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TYPE THEORY (¥)

John L. PoLLock

1. Introduction. It is well known that Zermelo-Fraenkel set
theory (ZF) is closely connected with cumulative type theory
(CT). The sets of ZF (when ZF is taken to include the axiom
of regularity and the axiom scheme of replacement) can be ar-
ranged into a transfinite hierarchy of cumulative types. The
purpose of this paper is to construct a natural axiomatization
of CT and compare it with ZF, Ordinal numbers are taken as
primitive, along with the ordering relation " <", and there is a
primitive relation symbol T(e,X) ("X is of type o'). A few ob-
vious axioms are adopted for ordinals, together with axioms
characterizing types which make types cumulative. The axiom
of extensionality is adopted for sets, together with the axiom
scheme of comprehension for each type level. It follows trivial-
ly from the above that CT is contained in ZF. But the converse
only holds when the axiom of choice is added. In particular,
the axiom scheme of replacement is not a theorem of CT. This
suggests the construction of a sligthly weakened version of ZF
that is equivalent to CT. In this connection it is urged that, in
the context of CT, the axiom scheme of replacement is unac-
ceptable, However, it can be replaced in ZF by another in-
tuitively acceptable axiom — the axiom scheme of ordinal re-
placement, which results from restriction the axiom scheme of
replacement to sets of ordinals (the functional image of a set
of ordinals is a set). This axiom scheme, although weaker than
the principle of replacement, still suffices for all the uses to
which the principle of replacement is customarily put. Further-
more, the principle of replacement becomes a theorem when
the axiom of choice is added. This version of ZF is equivalent
to CT, and it seems to me that it is intuitively preferable to the

(*) This paper was presented at the meeting of the Association for Sym-
bolic Logic in Cleveland, May, 1969,
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customary version of ZF. It yields the customary version when
the axiom of choice is added.

2. The axiom of ZF. There are several versions of ZF, re-
sulting from slightly different choices of axioms. There are
also slightly different versions depending upon whether sets
of individuals are allowed, or, as has become common con-
temporary practice, only sets of sets. To me, it seems ridiculous
to disallow sets of individuals. Thus versions of ZF and CT
which countenance sets of individuals will be developed here.
However, this makes no difference to the main result of this
discussion, which is the connection between ZF and CT. This
connection still holds if sets of individuals are disallowed in
both ZF and CT.

As the variables of our theory range over both individuals
and sets, we must have a primitive predicate “C" meaning "is
a set”. We will follow the common practice of using lower case
variables as general variables, and upper case variables as
shorthand for the relativization of quantifiers to sets. Given this,
the axioms are the following:

(Z1) EXTENSIONALITY: (VX)(VY)IX = Y = (V2)(zeX =
zeY)l.

(Z2) SEPARATON: If ¢z is a formula in which z is free but X
and Y are not, then the following is an axiom:
(VX)(AY)(Vz)[zeY = (gz & zeX)].

(Z3) UNION: (VX)(H3Y)(V 2)[zeY = (HW)(WeX & zeW)].

(Z4) POWER SET: (VX)(HY)(Vz)(zeY = zcX).

(Z5) PAIR: (Vx)(Vy)HZ)(VW)weZ = (w=xvw =y)L.

(Z6) INFINITY: (ZX)[(TY)(YeX & (V z)z£Y)

& (VY)(YeX D YU{Y}eX)].

(Z7) REGULARITY: (VX)[X # ¢ (dy)(yeX

& (Vz)(zey o zeX))].

(Z8) INDIVIDUALS: (3X)(Vy)(yeX =~C(y)) .

&(Vx)(Vy)(xey> ~C(y)).

(Z9) REPLACEMENT: If gpxy is a formula in which x and y are

free but z, X, and Y are not, then the following is an axiom:
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(VX)[(Vx)(xeX o (Hly)gxy) D
(EY)(Vy)(yeY = (2x)(xeX & pxy)].
(Z10) AXIOM OF CHOICE

The theory resulting from Z1 - Z8 will be called ZF;. The theory
resulting from Z1, Z3, Z4, Z6 - Z9, will be called ZF,. Z2 and Z5
are theorems of ZFs. ZF; is the theory that results from adding
210 to ZF,. ZF, is too weak to justify transfinite recursion, and
accoydingly ZF; is the most popular version of ZF without the
axiom of choice, or ZF; is the most popular version with the
axiom of choice.

3. Cumulative type theory. Cumulative type theory results
from liberalizing the structure of simple type theorem. Accord-
ing to simple type theory, every set has a unique type, and the
members of a set must always be of type one less than the
type of that set. The rationale often given for this is that it
gives a "constructive” picture of sets as being built up by suc-
cessive steps from objects of type zero (individuals). However,
this constructive view of sets does not really justify the struc-
ture of simple type theory. Rather, it justifies the less restric-
tive structure of cumulative type theory. The constructive
picture requires that each set be built up out of sets that have
already been constructed, but there is no reason why these sets
should be only of the next lower type — they can be of any
lower type. This leads to our defining types by saying that a
set is of a given type iff its members are all of lower type. This
has the effect of making types cumulative — if a set is of one
type, then it is of any higher type. The lowest type of a set is
called its rank.

Simple type theory generally requires all types to be finite.
But again, this is an artificial restriction given the constructive
picture of sets. There is no reason why, after having constructed
sets of all finite types, these sets cannot be collected together
into a new set of type w. Consequently, a cumulative type
theory with transfinite types will be developed here.

Cumulative type theory suffers philosophically from having
to presuppose the ordinal numbers rather than constructing
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them as in ZF. This is undesirable for the simple reason that
set theory should ideally provide a foundation for ordinal
number theory. In this respect, ZF is preferable to CT. However,
this unfortunate aspect of CT is largely rectified once it is
seen how ZF and CT compare. The proof of the equivalence
of some versions of ZF and CT can be regarded as a kind of
completeness theorem for ZF in that it shows that ZF gives us
all the structure of CT without presupposing ordinal number
theory, and at the same time can be regarded as a kind of
soundness theorem for CT in that all the ordinal axioms presup-
posed by CT are theorems of ZF.

The axioms of CT can be divided into three classes — ordinal
axioms, type axioms, and set axioms. The language of CT is
different from that of ZF. It no longer contains the primitive
predicate “C" (which can be defined in CT), but does contain
a binary relation symbol “T" ("T(«,X)" means "X is of type a"),
a primitive predicate “On" ("is an ordinal"), the constant "0",
and the binary relation symbol “<". To simplify the notation,
we will adopt the abbreviation of using small Greek letters as
variables ranging over ordinals. We will also write "T.x"" as
an abbreviation for "T(a,x)". We make the following defini-
tions:

DEFINITION: a £ = (¢« < pBva =f).
DEFINITION: y = a+1 = (VB)(a<f = y<B).
DEFINITION: y = a+2 = () = a+1 &y = f+1).
DEFINITION: L(a) = (« * 0 & ~(3B) a = p+1).

We adopt the following ordinal axioms for CT:
(01) On(0).
(02) (Va)(VB)la<B 2~ (B<a)l.
(03) (Va)(VB)(V1(a<p &B<y) > a<yl.
(04) (Va)(VB)(a<pVvp<a).
(05) (Va)(a#0 > 0<a).

(06) If ga is a formula in which a is free but f is not, then the
following is an axiom:

(Ha)ga O (Ha) [ga & (VB)(B<aD ~¢B)l.
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(8) If ¢Py is a formula in which § and y are free but « and 3 are
not, then the following is an axiom:

(VaI(VBB<a 2 (Hy)gBy) o (I)(VE(VVIB<a&gpy) D
y<<oll.

01 - 06 say that the ordinals are well ordered by "<<', and 0 is
the smallest ordinal. 06 is equivalent to the principle of trans-
finite induction. 07 tells us that there is no limit to the sequence
of limit ordinals. 08 tells us that the functional image of a boun-
ded set of ordinals is bounded, or equivalently, a sequence of
ordinals of bounded length is bounded. These axioms give us
at least a large part of the algebraic structure of the ordinals.

Types are characterized by the following axioms:
(T1) a0 o (T.x = (Vy)(vex D (H)[<a & Tayl)).
(T2) (Vx)(Tox D (Vy)yex).

(T3) (Vx)(Ha)Tax.

The individuals are objects of type zero, so we define:
DEFINITION: C(x) = ~Tyx.

Then once again we use upper case variables as variables
ranging only over sets.

