once in any proof or deduction. Rescher
points out that this notion of obvious consequence has some
similarity to Hintikka's notion of a “surface tautology” ().

It is to be presumed that a rigorous characterization of the
notion of an "obvious consequence” can be given in terms of
the machinery developed in section 1 above. Given such an
explication, the interpretation of (2) becomes well-specified

(*) Cf. Jaakko Hintikka, Knowledge and Belief (Ithaca: Cornell University
Press, 1962).

(!) Nicholas ReschEr, “The Logic of Belief Statements”, Topics in Philo-
sophical Logic (Dordrecht, Holland: D. Reidel, 1968), pp. 40-53.

(*) Cf. Jaakko Hintikka, “‘Knowing Oneself’ and Other Problems in
Epistemic Logic”, Theoria, vol. 32 (1966), pp. 1-13.
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and definite. On the other hand, we are now in a position to
make finer distinctions than this construction allows.

Although we are not prepared to give a complete charac-
terization of the notion of obvious consequence, it may be
helpful to make some brief remarks on the subject. We assume
that the obvious consequence relation is roughly a variety of
restricted consequence or proof, but one might well want to
make additional requirements on the kind of deductions that
can result in an obvious consequence. For example, if the
underlying system is one which allows subordinate proofs,
one presumably would also want to require that these them-
selves be (in some yet more stringent sense) “obvious"”. This
might be thought to be especially appropriate where the subor-
dinate proof involves a reductio argument. Thus one might be
lead to modify the notion of restricted consequence as follows
(for simplicity we consider only the case where all subordinate
proofs are immediately subordinate to the main proof):

Let S, the R; and k be as before. Let S’ = (O, ..., O,)
where O;<my, ..., O,<m,, and let k'<k. Then an (S, §/,
k, k')-restricted proof of B from ay, ..., 0, is one that satis-
fies (i) and (ii) as before, and (iii) is such that in any
subordinate proof no rule R; is applied more than 0; times,
and (iv) no subordinate proof is longer than k’ lines in

length.

For example, take the system of Fitch considered in § 2. Letting
O; =m;—1 and k' = k — 1, we have as analogues of (1), (3),
and (5) of that section:

(1) I a&B (S, 5,3 2)8&a
@) ILavp (S,8,54)Bva
(5') If I' (S, S', k, k' }a, then (S, k)a.

Given a notion of obvious consequence, one could then
define the following concepts: a is patently valid iff o is an
obvious consequence of § v ~f for some formula f§; « is patent-
ly inconsistent iff for some formula 8, § & ~f} is an obvious con-
sequence of a.
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Assume that certain beliefs are in some appropriate sense
epistemically basic. In this case we write: Byxa. We define
B..1Xp so as to obtain iff § in an obvious consequence of
oy, ..., ¢ where B,xay, ..., B.xax. Then, instead of (2), we can
adopt the meta-principle:

(3) If p is an obvious consequence of w, ..., o, then
Bmlxal &..& anxa,,DBmX(mi) +1Xp is a theorem.

This embraces the special case:

(4) If B is an obvious consequence of a, then B,xa>B, ,1xf.
If the relation of obvious consequence allows repetition, i.e.,
if for all i such that 1<i<n, a; is an obvious consequence of
oy, ..., 0y, then (3) follows from the definition of B,xa.

4. Application II: Imperfect Reasoners

Consider a computer which knows several natural deduction
rules (perhaps learned at Turing's knee), but which — being
“all too human" — can err. Our computer, call it Mycroft, is
known to make one mistaken step in 100 in making deductions
and his errors are independent in the sense that mistakes made
before the nth step in a deduction have no bearing on whether
the nth step goes wrong. Assume that Mycroft, or Mike for
short, knows only modus ponens and modus tollens and that
we want to know the consequences derivable from a set of
formulas using these two rules, but are only interested in those
formulas that Mike claims as consequences which have at
least a .96 chance of being correct. Such a consequence — a
“reliable consequence" — amounts to a 6-restricted conse-
quence in terms of the machinery introduced in section 1
with L = (modus ponens, modus tollens) (7). (For (.99)* = .96, x
=6; it would help if Mike were good with logarithms.)

Consider a slightly different situation in which Mike is

() It is to be assumed that we can ask Mike to carry through any
particular deduction but once.
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completely reliable but takes ten times as long to do modus
tollens as modus ponens (say he takes, respectively, ,one and
ten seconds for these operations). Call § a t second conse-
quence of ay, ..., a, (for Mike) iff Mike can derive § from
ay .., 0y in t seconds. We can define this in terms of the
machinery developed in section 1. Let L = {modus ponens,
modus tollens) and S; = the ith member (under some ap-
propriate ordering) of the set of all ordered pairs (mj;, m;)
such that m;>0, my=>0, and m; + 10m; = p. Then

f is a t second consequence of ay, ..., a, iff § is an S;-
restricted consequence of aj, ..., o, for some i.

5. Conclusion

The idea of a restricted inference seems to offer a rigorous
way of introducing into logic a conception that seemingly has
no place here: the economists’ concept of limited resources,
of a finiteness of means, in short, of scarcity. In ways we have
attempted to define and illustrate, the mechanisms of restricted
inference provide a basis for injecting into considerations of
logical deduction the operation of the familiar restrictive limi-
tations of human finitude: limitations forced upon us in situa-
tions of limited time, accuracy, or logical acumen. The impli-
cations of such limitations may well repay further study —
they are unquestionably of pracfical importance and may be
presumed to prove of theorefical interest as well.

Nicholas REscuer and Zane Pagks



