ON TRUTH-TABLES FOR M, B, 54 and S5

Arnould BAYART

Part1

0. Introduction

0.0. In this paper use is made of results and ideas to be
found in Gédel's [1] for the formulation of modal propositional
calculi, in Leonard's [2], in Anderson's [3] and [4] and in Han-
son's [5] for the construction of truthtables, in Kripke's [6] and
in Hughes's and Cresswell’s [7] for the theory of models and in
Church's [8] for plain proposition logic. The paper is however
self-contained and demands no previous acquaintance with
these results and ideas, except of course for [8].

0.1. The systems treated in this paper are modal proposi-
tional calculi. They are the Feys- van Wright system M, the
“"Brouwerian" system B, and Lewis's systems S4 and S 5.

0.2. Truth-tables are constructed as in [3]. Notions of "‘con-
trol" and “acceptability” will be introduced. The tables com-
bined with these two notions will yield for each system under
consideration a suitable notion of "tautology”. It will be ob-
vious that our definition of “tautology" is a decision procedure
for tautologies. The four systems will be formulated in Goédel
style. It will be proved for each system that a formula is a
theorem iff (if and omly if) it is a tautology in the suitable
sense. The theory of models yields for each system a suitable
notion of “validity". It will be proved for each system that a
formula is valid iff it is a tautology in the suitable sense.

0.3. We take negation, material implication and necessity
as primitive, and we refer to object-language formulas by way
of schemata involving "~", "—=" and "[O0" as metalogical signs



336 ARNOULD BAYART

for the primitive constants, and small Greek letters, eventually
followed by suitable suffixes, as metavariables ranging over
the class of formulas.

0.4. We use schemata like “(a A )" and “(a V )" as abbre-
viations for "~ (ou—> ~ )" and (~ a—>f)" respectively. We
use also (o = )" as an abbreviation for “((a = 8) A (B —> «))".
In schemata beginning with a left parenthesis and ending with
a right parenthesis we drop the outmost parentheses. In our
metalanguage we use continuous conjunctions and disjunc-
tions in the usual way. We allow ourselves to consider any
formula as a degenerate continuous conjunction or disjunction
with a single member.

1. Truth-tables.

1.0. