ON COHERENCE IN MODAL LOGICS

Robert K. MEYER

In this paper, I define a notion of coherence for modal logics,
and I develop techniques which show that a wide class of logics
are coherent; included in this class are not only familiar logics
like S4 but a number of logics, like my system NR, whose non-
modal part is distinctly non-classical and, by extension, Ander-
son and Belnap's E of entailment and Ackermann's strenge
Implikation. It will follow in particular that these logics have
a number of interesting properties, including the S4 property

~0OA V OB iff - OA or ~ OB,

I

Roughly, a logic is coherent if it can be plausibly interpreted
in its own metalogic. Specifically, we presume a sentential
logic L to be formulated with a necessity operator [J, non-
modal connectives —», A, V, — (and perhaps other connectives
and constants which can be correlated with familiar truth-func-
tions), and formulas A, B, C, etc., built up as usual from sen-
tential variables p, q, r, etc. Henceforth we identify L with its
so-called Lindenbaum matrix — i.e., L = (F,0,T), where F is
the set of formulas of L, T is the set of theorems, and O is a set
of operations corresponding to connectives of L.

Let 2= (2,0,{1}) be the 2 element Boolean algebra (con-
sidered as a matrix), where 2 = {O,1} and with operations in 0
corresponding to all non-modal connectives in L and defined
as usual. A metavaluation of L shall be any function v: F— 2
satisfying the following conditions, for all formulas A and B:

(i) v(DOA)=1 iff ~DOA in L;

(ii) v(A — B) = v(A) = v(B), v(—A) = —v(A), and similarly
for other non-modal connectives.
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A formula A of L is true on a metavaluation v iff v(A) = 1;
A is metavalid iff A is true on all metavaluations of L; L is
coherent iff each theorem A of L is metavalid.

The following theorem is trivial, but it generalizes well-
known S4 properties to all the logics that we shall prove
coherent.

Theorem 1. Let L be a coherent logic. For any formula C, let
C’ be a formula which results from C by replacement of truth-
functionally equivalent formulas (*). Then

(i) ~.(OAV OB) only if . 0OA or . 0OB;
(ii) ~L(OA A OB) only if +~.0OA and +~,OB.

Proof. Ad (i). Suppose neither A nor OB are theorems of L.
Then for an arbitrary metavaluation v, v(OA) = 0 and v(OB)
=0, whence v(OA V OB)' =0 on purely truth-functional
grounds. Since L is coherent, JA V OB and all its truth-func-
tional equivalents are non-theorems.

Ad (ii). Similar.

II

We shall prove coherent all modal logics which can be
formulated with axioms and rules of certain kinds. In order
to formulate our results in as general a way as possible, while
keeping in mind those cases which are interesting in practice
we shall characterize the key notions rather sharply. A[B;, ...,
B./P1, ... ps] shall be the result of uniformly substituting the
formulas By, ..., B, respectively for the sentential variables
P1, .- Pn in the formula A; s(A) shall be the class of all uniform
substitutions in A. Where (A,, ..., A,), n > 0, is a finite sequen-
ce of formulas, a uniform substitution (A,, ..., A,)[By, ..., Ba/pP1,
...+ Pa] shall be the sequence (Ay[By, ..., Bi/py, ..., Pul, --.r Aq[By,

() A and B are truth-functionally equivalent iff they are uniform substitu-
tion instances of formulas A, and By such that (1) the sign ‘[]" does not
occur in Ay or By and (2) Aj¢> By is a classical tautology.
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o Bo/P1y oo Pudi S(Ag, ..., A,) shall be the class of all uniform
substitutions in (A, ..., A,).

A scheme shall be a pair (A;s(A)), where A is called the
characteristic formula of the scheme. A rule shall be a pair
( (A ..., Ay), s(Ag ..., Ap) ), where the sequence of formulas
Ay, ..., Ay, n>1, is called the characteristic sequence of.the
rule, A, is called the characterisfic conclusion of the rule, and
Ay ..., A, are called the characteristic premisses of the rule.
A scheme is tautologous if its characteristic formula is a sub-
stitution instance of a truth-functional tautology in which the
sign ‘00’ does not occur; a rule is truth-functional if the sign
‘00’ does not occur in its characteristic sequence and if the
conditional whose antecedent is the conjunction of its charac-
teristic premisses and whose consequent is its characteristic
conclusion is a truth-functional tautology.

Let L = (F,O,T) be a logic, let X be a set of schemes, and
let R be a set of rules. (X,R) is a formulation of L provided that
T is the smallest set which contains s(A) whenever (A,s(A))
eX and of which Ay[By, ..., Bi/py, ..., pu] is a member whenever
{Ag ..., A;) is the characteristic sequence of a member of R
and each of A4[B; ..., By/P1s --or Puls oo An[Byy -y Bu/pyy +.vr Pl
belongs to T. If (X,R) is a formulation of L, we call members
of X axiom schemes and members of R primitive rules of the
formulation. Finally, we call a rule r admissible for a formula-
tion (X,R) of L iff (X,RU{r}) is a formulation of L. — i.e., fol-
lowing Curry, if taking r as a new primitive rule does not en-
large the class of theorems.

We shall call a modal logic regular only if it has a formula-
tion (X,R) satisfying the following conditions:

(1) If (A,s(A))eX, one of the following holds:

(a) (A;s(A)) is tautologous;

(b) for some formula B, A is truth-functionally equ1va1ent
to OB — B;

(c) for some formula B, A is truth-functionally equivalent
to OB— OOB and (OOB,OB) is the characteristic
sequence of an admissible rule of (X,R);

(d) for some formulas B and C, A is truth- functlonaily
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equivalent OB & OC— O(B&C) and (O(B&C),OB,
OC) is the characteristic sequence of an admissible
rule of (X,R);

(e) for some formulas B and C, A is truth-functionally
equivalent to O(B—C)— (OB— OC) and (OC,O
(B—C),OB) is the characteristic sequence of an ad-
missible rule of (X,R);

(f) for some formulas B and C, A is truth-functionally
equivalent to O(B V C)— (—O—B V 0OC and (0OC,
O—B, O(B V C)) is the characteristic sequence of
an admissible rule of (X,R).

(2) If reR, one of the following holds:

(a) r is truth-functional;

(b) the characteristic sequence of r is ([OB,B) for some
formula B.

(c) the characteristic sequence of r is (OB— OC,00B—
C) for some formulas B and C, and (OC,0OB— OC,
OB) is the characteristic sequence of an admissible
rule of (X,R).

It is readily observed that many familiar modal, deontic, and
epistemic logics are regular, including the Lewis systems S2,
S3, and S4, the Feys-Godel-von Wright system M, ,the Lemmon
system SO.5, and others. Of particular interest for present
purposes is the fact that no conditions are placed on non-modal
axioms and rules, save that they be classically valid; thus the
Y-systems of Curry's [4] and the relevant modal logic NR of
[6] are regular.

We shall show that all regular modal logics are coherent by
associating with each of them a special kind of structure. Let
L be a reqular modal logic. The weak canonical matrix W for
L is the triple (2XF,0,D), where 2XF is the set of pairs (x,A)
such that x = 0 or x = 1 and A is a formula of L, (x,A) belongs
to the set D of designated elements of 2XF iff x = 1, and O is a
set of operations corresponding to the connectives of L and
defined as follows on all (x,A) and (y,B) in 2XF:

() (x,A) = (yB) = (x>y,A-B), —(x,A) = (—x,—A),
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and similarily for other non-modal connectives and constants;

(II) O(x,A) = (1,0A) iff x =1 and OA is a theorem of L;
O(x,A) = (0,00A) otherwise.

A canonical interpretation of L in its weak canonical matrix W
is any function f:F—2XF satisfying the following conditions:

(a) If p is a sentential variable, f(p) = (0,p) or f(p) = (1,p);

(b) f(A — B) = f(A) — {(B), f(OA) = Of(A), and similarly for
other connectives; if the sentential constant t occurs in L,
f(t) = (Lt). A formula A of L is weakly valid in W iff f(A)esD
for all canonical interpretations f of L in W. We now prove
the key theorem.

Theorem 2. Let L be a regular modal logic, and let W be its
weak canonical matrix as defined above. Then for all formulas
A of L, the following conditions hold.

(i) If A is a theorem of L, A is weakly valid in W;

(ii) OA is a theorem of L iff f(JA) = (1,0A) for all canon-
ical interpretations f of L in W;

(iii) OA is a non-theorem of L iff f(OA) = (0,0A) for all
canonical interpretations f of L in 'W.

Proof. (iii) follows directly from the definitions of f and W.
(ii) follows from (i) and the fact that if f(0OA) = Of(A) =
(1,0A) for any canonical interpretation f, then by (II) OA is
a theorem of L.We finish the proof of the theorem by proving
(1).

Since L is regular, it has a formulation (X,R) satisfying the
conditions on p. 660. Hence if A is a theorem of L, there is a se-
quence of formulas A;, ..., A, such that A, is A and such that
each A;, 1 <i<n, is either a substitution instance of the charac-
teristic formula of a member of X or follows from predecessors
by virtue of a rule in R. Given such a sequence, we assume
on inductive hypothesis that A, is weakly valid for all h less
than arbitrary i, and we show that f(A;) = (1,A;) for an arbi-
trary canonical interpretation f, and hence that A; is weakly
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valid. There are two cases, with subcases corresponding to
the conditions on regularity of p. 660.

Case 1. A;es(B), where (B,s(B)) is an axiom scheme.

(a) B is a truth-functional tautology. Then B, and hence A;,
is a substitution instance of a classical tautology C
in which ‘00’ does not occur. But C is weakly valid on
purely truth-functional considerations, whence so is A;.

(b) A, is truth-functionally equivalent to OJC — C, for some
formula C. Then f(A;) is Of(C) — £(C), which is desig-
nated on truth-functional grounds if f(C) = (1,C); if
f(C) = (0,C), Of(C) = (0,0C) by (II) on p. 662, and so
truth-functionally f(A;) = (1,A;).

(c) A; is truth-functionally equivalent to OC— OOC for
some formula C, and if OC is a theorem of L so is
OO0OC. By (II) unless it is the case that both f(C) =
{1,C) and OC is a theorem of L, f(A;) is designated by
falsity of antecedent; in the remaining case, it is de-
signated by truth of consequent.

(d) A; is truth-functionally equivalent to OC& OD—
[O0(C&D), where if both OOC and OD are theorems of
L so also is O(C&D). By (II) unless it is the case that
f(C) = (1,C), {(D) = (1,D), OC is a theorem of L, and
OD is a theorem of L, f(A;) is designated by falsity of
antecedent; in the remaining case, it is designated by
truth of consequent.

(e) (f). Similar.

Case 2. A, follows from predecessors in virtue of a rule reR,
where we may assume all predecessors weakly valid.

(a) r is truth-functional. Then on purely truth-functional
grounds, A; is weakly valid.

(b) A; is OC, and for some h <i, A is C. On inductive
hypothesis, f(C) = <1,C> for an arbitrary canonical
interpretation f, whence, since JC is a theorem of L,
f(OC) = (1,0C).

(c) A; is OC— 0OD, and for some h<<i, A; is OC—D;
furthermore, if JC and OOC — OD are both theorems,
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so is OD. We may assume that f(C) = (1,C) and that
OC is a theorem of L (else f(A;) is designated by falsi-
ty of antecedent), Then f(OC) = (1,0C); furthermore,
since A, is weakly valid f(D) = (1,D) and, since OD is
a theorem of L on our assumptions, f(A;) = (1,A;) by
truth of consequent. This completes the inductive ar-
gument and the proof of theorem 2.

Theorem 2 has some interesting applications in addition to
those with which we are primarily concerned here. If, for
example, we define for a regular modal logic L and L-theory
to be any set of formulas of L which contains all theorems of
L and which is closed under the truth-functionally valid rules
of L, then for each such L there is a consistent and complete
L-theory T such that OAET iff OA is a theorem of L, and
hence, by consistency and completeness, such that —OA&T
iff A is a non-theorem of L. For by theorem 2, it is clear
that the set of formulas which take designated values on any
canonical interpretation in the weak canonical matrix will
constitute such a theory. This suggests in particular a mode of
attack on the decision problem for the class of formulas of the
form OA for any regular modal logic; find a recursive set of
axioms for T satisfying the above conditions. Since many modal
logics, including NR and E, have the property that A is a
theorem iff OJA is a theorem, the construction of suitable T
would solve the decision problem for all formulas, closing long
open problems for the systems mentioned (Cf. Anderson’s [1]).
We return to our main business with a corollary.

Corollary 2.1. Every regular modal logic L is coherent.

Proof. We must show that each theorem A of L is true on an
arbitrary metavaluation v. Define a canonical interpretation f
of L in the weak canonical matrix W by letting f(p) = (0,p)
if v(p) =0 and f(p) = (1,p) if v(p) =1 for each sentential
variable p; clearly this suffices to determine the value of f on
each formula of L.

We now show that f(B) = (1,B) if v(B) =1 and {(B) = (0,B)
if v(B) = 0, by induction on the length of B. This is true by



ON COHERENCE IN MODAL LOGICS 665

specification for sentential variables, and it is trivial on in-
ductive hypothesis if the principal connective of B is non-
modal. Suppose finally that B is of the form OC. If OC is a
theorem of L, v(OC) = 1 by definition of a metavaluation and
f(OC) = (1,0C) by (ii) of the theorem; if 0C is a non-theorem
of L, v(OC) = 0 by definition and {(00C) = (0,00C) by (iii) of
the theorem, This completes the inductive argument, and shows
that f(B) agrees with v(B) for arbitrary B.

We complete the proof of the corollary by noting that since
by the theorem each theorem A of L is weakly valid, v(A) = 1
for all metavaluations v. Hence if A is a theorem, A is meta-
valid, and so L is coherent.

III

We now apply theorems 1 and 2 to the relevant logics NR
and E. That NR is regular is simply a matter of checking the
axioms and rules of [6] to see that they meet the conditions
of p. 660. This proves that NR has by theorem 1 the S4 disjunc-
tion property; it is also establishes that one cannot prove that
two apodictic formulas of NR are consistent unless one can
prove both formulas. For introducing a consistency operator o
into NR via the definition

DO. AoB=dfA—B

then since A&B is truth-functionally equivalent to AoB, if one
can prove in NR

OA o [OB

then by theorem 1 one can prove both A and OB. (The con-
verse is trivial — if one can prove both [JA and OB, one can
prove in NR that they are consistent). This solves for NR a
problem analogous to one raised in [1] by Anderson for E (%).

() The problem is not quite analogous, for what Anderson was asking
was whether one could prove [JA consistent with <>B without being able
to prove both in E, essentially, In this case it turns out there are formulas
A and B of E such that one can, thus refuting Anderson’s apparent con-
jecture.
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NR was introduced in [5] because it putatively contained
the system E of entailment, and hence the equivalent Acker-
mann system IT’, exactly on the definition

D1. A=>B =df O(A — B).

This has remained conjecture, however, and so the results we
have obtained for NR do not automatically apply to E. Further-
more, in the Anderson-Belnap formulation of E, ‘0]° is defined
by

D2. DA =df (A— A) = A,

wich, were it turned into a definitional axiom for a version
of E with ‘00’ primitive, would not meet our conditions for
regularity.

