COMPLETENESS IN THE LOGIC OF PREDICATE MODIFIERS

M. K. RENNIE

In [5], Malinas and the author introduced some languages
designed to handle predicate modification (i.e. basically ad-
verbial constructions) and gave some formal semantical pres-
criptions for these languages. Here I extend the languages
in a couple of directions (changing those of [5] slightly to
facilitate extension) and provide sketches of completeness
proofs for suitable axiomatizations of the theories involved.

SYSTEM QTM

The system QTM is the weakest of the systems considered.
Its syntax is set out thus:

Primitives

S P4 PLqy -
designated as propositional
variables,

S(ii) x, V.2 Xy, Vi .-
designated as individual
variables,

S(iii) F*, G", H", F", G", ... for each n=1,
designated as n-ary predicate
variables,

S(iv) f,g"h" " g;" ... for each n=0,
designated as n-ary predicate

modifiers
S(v) ~, 2 vl

S(vi) (+).
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In the formation rules now to be stated we use an italicized
variable as a metavariable for the appropriate class: thus p
ranges over propositional variables, {* over n-ary modifiers
and so on.

Formation Rules

Wi(i) F" is well-formed n-ary predicate (nPr),

Wi(ii) If ¢ is an nPr then (¢) and fi(g)x; ... x;, j=1, are nPr,

W(iii) If ¢ is an nPr then ¢(xy, ..., X,) is a well-formed formula
of QTM (WQTM),

W(iv) p is a WQTM,

W(v) Ifcisa WQTM so is ~a

W(vi) If o, B are WQTM so is (aDf),

W(vii) If a is a WQTM so is (Vx)a

and these are all the WQTM.

We set M(a)=¢ max n(nPrV(e) # {}) and K(a) =4 max
n(nPrM(a) # {}), where nPrV(a) and nPrM(a) are respec-
tively the set of n-ary predicate variables and the set of
n-ary predicate modifiers in o. Then the semantics for QTM
begins by specifying that a QTM model for a wff a is an ordered
(mk + 2m -+ 3)-tuple L = (D, q, v, x‘,....x’“,t"[ ...,Z‘iﬂ,...,';‘:,

..., ¥ ), where m = M(a), k = K(a), and
D= {},
= {1, 0}1:'\-'(&)r

i.e. ¢ is a function from the propositional variables of « to the
set of truth-values {1, 0};

.Lp (= DF[V((I) .

i.e. ¢ is a function from the set of individual variables with at
least one free occurrence in « to the domain D,

P € (P(DY)"Pryve, 1<n<m,
t: € (P(D")2(0")oPriw),

U e (@DrPohxvl)ipn@, 1<j<k.
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In order to define the valuation function AVal for the model A,
we need firstly to define the “pre-valuation” functions ASet™:
these are defined on the nPr, for 1<n<m, thus:

ASet™(F") =91
ASet™(f(p)) = (&) (") (ASet"(g)),
ASet"(fi(g)x; ... x)) = € () (ASet™(¢), W(xa), --s W(x;)).-

We then use ASet" in the definition of 1Val just as y" is used
in the usual rules. Thus:

AVal(@(xi, ..o X)) = TIE (Y1), ..., Y(xa)) € 2Seto(q),

AVal(p) = ¢(p),

AVal(~p) = 1iff A\Val() = 0,

AVal((B>v)) = 1iffAVal(f) = 0 or A Val(y) = 1,
AVal((Vx)B) = 1iff ’Val(f) = 1 for all x-variants

)" of 1, where 1’ is an x-variant of 1 iff A’ differs from 1 only in
containing ¢’ where A contains v, and v’ differs from v, if at
all, only in what it assigns to x from D (or in that it assigns a
value from D to x and vy assigns none).

Finally, we say that a is QTM-valid iff it is true in all QTM
models, i.e,

QTM-Valid(s) =g/ (Val(w) = 1).

The notion of a model for a set I" of WQTM easily generalizes
upon the notion of a model for a single wff. In place of PV(a)
we use U PV(a), for nPrV(a) we have U nPrV(a), and so on.

acsl acsl’

A model 1 satisfies a set I' of WQTM iff each member of I is
true in A i.e. iff (a)(asl'.D. AVal(a) = 1).

To axiomatize QTM we need to have in mind some complete
axiomatization of the underlying ordinary quantifier theory
QT. For definiteness, we suppose this to be Church's F'? ([2]
p. 172): for ease we suppose the completeness theorem for this
to be dealt with as in Leblanc’s [3] § 2.7. In particular, we take
it that every consistent set I" of closed wiffs of QTM can be
extended to a suitable saturated (maximal consistent, Linden-
baum) set I'* (= Leblanc's S°) of wffs of QTM™, i.e. QTM with
¥y extra individual constants cy, cg, ..
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We show now that if we add to F'* the extensionality prin-
ciples for modifiers, viz.

Mext?) (Vxq) ... (V) (P (%1, ..., X,) = G*(X4, ..., Xn))
O(Vxy) ... (VX)) (P(F) (%1, +..r Xn) = °(G")(%4, ..., Xn)),
and
Mextl) (Vxy) ... (Vx)(F(xy, ..oy X0) = G(Xy, ..., X))
D (Vxy) ... (V) (Vyy) .. (YY) (B(F)ys .. 13
(1) oo X)) = H(GY)yy ... Vi(Xgy oo00 X)), forj=1,
then we can fish suitable functions {° T out of the set I,

and hence that these principles completely axiomatize QTM
(since all other elements of a model A for I" are given by the
standard completeness proof).

We notice that by a routine induction, the principles Mext!
allow us to prove the general extensionality principle:

(Vxq) ... (Vx) (@(xq, .. or X0) _=_.1,p(x1, e X)) D

(V1) . (Vxa) (Yy)) o (VYD) (B(@)ys - yilxa o X)) =

By)yy ... ¥i(xy, ... X0)), for any nPr's ¢ and .

Now, given I'* let us define the functions T and 71, j>1,

for the canonical model 1 by the prescription:

';_g (£ assigns {(cy, ..., c) | (¢)(cy, ..., ) € T*)
to {(Cll e Cn) |(P(C1: raey Cn) € F+}
and assigns {} to any set B € #(D") for which there is no nPr
¢ such that B = {{¢;, ..., ) | glcy, ..., ) € T}, and
Ef] (f)) assigns {(cy, ..., cu) | fi(g)c] ... c; (1, ..., Cn) €T}
to ({ (Clr L ] Cn) |(P(Cir LLET} Cn) S5 F+}r C’lv veey C'j )r
and assigns {} to any (B, ¢}, ... ) € 2(D") X Di
for which there is no nPr ¢ such that B = {{¢;, ..., ¢,) | g(cy, ...
¢y) €T *}. These prescriptions define Eg and € unambiguously

because of the general extensionality principle: if there are two
nPr's ¢ and 4 such that:

{{eg ....ie) | plea a)el}y = {le, ..., ) | Vl(ey ..., ¢)
eI},
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then
(Vxy) oo (VX)(@(X11 s Xn) = P(X4, o0s Xa))
holds, and hence by extensionality we have:
(Vx1) o (V0) () (%4, oy Xa) = () (X1, .., Xa)),
and

(Vxl) L (Vxn) (VYI} (VY.I)UJ((P)YI see Yj(xtr ssey X")
= p(‘l")Y[ vos Yj(xll seeg xll))l

and so

{{Cy s )] DY (C1r oc0n O} ©E T} = {5005 G3) |
M) (cyy ..., ) €T},

and
{{en i) [ Hi(g)e] ... c; (Cly.euCy) €T} =
{(c1, ..., &) | Ij{tp)(:; cg (g, ....c,) T},

making the values of the functions £’ and {! unambiguously

defined.

631

We now claim that 3Set'(g) = {(cy ..., Ca) | @ (Ct, ..., Co) €
I'*} for any nPr ¢, and we back up this claim by a proof by
induction on the complexity of the nPr. For the basis clause,

ASet*(F?) = "(F") = {{cy, ..., &) | F*(Cy, ..., €2) € "} by the

usual definition of i“. For a 0-ary modifier:
1Set’('(q) = (£ (1) (ASet())

=) {{cy ... Ca} | Bley ..i ) €T

by the inductive hypothesis,
= {{Cy ... Cu) | P(@)(Cy, ... €) E T}
by the definition of il.)-.i
and for a j-ary modifier, j=1,
ASet"(fi(g)c’,... )
= (@ (M) (Set(¢), cf , ..., ¢])

= (@ @) ({{c1r ... @) | Bl oo @) €T}, €, .o

!

)
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by the inductive hypothesis

= G Ga [ G0, e c’j (1 ..., Cy) €}
by the definition of Ti.

Now in the usual claim that RVal(a) = 1 iff eI, so that
A indeed satisfies I'EI™, our basis step for elementary wifs
@(xy, ..., Xg) is

AVal(g(cy, ..., ¢)) =1 iff

(W(Cl)l il w[cn)) £ hSet“(cp),

ie. iff (cy, ..., c,) € ASet*(¢)
(since the individual constants denote themselves in the ca-
nonical model),
ie iff (¢ ....c.) € {{eyy ..., @) | @leyy ..., C0) ET}
(by the previous paragraph),
ie. iff g(cy, ..., o) €I

The rest of the work for the completeness proof is the same
as for the usual work for ordinary QT, and this proves QTM
to be completely axiomatized by the principles Mext’ and
Mexti added to F'?, and incidentally gives the usual Léwen-
heim-Skolem result for QTM as well,

SYSTEMS QTM(D), QTM(C) and QTM(D, C)

These systems each have the same vocabulary as QTM:
semantically they result from the addition respectively of the
inclusion condition

viz. f(A)CA , for 1&Dy(C))
and f(A, by, ..., b)CA , for f€Dy(E), j=1,
the crossover condition

viz. g(f(A, ay, ..., a;), by, ..., b) € f(g(A, by, ..., b)),
ay .. @) , for EEDI(I;i and geDl(Zin).

(with suitable modification if either j =0 or i = 0),
and both of these conditions to the semantics for QTM.
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Axiomatically we have the demodification schema to match
the inclusion condition, and the commutation schema to match
the crossover condition. These are, respectively:

(DS (Vx1) ... (Vi) (£} (%10 - Xn) D @(X1 ... X)),

and

(DS)  (Vxy) ... (Vx3) (Vyy) ... (YY) (F(@)y1 -..vi(x1, ...y Xa)

:)(P(Xl, Ry xn})r

and

(CS)  (Yx1) ... (Vi) (Vyy) ... (V}fi) (Yzy) ... (Yz))(g'(fi(g) Y1 --.
Yi)Z1 .. Zi(Xy .. Xa) D £(GH(@)2s ... Z)Yr ... Y
(%1, ..., X1))

(where again CS has some degenerate cases if j = 0 or i = 0).
To show that QTM(D) and QTM(C) are complete, we need
to show that if (DS') are axioms of the system then the functions

Ejn(ﬂ') satisfy the inclusion condition, and if (CS) are axioms

then these functions satisfy the crossover condition.

Well, if (DS) are axioms then they and all their instantiations
belong to I'". Moreover I'* is closed under detachment, hence
if ii'(cp) c; c:, (€1, ..., ci) ET" then:

¢(cy ..., ¢y) €', hence:
{{cu ... ca) [ fi(@)c] ... c;(cl, wity) e} €

{{cy ..., ) l@(eyy .., €)) €T},

and this is precisely the inclusion condition, If (CS) are axioms,
a similar argument applies: the closure of I'* under detachment
translates the O in the axiom-schema to the € in the crossover
condition.

In [5], we showed (DS!) and (CS) to be independent: there is
no trouble about combining the conditions, so QTM(D, C) is
complete as well as QTM(D) and QTM(C).

POLYADIC MODIFIERS — QTPM

In QTPM, the modifiers of QTM are extended so that they
may modify several predicates at once. Examples of such
polyadic modifiers are provided by truth-functional conjunc-
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tion, disjunction etc. of predicates, as in [1] § 28a, and by such
adverbs as 'successively’ which indeed is a multigrade polyadic
modifier since it may take any number of predicates as its
arguments to form a new predicate.

For the syntax of QTPM, we replace the S(iv) of QTM by

S@v)P 1%, g% BV 9 g -
for each r=1, n=20, designated as
r-place n-ary modifiers.

The modifiers of QTM correspond to the case where r=1, so
that our new f!'" corresponds to our previous f". We extend
W(ii) of QTM to

W(ii)P If ¢ ..., ¢ are all in nPr,
then (g, ..., ¢;) and
© i@y +eer @6)X1 ... X; are in nPr,

We let rjPrM(a) be the set of r-place j-ary modifiers in a
WQTPM «, and we put S(a) =4 max r((Hj)(rjPrM(a) % {})).
Then a QTPM model for a wff a is an ordered (skm + sm + m
+ 3)-tuple
)L = (Dl cPu 'lpl Xtr ey Xlﬂl t},ﬂ' 112,9, RN C;’:}, t?.[lr LR ] ’(;2,0' LERY CSI’OJ RS tvi;o! sesy

1 m
I LN )

where m = M(a), k = K(a),s = S(a), D, ..., y™ are as for QTM,
and where

(gB(Dn])r rOPrM(a) for 1...<_‘r...<._5'
,0 n
and
. 4 ((Z(D7)r X D)) HFmiee for 1srss,
e (g'(]) ) ) 1<n<m,
1<j<k.

The functions "/ then appear in the definition of ASet”, as per
ASet™(F") = ¢"(F"),
ASet*(1°(q1 ... ¢1)

= (t_,;»“(f““})(lSet"(q:l), .o ASet" (),
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ASet*(f3) (@1 ... @)Xy ... X))
= () (Set™ (@), ..., ASet (@, p(x1), .o Y(x3)),  J21,

and from here on the definition of AVal is as for QTM. Then
we have

QTPM-Valid(w) =at A(Val(w) = 1),

where now the quantifier ranges over all QTPM models for o.
To shorten the axiom-schemata for QTPM, let us write:

Coex(F", G") =4¢ (VX1) ... (VX0) (F™(X1y -.vs Xn) = G (X1, +.0r Xy)).

Then the extensionality principles which serve as axioms for
QTPM are:

T
(Mext?) A (Coex(F}, GY)) 2 (Vxy) ... (V) (°(F5, ..., F)
i=1
(X1 ooey Xg) m HGY, ..o, GB) (X4 ..oy Xp)),
and
r
(Mext}) A (Coex(F, G) o (Vxi) ... (Vxa) (Vy) ... (Vy3)
i=1
(F"j(FT, g FI:)Y] Yj(X], ey Xn) = fr,j[Glll' oy G:l)
Y1 oo YilXn ooor Xa)). '
For the completeness proof for QTPM we use these extended
extensionality principles to justify an unambiguous definition
of the functions Erﬁj in the canonical model A. The work entirely

parallels that for QTM, and we take the completeness of QTPM
as proved.

HETERADIC MODIFIERS — QTHM

We introduce now the notion of heteradic modifiers. All of our
existing modifiers could be called homadic, in that the adinity
of the result of the modification is the same as that of the
predicate or predicates serving as arguments for the modifier.
A heteradic modifier, on the other hand, is a modifier which
results in a predicate of adinity different from its argument(s).
The simplest kind of heteradic modifier would be one which
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gave a result of constant adinity regardless of that of its
argument(s): a more general kind of heteradic modifier is one
such that the adinity of its result is a function of the adinity
of its arguments. Thus in general we can countenance p-re-
sultant r-place j-ary modifiers fw"i, which are like the r-place
j-ary modifiers of QTPM except that if ¢, ..., ¢, have adinities
respectively ny, ..., n, then fw"i(g...¢)%;...x; has adinity

u(ny, ..., n;), where ME‘N", N=1{1,223...}L

To symbolize modifiers of such generality, we have to over-
come (or rather ignore) the technical problem that for finite

r N® has cardinality & = Qa“, so that we cannot enumerate
the p-resultant r-place j-ary modifiers. We cannot write a
function n into a superscript position in our syntax without
going well beyond the usual kinds of syntactic mechanisms,
and because we cannot enumerate all the pu's we cannot sup-
pose u to be an index-number for the function in question. We
could suppose that we are restricted to some denumerable

subclass of N(Nrj), e.g. the general recursive functions; or
perhaps we could suppose that we have a variable ordering of

the functions in N®" so that in any set of formulae to u’s con-
sidered are in the first ¥, of the ordering, Whatever we sup-
pose, we will operate as if we had no problem: we will use p
ambiguously as a function and as an index for a function, and
will say things like “fw™%q, ... ;) is a pu(ny, ..., n)-adic pre-
dicate".

In the syntax for QTHM, S(ii) becomes

S(i)H fwrn, gwnn, hwrs funn guns,
for p=1, r=1, n=0,

designated as p-resultant r-place n-ary modifiers, where “p=>1"

means that p is an index for some portion of N®", of one of
the two kinds we have supposed possible, In defining WQTHM
we have:

W(@Ei)H If @ ..., ¢, are respectively in n;Pr, ..., n/Pr, then
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et ey, .., @) and f wmi(gyq, ..., @)X ... X are in (u(ng,
.o 1)) Pr,

W(ii)H differs from W(ii) and W (ii)P in that it gives a definition
by simultaneous recursion of all the classes nPr, rather than
applying to each n in turn as do W(ii) and W(ii)P.

If a is a WQTHM, we let urjPrM(a) be the set of p resultant
r-place j-ary predicate modifiers in o, and we let wPr(a) be the
union over n of the sets of well-formed n-ary predicates in a.
We then put:

@) =af (n1, ... n;) | (AP) (BE wPr(a)
& (Fp) (F) (B =fwni(gr ... @)%y .. X
T
& A (@EnPr)}.
ji=
For any r, &@,(«) is a finite subset of N*; let &, (u) have t,
members, and index &.(o) by . so that @.(u) = {F.(1), ...,
J.(t)}. For each r-tuple #,(n) in &, (o) we write #,(n)); for
1<iZr, for the ith element of #.(n), i.e. £ (n) = < F.(n)); ...,

(#:(n)),>. Now if we put S(a) =g max r(dyu)(dj) (rjPrM(a)
# {})) and let s = S(a), we can specify the QTHM models.

A QTHM model for a is an ordered:

((iljll (s X (k+1) Xt)) +m+3)-tuple A =

(Dr qJ. 'lpr x1l ey
xl‘ﬂ 'Cll,(]' 12’0| L) lt;.()l 22520' L] sior R T;O! LRRY] ;i;oi [ERY ] ‘;Sl,k' L] tql::‘)
where D, ..., y™ are as in QTPM models and
T “rDPrM(u)
= X (P (DY, ) for 1<r<s,
B Q’[Dy(]r(n)))i=1 1 g n\<‘ t“
and
r rjPrM(a) < r<
tie X @OU,0)) T SIS
P(DucS a)i=t P

1<j<k.

(If any t; is 0 then there are no functions T;f;j in the model))
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‘We then use the functions C:;J' in the definition of the function

ASetw: this differs from the previous functions ASet® in that it

is defined over all of U nPr, rather than one function for each
n<)

nPr. The definition is:
ASeto(F) = y"(F"),
ASeto(fwr(q; ... gr))
= (t;:;r_l iy, ..o ) (fwr0)) (Seto(gy), ..., ASeto(q,)),
ASeto(fwhi(gy ... @)Xy ... X;)

= C5t (g oy ) 50D, oy ASetolp) i)

e (1))
izl
where ¢;€n;Pr for 1<i<r. We now use ASet® in place of ASet®
and proceed as for QTM or QTPM to gain the definition of
AVal and thence the definition of QTHM-Validity.
The generalization of the extensionality principes Mexti and
Mext,, for heteradic modifiers is:
5 n; i
(Mexty)  A(Coex(F; , G; )) 2 (Vxy) ... (Vx
i=1

H(ny, ..., n,))

ny

n
(fur0( £ Fo') (%Xp 0 X -

w(ny, ...,n,)) -
r,0 Hy Ry
G G ) (% e X (o, ...,n,)))
and
(Mext], ) ;\(Coex(Fini, G) o (Vxy) ... (Vx

i=1

. ng n,
((Yyy) ... (Vy)(fwori(Fy oo Fe ) Yy el Vi (R ey

M(nl, —_— n,) )

. n; ny
X ) E.f.u‘r"]{G; Gr ]YI---Yj(xlr---a
I‘l‘(nlr ey nr]
).

X
H(Dy, ..y 1)
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Again we follow the pattern of QTM for the completeness
proof: the extensionality principles allow unambiguous de-
finitions for functions i;l in the canonical model 'JI, and these

functions are compatible with ASeto in the required way to
make A into a model for the initial set of sentencesI'.

SOME CONSTANT MODIFIERS

We now introduce into QTHM some 0O-ary constant modi-
fiers which "“correspond” to the usual propositional and quan-
tificational operators. For the constant corresponding to nega-
tion, we have the 1-place homadic modifier n’. Being 1-place
and homadic, n® could have been introduced into QTM, and
indeed in [5] we did introduce it when dealing with contraries
and contradictories. The constant n’ can be characterized by
*he axiom:

(Axn) nq)(xq ..., Xy) = ~@(Xy, ..., Xn).

For the constant corresponding to conjunction, we have the
2-place homadic modifier k*°. Being homadic, k° could have
been introduced into QTPM, but being polyadic (2-place) it
could not have been introduced into QTM. Axiomatically k2°
is characterized by:

(Ax k) K20 (@) (X1, «.op X0) = (@(Xy, ..., X0) &Y(Xq, ..., X0)).

For a modifier corresponding to quantification, it seems na-
tural to consider existential rather than universal quantification
since e.g. the predicate of being a parent is formed from the
parenthood relation by a suitable existential quantification.
There is, however, not just one modifier corresponding to exis-
tential quantification, since an n-ary relation can be existen-
tially quantified in each of its n places to form a different
(n — 1)-ary relation. Thus we introduce the 1-place heteradic
modifiers s, u=1: if ¢ is in nPr for n>2 then if 1<u<n then
s1%(q) is in (n— 1)Pr (we add formation rules preventing s!%q)
from being well-formed if u>n or if n = 1), Thus for each 5111'0'
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the resultant function p is simply the predecessor function.
The modifiers s!? are characterized axiomatically by:
(Ax s} sU@)(X1) «vvr Xty Kusty ooos Xn) = (Hx,)
cp(xll e Xu—1r Xur Xystr voonr xn) '
where g=nPr, n > 1, and 1<u<n.

The question now arises as to the relation that modifiers in
general bear to these constant modifiers: for instance whether
the following schema holds in general:

(Cn1) £mq¢))(x1, ... %) 2 n(f(q)) (%, ..., x,) 2

The answer to this question is surely no, since if f* is some 5:1'0
then in effect the schema would license as valid the invalid
(%) ~Fx>D ~ (Ix)Fx. If we consider the converse of (Cn 1), viz.
(Cn2) (P@) (K, - Xa) D PO (K1 s %),

then this is also not intuitively acceptable as valid, since it
would license the inference from
This is a non red-house
to This is a red non-house,

which isn't valid.

Similarly we can investigate the schemata
(Ck 1) L& (@) (1 -0 Xi) 2 K2 (@) (%1, -0 %),

and
(Ck 2) kg’n(fo(qﬁlfo(‘l’))(xl- veur Xp) D fﬂ(k?,ﬂ((pw))(xl' RERY) Xn)-

Here, (Ck 1) is invalid if f° is n% and (Ck 2) is invalid if f* is
some s both schemata will be valid if f takes on only de-
tachable functions, in the sense of [5] § 7, but since we have
no axiomatic characterization of these we cannot suitably for-
mulate a syntactic system in which (Ck1) and (Ck2) are
valid.

We may also consider the following schemata relating mo-
difiers in general to the “existential’ modifiers sho;
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(CS 1] 10(5%[’0((9))(}(1. ey xn-l) =2 Shﬂ(fo(q}))(xh Ry Xn—l)n
and its converse
(Cs2) 5,1,‘0(f0(¢))(xl- conr Xn-1) D fo{stlio((p))[xh vor Xn_1)s

Letting f” be n°% (Cs2) turns into the previously rejected in-
stance of (Cn 1), so Cs 2) must be rejected. Cs 1), on the other
hand, licenses inferences like:

Hamlet killed (someone) quickly
+% Hamlet quickly killed (someone),

and such inferences are intuitively valid. Apart from intuitive
acceptability, there is an important technical reason why (Cs 1),
or something like it, should be required to hold. The reason is
that (Cs 1) gives a link between the functioning of a modifier
on predicates of different adinities: in the antecedent f! modifies
a predicate in (n—1)Pr, and in the consequent it modifies
a predicate in nPr. At present in the semantics for QTM (or
QTPM or QTHM) the functions ¢° 'g?" for n # m have no con-
nection with each other, and there is no requirement that the
modification given by an adverb like “quickly” when applied,
sav, to dyadic relations should have anything in common with
the same adverb’s modification when applied to monadic pre-
dicates. There should be some kind of connection, and such
a connection will be given syntactically bv laying down some
generalization of (Cs1) as an axiom. The generalization of
(Cs 1) qor 1-place homadic modifiers is just:

(Cs 1Y) H(sX%@))y1 ...yi(%1, ...s Xn-1) D SLAB (@Y1 ...r V)
{x1 Xn—f).

In order to state the semantical condition corresponding to
(Cs 1)) we beain bv aiving the semantics for all the constant
modifiers n’, k%9, s!?.,

Clearly we require:
Em%))(A) = Z(D") — A,

(E2°(k>9)(AB) = ANB.

and
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For the s}lv" we use the cylindrification functions C,:

Cu(A) E= d[{(alr cenr Quoty Qs ty ooy au) 3
(aau)((a!r ceep @uo1y Qup Aty oeey an) € A—)r

for Ae?(D") and 1 S<u<n. Then simply:
5V (A) = Cy(A).

The semantical condition corresponding to (Cs 1i) can now
be stated.

If £y = T_,(f%) and f, =Tf) or f,_; = U_(f) and

n—1

fr =g (f)) then for (Cs 1)) to be valid we require that:

fr-1(Cu(A)) S Cy(fi(A)),
and
fn,l[C“(A), Q1 vony a,-} c Cu(fn(A, A1y ooy aj]),

for Ae2(D") and 1<u<n. This condition does indeed give a
link between the functions Ui, and U (and thereby any
G, ¢, n* m), and thus gives at least a minimal requirement
for a modifier fi to modify predicates of different adinity in
compatible ways. To illustrate the condition, we show how it
can fail for a 0-adic modifier %, where the conditions QTM(D,
C) are satisfied and in fact all functions are detachable. Let
D = {a}, fi =Q)(f).fs = (") where f; = {{{}{}), ({a}{a})}
and f; = {({},{}), ({} {(a,a)})}. Then if A = {(a,a)} then
Ci(A) = {a}, i(Ci(A)) = fifal) = {a}; but K(A) = L({ (a
a)}) = {}so Cy(f(A)) = Ci({}) = {} and not {a} = {}.

REMARKS

The logic of predicate modification is a useful and indeed
vital device for various philosophical purposes. We do not
claim that there is just one such logic, any more than there
is just one logic for the quantifiers (Vx) and (3x) (see e.g. Le-
blanc and Thomason [4] for the latter point): we do claim that
it is useful to be able to locate accurately the kind of modifi-
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cation occurring in a given sentence or argument, to symbolize
such modification and to demarcate the valid formulae in such
symbolism. It is perhaps no accident that the three constant
modifiers, for negation, conjunction and existential quantifica-
tion, require successively the system QTM, QTPM and QTHM
of increasing generality: the structure and leading character-
istics of these and many other modifiers can best be investi-
gated by having available a range of logics of predicate modi-
fication.

Secretarial facilities for the production of this paper have
been provided by the University of Queensland.

Lawnton, Queensland M. K. RENNIE
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