Finally, we adopt two set axioms:

(S1) EXTENSIONALITY: (VX)(VY)IX =Y = (Vz)(zeX =
zeY)l.

(S2) COMPREHENSION: If ¢y is a formula in which vy is free
but X and o are not, then the following is an axiom:

(Va)(@X)(Vy)lyeX = (gy & Toy)].

Let us call the theory resulting from the above axioms CT;.
CT, is a reasonably strong set theory. With some ingenuity
it is sufficient for the development of most of set theory up
through ordinal arithmetic.

The form the axiom scheme of comprehension takes in CT;
is interesting. Russell's paradox shows that the unrestricted
axiom scheme of comprehension is inconsistent, and yet it
seems intuitively self-evident. In CT; we have a "constructive”
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form of the axiom scheme of comprehension, and it is plausible
to suppose that it is really this form of the axiom that is in-
tuitively self-evident — we are misunderstanding the unres-
tricted axiom when we think that it is self-evident. What is
surely self-evident is that given any formula g, there is a set of
all individuals satisfying ¢. Furthermore, given any formula ¢,
at any stage in the process of constructing all sets (i.e., at any
type level) we can form the set of all previously constructed
sets satisfying ¢, and this will be a set of the next type level.
In other words, given any previously established domain of
objects, we can form the set of all those objects satisfying .
The problem with the axiom scheme of comprehension comes
from supposing that we can talk about the set of all sets satis-
fying ¢ and that this will be another set of the same group of
sets that we began with.

From axioms 06 and T3 it follows that every set has a lowest
type — its rank. Let us define:

DEFINITION: T*x = (VB)(Tex = a<p).

Clearly there can be no universal set in CTy, because such a
set would contain elements of all types, and so could not itself
have a type. However, it follows immediately from the axiom
of comprehension that for each ordinal «, there is a universal
set U, consisting of all things of type a:

THEOREM 1: l—ﬂ_(Va)ﬁX](Vy] (veX = Tay).
1

In particular, there is a set Uy of all individuals.
It is a trivial matter to derive all of the axioms of ZF; within
CT;. Consequently:

THEOREM 2: All theorems of ZF; are theorems of CT;.

The converse of theorem 2 is not possible, for the simple reason
that the language of CT), is richer than the language of ZF,, and
therefore there are theorems of CT; that are not even sentences
of ZF;, We might, however, inquire whether all theorems of CT,
that are sentences of ZF, are theorems of ZF;. I don't know
whether this is the case, but I conjecture that it is.
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The ordinals are presupposed by CT,. However, they can also
be constructed in the usual manner. For example, we can define:

DEFINITION: Ord(x) = [(Vy)(yex D y € x) & (Vy)(V2)
[(yex & zex) D (yez v zey)] & C(x)].

Let us use bold face letters as variables ranging over the
constructed ordinals. We can then proceed to develop ordinal
number theory just as is customarily done in ZF. Unfortunately,
we quickly encounter a difficulty. The principle of transfinite
recursion cannot be justified in CT;. In order to justify de-
finitions by transfinite recursion, we must proceed as follows.
First, we define:

DEFINITION: If gxy is a formula in which x and y are free,
then
the y such that ¢xy if there is a unique
¢lx] = { y such that gxy;
@ otherwise.

Then we must prove the following “recursion principle':

Given any formula ¢xy and ordinal x, there is a unique
function F such that domain (F) = x & (Vy)(y<x o F(y) =
¢[Fly)).
This cannot be proven in CT,, for precisely the same reason
that it cannot be proven in ZF,. In proving the recursion prin-
ciple, one constructs the set of functions Fy satisfying the
theorem for y<x, and then defines F = U{F, ; y<x}. Unfor-
tunately, in CT; and ZF; one cannot prove &at the set {FY;
y<<x} exists. In ZF the customary remedy is to add the axiom
scheme of replacement. Then if we define #((y,f) to mean “f is a
function & domain (f) = y& (Vz)(z<y o f(z) = ¢[flz])", we
have #[y] = Fyi and by the axiom scheme of replacement,
{9[y];y<<x} exists. The recursion principle follows immediately
from this. However, in CT there is a simpler and more obvious
remedy (which will in turn suggest an alternative remedy for
ZF).
In CT, we have two kinds of ordinals — the constructed
ordinals and the presupposed ordinals. CT, gives us no way of
determining whether these are the same. However, it is natural
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to add an axiom to the effect that the presupposed ordinals
and the constructed ordinals are the same things. This removes
some of the air of mystery from presupposing the ordinals in
order to construct sets. It has the effect of saying that we are
not really presupposing the ordinals at all, but rather construc-
ting them side by side with other sets. All we are presupposing
is some of the algebraic properties that will result from this
construction. Furthermore, the addition of this axiom has the
unexpected side effect of allowing us to prove the recursion
principle, and hence justify definition by transfinite recursion.
Let us add the axiom:

CORRESPONDANCE AXIOM:
(Vx)(Ord(x) = On (x)) & (Va)(VB)(@<B = acp).

Let CT; be the resulting theory.

An immediate consequence of the correspondence axiom is
a characterization of the rank of ordinals. It follows by trans-
finite induction that a finite ordinal n is of rank n+1 and an
infinite ordinal «a is of rank a:

THEOREM 3: FLT[Vu)[(a<m DT a) & (0 < o> Tl
2 ¥ a

From this together with T1 and T3 it follows that every set of
ordinals is bounded:

THEOREM 4: -, (VX)[(Vx)(xeX D On (x)) > (da)(VB)(BeX >,

f<a)l.

Proof: X is bounded by the rank of X.

We justify the principle of transfinite recursion by proving
a special case of the principle of replacement. Notice that in the
abcve proof of the recursion principle we only need the prin-
ciple of replacement for cases in which the set whose image is
being formed is a set of ordinals, i.e., we only need:
If gay is a formula in which a and y are free but X and Y are
not, then

(VX)[(V o) (aeX D (@ly)gay) > (TY)(Vy)(yeY = (Fa)(acX &
gay))].
Although the general principle of replacement is not (apparent-
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ly) a theorem of CT;, this restricted principle of "ordinal repla-
cement” is a theorem. This theorem results from the fact that,
in ordinal axiom 08, we have in effect an even more restricted
case of the principle of replacement — the case in which both
the set whose image is being formed and the image are sets of
ordinals. Suppose X is a set of ordinals and gay is a formula
assigning a unique object to each element of X. Let #af be the
formula "(qy) (pay & T;‘y}". Then to each ordinal in X, ¥ assigns

a unique ordinal — the rank of the object assigned to that
ordinal by ¢. By theorem 4, X has an upper bound. Then by
08, the ordinals assigned by # to members of X are all less than
some ordinal v, i.e., the ranks of the objects assigned by ¢ to
elements of X are all less than y. But then by the axiom of
comprehension, these objects can be collected into a set. Thus

THEOREM 5&: If gay is a formula in which o and y are free but
X and Y are not, then
= (VX)[(Va)(eeX > (@ly)gay) > @Y)(Vy)(yeY
2

= (Ho)(aeX & gay))].

The above principle of ordinal replacement suffices for the
justification of definition by transfinite recursion. An examina-
tion of the use of the general axiom scheme of replacement
in ZF; reveals that in all of the theorems that are customarily
proven with its help, it can always be replaced in CT; by the
principle of ordinal replacement, together with other principles
sanctioned by CT;. Thus, although CT; is weaker than ZF,
(because it does not contain the general principle of replace-
ment), CT; nevertheless contains all the customary theorems
of ZFg.

Let CT; be the result of adding the axiom of choice to CT.
Interestingly enough, the general principle of replacement is
a theorem of CTj. The axiom of choice implies the Numeration

Theorem according to which every set is equipollent to an
ordinal:

THEOREM 6: ~ (VX)(Ho)(Hf) f:a fm_ti

> X.
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We can now prove the general principle of replacement as
follows. Suppose (Vx)(xeX D (dly)gxy). By the numeration
> X. Let 9y be “¢(f(B).y)".
(VB)(Bea = (H1y)8By), so by the principle of ordinal replace-
ment, {y; (3P)(Bea & #fy)} exists. But this is just the set {y;
(dx)(xeX & ¢xy)}. So we have:

theorem, for some o and f, f: a

THEOREM 7: If gxy is a formula in which x and y are free but
X and Y are not, then:
|—CT(VX][(Vx)[an o (Hly)gxy]l o (AY)(Vy)lyeY

= (Ix)(xeX & gxy)]l.

This theorem, together with the fact that CT, contains all the
theorems of ZF;, shows that CT; contains all the theorems of
ZF;, and hence also of ZF;.

The fact that the general principle of replacement does not
seem to be a theorem of CT, provides what seems to be a good
reason for suspecting that if the axiom of choice is not true,
then the replacement principle will not hold. Speaking loosely,
the axiom of choice implies that our hierarchy of sets is not
as fat as it is tall. In other words, it tells us that if we look at
U,, the set of all sets of some type «, and consider a functional
relation ¢ which may map the elements of U, onto new sets of
successively higher types (“standing U, on end” so to speak),
there will be an upper bound f to the ranks of the sets in the
image of U.. In other words, the situation looks as follows:
The reason for this is that the axiom of choice puts an upper
bound on the “fatness” of each U, by implying that it is equipol-
lent to an ordinal. But without the axiom of choice there re-
mains the possibility of having seis fatter than any ordinal, in
which case there might be no upper bound to the ranks of the
sets in the g-image of U, and hence those sets in the g-image
cannot themselves be collected together into a single set. This
is a reason for being suspicious of the presence of the axiom
scheme of replacement in ZF;. ‘
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U,
Uy

4. Zermelo-Fraenkel Set Theory. It has been seen that CT,
contains ZF;, and CT; contains ZF; and ZF;. Now let us explore
converse inclusions. It is easily shown that ZF, contains CT,.
This inclusion cannot be taken in the straightforward sense that
all theorems of CT, are theorems of ZF;, for the simple reason
that the language of CT; contains primitive symbols not con-
tained in the language of ZF,. But we can translate sentences
of CT, that contain type symbols into sentences of ZF;, and
then show that given any theorem of CT,, its translation is a
theorem of ZF,. This is familiar ground, but I will go over it
for the sake of completeness.

The ordinal numbers can be constructed in ZFs, so there is no
problem translating the predicate “On", the relation symbol
“<", or the constant “0" into the language of ZF,. The only
problem is the type relation “T", Letting U, be the set of all
objects of type «, the sets U, are characterized by the following
two principles:

(i) Us = {x; ~C(x)};
(ii) a = 0> U, = U{Ua,‘ f<a} U Q{Ug; ﬁ<a})
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(where Z(X) is the power set of X). Consequently, these sets
can be defined in ZF; by tranfinite recursion. Then the relation
"T" can be defined by stipulating that T(u,X) = xeU.. It is a
trivial matter to verify that all the axioms of CT; except for
T3 are theorems of ZF,;. The proof of T3 is more involved, but
can be done as follows. From the axiom of regularity we can
obtain what Tarski calls the principle of set-theoretic induction
(which is a theorem of ZF,):

THEOREM 8: |—ZF(Vx][[Vy)(y£x D gy) D ¢x] O (Vx)¢x.
1

The principle of set-theoretic induction is actually equivalent
to the axiom of regularity. Next, using the axiom scheme of
replacement, we prove:

THEOREM 9: & F(‘\hr)(yex D (40)Tay) D (da)Tux.
2

Proof: Suppose every member of x has a type. Then every
member has a unique lowest type (its rank), and consequently
by the principle of replacement there is a set X consisting of
all ranks of elements of x. Let a be the smallest ordinal greater
than all the ordinals in X. Then T.x.

T3 follows immediately from theorems 8 and 9.

Consequently, ZF, contains CT,. It follows that ZF; contains
CT;. But we saw that CTj also contains ZF;. Therefore, ZF; and
CT; are equivalent theories. We can diagram the relative
strengths of the different versions of ZF and CT thus far con-
sidered:

ZF, 3 CT, 3 CT; 3 ZF; 3CT; £ ZF,.

Because of the naturalness of CTj, this can be construed as a
justification for the less natural but type-free axioms of ZF,.
On the "constructive” picture of sets, if one accepts the axiom
of choice, there seems to be no questions but that ZF; is a
sound theory. Unfortunately, the situation is not quite so nice
with respect to ZF;. ZF; is the most popular set theory without
the axiom of choice, but as we have seen, there is reason to
be skeptical about the acceptability of the axiom scheme of
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replacement when one does not have the axiom of choice. It
was remarked that CT, which does not contain the general
principle of replacement, is adequate for the derivation of all
the theorems of ZF; that people generally want. This gives
reason to hope that a somewhat weaker version of ZF can be
found which, although still type-free, will be equivalent to CTe..
In effect, such a theory can be obtained by simply replacing
the axiom scheme of replacement in ZF; by the axiom scheme
of ordinal replacement. More precisely, let us define ZF, to be
the theory that results from adding the axiom scheme of
ordinal replacement to ZF,. We have seen that the principle of
ordinal replacement (which is a theorem of CT,) suffices for
the justification of transfinite recursion. Adding this axiom to
ZF;, we can define the type symbols just as we did in ZF..
Furthermore, we can prove all the axioms of CT,; other than
Ty just as in ZF.. The proof of T; is rather complicated. We
need some additional machinery for its proof.

DEFINITION: If gxy is a formula in which x and y are free,
then X is closed under ¢ iff (Vx)(Vy)l(x € X &
gxy) D yeX].

The closure of a set Ay under ¢ is the smallest set containing
A, and closed under ¢. In naive set theory the closure always
exists, but not so in ZF or CT. This is because the closure, if it
existed, might contain sets of all ranks, which is impossible.
However, although the closure does not necessarily exist as
a set, it is still possible to define a predicate which charac-
terizes the elements of the closure. In naive set theory, the
closure of Ay under ¢ can be defined as the union of the range
of the function F defined by transfinite recursion by specifying:

(1) F(0) =Aq;
(ii) Fla+1) = F(a) U {y; @Y)[Y S F(o) & ¢Yy]};
(iii) L(a) > F(a) = U {F(B); f<a}.

In ZF and CT no such function F exists (where a function is a
set), because its domain would be the set of all ordinals, which
does not exist. But by the familiar theorems that justify



ZERMELO-FRAENKEL SET THEORY 465

definition by transfinite recursion, we can instead define a
formula Fxy such that

(i) FlO] = Ay;
(ii) Fla+1] = Fla] U {y; (BY)(Y S Fla] & ¢YY]};
(iii) L(a) > Fla] = U {FIBl; p<a};

provided that for each set X, {y; (HY)(Y ¢ X & ¢Yy)} exists.
Then to say that the union of the range of F is closed under ¢
means

(VX)([(Vx)(xeX o ()xeFIp]) & Xyl o (HB)yeFIp]).

That this always holds is the principle of set-theoretic closure.
It can be proven in ZF, as follows:

THEOREM 10: It is a theorem of ZF, that if (VX)(2Y)(V z)[zeY
= (dZ)(Z € X & ¢Zz)], and F satisfies condi-
tions (i) - (iii) above, then
(VX)[(Vx)(xeX o (3B)xeFIp]) & ¢Xy] o
(9B)yeFIp]).

Proof: For each o, let X, = X N (Fla] — U{FIBl; p<a}). Let
K = {X,; X. # 0}. K exists by the power set and separation
axioms. X = UK. K is well ordered by the relation R = {(X,,
Xp); a<fp & X.eK & XpeK}. Let a be the ordinal of this well

> K. Let 98 be the

1

(1)

ordering. Then there is function f:a

formula "f(d) = Xj". By ordinal replacement, {8[5]; d<a} exists.
This is a set of ordinals, so it is bounded by some ordinal f.
But this means that for each y, X; € F[]. Thus X € F[f]. Then
if Xy, yeF[p+11.

From the principle of set-theoretic closure we obtain:

THEOREM 11: (Vx)[(Vy)(vex o (3)Tsy) o (3B)Tex].
1

Proof: Let gxy be "y € x". Then {z; (3Z)(Z € X & 9Zz)} = P(X),
which exists by the power set axiom. Thus F can be defined as
above, with the result that U, = Fla+1], and L(a)>Fla] =
U{Up; p<<a}. Thus by the closure principle, letting y = X,
[(Vx)(xeX o (3p)xeUs) & X < X] o (IB)XeUs.
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The principle of set-theoretic induction (theorem 8) is a
theorem of ZF;, and hence of ZF,, and from this together with
theorem 11 we immediately obtain T3. Thus ZF; is equivalent
to CT,.

Consequently, we have a type-free theory equivalent to CTy,
and this theory suffices for all the uses to which ZF; is custo-
marily put. Furthermore, adding the axiom of choice to this
theory gives us ZF;. To me ZF; seems to be intuitively prefera-
ble to the more customary ZF;.
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