The way out, in order to apply our results, is to embed E is
a version NE of itself; for elegance, we suppose E formulated
with a sentential constant t (no actual inflation, in view of the
elimination procedure of [2]) and the axioms schemes and
rules given by E2-E3, E5-E16, and E56-E57 of [5]. To form NE,
we take ‘00’ as an additional primitive and add to the above
axiom schemes those whose characteristic formulas are
Op—p, Op— 0O0p, O(p—q) — (Op—0Og), (Op A Og)—>
O(pp A q), and Op— (t— Op); as a new rule, we add one
whose characteristic sequence is (Op,p). We now have,

Theorem 3, NE is regular, Furthermore, if A* is the formula of
NE got by replacing in a formula A of E each subformula
B — C with O(B — C), beginning with innermost parts, then A
is a theorem of E iff A* is a theorem of NE.

Proof. That NE is regular follows from the definition of regu-
larity on p. 4, To show that if A is a theorem of E, A* is a
theorem of NE, it suffices to show that if B is an axiom of E,
B* is a theorem of NE and that modus ponens holds for =,
as defined by D1, in NE; it follows that for each step A, ..., A,
in a derivation of A in E, A* is a theorem of NE. Actual
verification of the axioms of E in NE poses no problems and
is left to the reader.
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Conversely, suppose A* is a theorem of NE. Replace each
occurrence of the primitive sign ‘00" in its proof with ‘00’ as
defined by D2; it is easily seen that each step of the trans-
formed derivation is a theorem of E; hence A*, thus trans-
formed, is a theorem of E. Finish the proof by showing that A*,
with ‘00’ defined by D2, entails A in E.

Theorem 3 suggests a new definition of coherence for a
system in which entailment is taken as primitive. For E in
particular, formulated with t, A, V, —, and — primitive, we
define a metavaluation to be any function defined on the set
of formulas of E with values in {1,0} satisfying the following
conditions, for all formulas A and* B:

(i) v(A—B)=1 iff A—B is a theorem of E;
(i) v(t) =1;

(iii) v(A V.B) =1 iff v(A) =1 or v(B) = 1;
(iv) v(A A B) =1 iff v(A) =1 and v(B) = 1;
(v) v(—A) =1 iff v(A) = 0.

As before, we call a formula of E metavalid if it is true on all
metavaluations; E is coherent if all its theorems are metavalid.
We then have

Corollary 3.1. E is coherent. Furthermore a formula A—B is
a theorem of E iff it is true on an arbitrary metavaluation. Ac-
cordingly, if the sign ‘=’ does not occur in C, a formula
(A1 =BV ... V(A = B,) VC is a theorem of E iff either (A; —>
B)) is a theorem of E for some i or C is a truth-functional
tautology.

Proof. Let A be a formula of E, and let A* be the translation
of A into NE given by the theorem. Let v be any metavaluation
of E, and let v* be the metavaluation of NE which agrees with
v on sentential variables. Use the theorem to show, for each
subformula B of A, v(B) = v*(B*). But if A is a theorem of E,
A* is a theorem of NE and is hence, by the coherence of NE,
true on all v*; so A is true on v. But v was arbitrary; hence E
is coherent. This proves the first statement; the second is im-
mediate from the definition of a metavaluation.
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For that final part of the theorem, Anderson and Belnap
noted in [3] that all tautologies in which ‘-’ does not occur
are theorems of E. The suffiency part of the last statement
then follows by elementary properties of disjunction.

On the other hand, assume that none of A;—B;, ..., A, =B,
are theorems of E and that C is not a tautology. Since '—=' does
not occur in C, there is an assignment of 0 or 1 to sentential
variables which falsifies it. The extension of v to a metavalua-
tion will falsify the disjunction, which is accordingly a non-
theorem of E.

I remark in conclusion that of course theorem 3 and its corol-
lary are straightforwardly sapplicable to Ackermann's strenge
Implikation, in view of the fact that it has the same theorems
as E. They are also applicable, mutatis mutandis, to related
systems straightforwardly translatable into regular modal
logics (*). '

Indiana University Robert K. MEYER
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