GRAPHS, GEOMETRIC REPRESENTATIONS
AND BINARY RELATIONS

L. O. Kartsorr and L. HagrT

1. Introduction. It is well known that binary relations may be
represented by graphs [1]. Now, just as there are geometric
representations of finite graphs, there are geometric repre-
sentations of binary relations. In this paper we explore the
relationships between binary relations, their graphs and their
geometric representations.

2. Graph-Theoretical Concepts. Let ¥ = {vy, vy, ..., V,} be a
set of elements called “vertices”. The subscripts 1,2, ..., n are
simply labels to distinguish the vertices.

Let & = {(v;, v;) : vy € ¥ and v; € ¥'} be the set of ordered
pairs of elements of ¥, called "edges”. We denote (v;, v;) by
€j;.

Since v; and v; are not necessarily distinct, & contains n?
edges.

DEFINITION 1. If (v;, v;) is an edge, then v; and v; are the
end-points of the edge. v; is the initial, end-point, and v; is the
terminal end-point,

DEFINITION 2. If (v, v;) is an edge and vy = v; or vy = v;,
then

(i) vy is incident to (v;, v;), and
(ii) (v, v;) is incident to vy.

DEFINITION 3. If TS &, then (e;; € T) e ((vi,v;) € T and
(viivi) €T). If e; € T, we say that e;; is a bi-oriented edge
in T.

DEFINITION 4. If ¥ = {¥", 8}, ¢ is a graph.

DEFINITION 5. G is a subgraph (also called a graph) of 4
if and only if G = {V,E}, where@ + VC ¥ and E C 4.

DEFINITION 6. A graph G is a model of the binary relation
R on the set S if and only if
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(i) there is a 1-1 map f of the elements of S onto the ver-
tices of G such that (s, s;) € R iff (f(s;), f(s;)) € E,

(ii) there is a 1 -1 map between the predicates defined for R
and the predicates defined for G and

(iii) every true statement about R translates into a true state-
ment about G.

3. Geometric Representation of Graphs. In this section we
construct geometric representations of graphs. A geometric
representation is a plane figure. The plane may be Euclidean
or non-Euclidean.

EXAMPLE 7. Figures 1 and 2, below, are geometric repre-
sentations of the graph G = {{vy, vo, v3}, {(vy, V1), (v, V1), (Vs
vi)}}. That is, V.= {vy, vs, v3} and E = {ey;, ey, e5}. To con-
struct a geometric representation of G, we first select any three
points in the plane. To each point we correlate one and only
one vertex. In Figure 1, we use the map g such that g(v;) = p;,
g(ve) = pe: and g(vs) = ps. In Figure 2, we use the map g’ such
that g’(vy) = p’1, g'(vz) = p’s and ¢'(v3) = p’s. To show that (v,
vy,) is an edge in G, we draw a circle at the image of vy, i.e,
pi in Figure 1 and p’; in Figure 2. We show that (v, v;) and
(vs, v1) are edges in G by drawing the directed segments from
g(ve) to g(vy) and g(vs) to g(vy) in Figure 1. In Figure 2, the
edges are shown to be in G by the directed segments from
g’(vs) to g'(vy) and g’(vs) to g'(vy). The arrows on the segments
show the direction of the segments.

P1
MIS
P’ P
Ps P2 :
Figure 1 Figure 2

If there were a bi-oriented edge in G, this would be shown
by a bi-directed line segment in the geometric representation,
i.e. a line segment without an arrow.
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Since there are six distinct maps of the vertices of G onto
the points in Figure 1 the selection of a set of three points in
the plane is not sufficient to determine a unique geometric
representation of G. Furthermore, since we can select any one
of an infinite number of triples of points in the plane, there
are infinitely many possible geometric representations of G.
Since the remarks are general, we conclude there is no unique
geometric representation of a graph G.

DEFINITION 8. Two graphs, G and H, are isomorphic if
and only if there is a 1-1 map f of the vertices of G onto the
vertices of H such that (v;, v;) €G if and only if {f(v;), f(v;)} =H.

DEFINITION 9. Two geometric representations, L and M,
are isomorphic if and only if there is a 1 - 1 map of the vertex
points of L onto the vertex points of M such that

(a) pip; is a directed line segment in L if and only if f(p;)f(p;)

is a directed line segment in M,

(b) pip; is a bi-directed segment in L if and only if f(p;)f(p;)
is a bi-directed segment in M, and

(c) there is a circle at p; in L if and only if there is a circle
at f(p;) in M.

THEOREM 10. If R is the set of all geometric representations
of a graph G, then, if r; and r; are any two representations (i.e.,
elements of R), r; is isomorphic to r;.

Proof. Since r; and 1; are geometric representations of G,
there are 1-1 maps f; and f; of the vertices of G onto the
vertex points in r; and r;. Since f; is 1 - 1 onto, 7' is a 1 -1 map

of the vertex points of r; onto the vertices of G. Now p;p; is a
directed segment in r; if and only if (f'(p), f7'(p;)) is in G, but
(f7'(pi), £7'(py)) is in G if and only if
ey
£t (p) £if 7 (py) is a di-
rected line segment in r;. Similar considerations for circles
and bi-directed segments in r; show that fif;" is the desired

map or 1; onto 1;, i.e,, that r; is isomorphic to r;. It can easily be
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shown that isomorphism of graphs and hence of geometric
representations are an equivalence relation.

4. Binary Relations.

DEFINITION 11. If A and B are sets, then AXB = {(x,y):
x€A and yeB}. AXB is called the Cartesian product of A
and B.

DEFINITION 12. R is a binary relation over a set S and only
if there exist sets A and B such that
RS {(x,y) :x€A and yeB and ACS and BCS}.

DEFINITION 13. If R is a binary relation, then
PD(R) = {x:(x,y)ER}.
2(R) is called the domain of R.
DEFINITION 14. If R is a binary relation, then
Z(R) = {y:(x,y) €R}.
Z(R) is called the range of R.
DEFINITION 15. If R is a binary relation, then
F(R) = {x:(x,y)€R V(y.x)ER}.
Z (R) is called the field of R. The field of R is the union of the
range and domain of R.

THEOREM 16. If R is a binary relation, then the graph
G = {#(R),R} is a model of R.

DEFINITION 17. A graph G is reflexive if and only if, for
every vertex v; of G, (v;, v;) is an edge in G.

DEFINITION 18. A graph G is symmetric if and only if, for
every vertex v; and v;, (v;, v;) is an edge in G implies {v;, v;)
is an edge in G.

DEFINITION 19. A graph G is transitive if and only if
whenever (e; =G and e;;€G), then (e;;=G).

Theorems 20 and 21 follow easily from the definitions.

THEOREM 20. If the graph G is a model of the binary re-
lation R, then

(a) R is reflexive iff G is reflexive,

(b) R is symmetric iff G is symmetric, and

(c) R is transitive iff G is transitive,
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THEOREM 21. A graph G is symmetric if and only if all
edges in G are bi-oriented.

THEOREM 22. If G is a finite graph, then G has a geometric
representation in the plane.

Proof. Let {vy, Vs, ..., v4} be the set of vertices of G. Let h
denote the map of the vertices into the Euclidean plane such
that, for every i, h(v;) = (i,| V (1-i)(i-n) |). The function h maps
the vertices onto points on a semicircle in the upper half-plane.
The semicircle has radius (n—1)/2, and its center at ((n+1)/2,
0).

We denote h(v;) by p;. We complete the construction of the
geometric representation of G as follows:

(a) if e;; is an edge in G, we draw a circle at p;,

(b) if e;; is in G and e;; is not, we draw the directed segment
from p; to p;, and

(c) if e; and e;; are both in G, we draw the bi-directed seg-
ment connecting p; and p;.

DEFINITION 23. If R is a binary relation and P is a geo-
metric representation of {#(R), R}, then P is a geometric re-
presentation of R.

THEOREM 24. If P is a geometric representation of the
binary relation R, then all line segments are bi-directed in P if
and only if R is symmetric.

Proof. Let G = {#(R), R}. R is symmetric if and only if G is.
G is symmetric iff (e;;€G) < (e;=G and e;;=G). Thus, the geo-
metric representation will contain only bi-directed segments.
On the other hand, where f is the appropriate map of #(R) to
the points in the plane, a bi-directed segment connecting p; and
p; shows that both (f~'(p;), f~'(p;)) and (f7'(p;), f~'(p)) are
edges in G, i.e., that G is symmetric.
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THEOREM 25. If P is a geometric representation of the
binary relation R, then R is reflexive if and only if there is a
circle at each vertex point of the representation.

THEOREM 26. If P is a geometric representation of the
binary relation R, then R is transitive if and only if

—=> — —>
(a) if pip; and p;px are in P, then p;py is in P,

(b) if pip; and p;px are in P, then p;py is in P,

—_ —
(c) if pip; and p;px are in P, then p;py is in P, and
- —_— —_——

(d) if pip; and p;px are in P, then p;py is in P.

THEOREM 27. If R and R’ are two binary relations such that
F(R) = F(R'), P and P’ are the geometric representations of R
and R’, and P is isomorphic to P/, then R is isomorphic to R’.

Proof. Let f denote the isomorphism from #(R) to P, g the
isomorphism from #(R’) to P/, and h the isomorphism from P
to P/, then g~ hf is an isomorphism from R to R’.

EXAMPLE 28. It is mistake, albeit a natural one, to believe
that, under the conditions stipulated in Theorem 27, R and R’
can be shown to be identical. That such a view is mistaken is
shown by the following example.

Let R = {(a,b), (a,c), (b.c)} and R’ = {(c,a), ¢, b), (b, a)}.
The field of R is the field of R’, and R is the converse of R’.

/]\\

p T

Figure 3

If we use the map f such that f(a) = p, f(b) = q and f(c) = r,
then Figure 3 is a geometric representation of R. If we use the
map g such that g(a) = r, g(b) = q and g(c) = p, then Figure 3
is a geometric representation of R’. Clearly, Figure 3 is iso-
morphic to itself. Thus, the conditions of Theorem 27 obtain,
but R = R/,



GRAPHS, GEOMETRIC REPRESENTATIONS 473

5. Distance and the Properties of a Binary Relation.

In this section, we take the concept of distance from one
vertex v; to another vertex v; in a graph, and use it to identify
the properties of a binary relation from its geometric represen-
tation,

DEFINITION 29. Suppose v; and v; are vertices of a graph
G, and Q is a set of edges of G. Q is a chain of length n from
v; to v; if and only if there is a 1 -1 map q of {1,2, ..., n} onto
Q such that

(@) [g(m) = (v, vi) and gq(m+1) = (vy,Vy)] = (Ve = Vo),

(b) there is a v, such that q(1) = (v;, v,), and '

(c) there is a v; such that g(n) = (v, v;).

It is evident that if there is a chain of length n from v; to v;
in G, then there is a minimal chain from v; to v; in G, i.e., a
chain that is as short as any other from v; to v;. We use such
minimal chains to define the distance between a vertex v; and
a vertex v; in G. We use d(v;v;) to denote the distance from v;
to v;.

DEFINITION 30. Suppose v; and v; are vertices of the graph
G. Then:

(a) if (v, vy) is an edge in G, d(v;v;) = 1,

(b) if (v;, v;) is an edge in G and v; #+ v;, d(v;v;) =1,

(c) if v; and v; are not coincident to an edge in G and there
is a minimal chain C of length n from v; to v;, then d(v;v;)
= n, and

(d) if v; and v; are not coincident to an edge in G, and there
is no chain from v; to v; in G, then d(v;v;) = oco.

The proofs of the following theorems follow easily.

THEOREM 31. v; and v; are incident to the bi-oriented edge
e;; (i.e., &; and e;; are both edges in G) if and only if

d(ViVj) + d(VjVi) = 2,

THEOREM 32. A graph G is symmetric if and only if, for
every pair of vertices v; and v; in G, d(v;v;) = d(v;v;).

THEOREM 33. A graph G is reflexive if and only if, for each
vertex v; in G, d(v;v;) = 1.

THEOREM 34. A graph G is transitive if and only if, for
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every triple of distinct vertices v;, v; and vy, if d(v;v;) = 1 and
d(vjvy) = 1, then d(v;vy) = 1.

EXAMPLE 35. Consider the graph whose geometric repre-
sentation is as shown:

0
Ps

P4
P1

Ps

Pz Ps

This represents the graph G = {{vy, Vs, V3, V4, V5 Vs},
{(Vh Vl)! (Vg, V:!)- (Vg, Va), (V], Vg). (V2r VS)! (Vl- Va)- (Vs, vl)!
(va, Va), (Vi Vi)e (Vs Vs, (Ve Vs), (Vs Va), (Ve Ve)}}. G is re-
flexive, symmetric and transitive. That is, if G is a model of the
relation R, then R is an equivalence relation.

THEOREM 36. Any complete plane polygon of n bi-direc-
tional sides with a circle at each vertex and bi-directional
diagonals is a geometric representation of a strongly connected
equivalence relation R on a set S of n elements,

Proof. Let S = {1,2,...,n}. The desired relation is SXS.

6. Euler Graphs and Euler Relations.

DEFINITION 37. A graph G is connected if and only if, for
every pair of distinct vertices v; and v;, there is a chain from v;
to v; in G, or a chain from v; to v,

DEFINITION 38. The graph G = {V,E} is an Euler graph
if and only if there is a subgraph G’ of G such that G’ ={V, E'},
such that

(a) E' is connected,

(b) for each v; in V, E’ is a chain from v; to v;, and

(c) E' is asymmetric.

E' is called an Euler path in G.
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DEFINITION 39. G = {V, E} is a directed Euler graph if and
only if E is an Euler path in G.

DEFINITION 40. Suppose the graph G is a model of the

binary relation R. R is an Euler relation if and only if G is an
Euler graph.

EXAMPLE 41. Let S = {s;, ss, 53} and R = {(s, 82}, (sy S3),
(ss, s1)}. A geometric representation of R is:

P2

Pt Ps

This is evidently an Euler graph. If we were to add an ele-
ment s; to S and (s, s4) to R, we would obtain the graph:

P2

A

P Ps. P4

This figure does not represent an Euler graph, for there is
no path from py to ps. Further, the inclusion of still another

element (sy, s3) would not suffice to make the graph an Euler
graph.
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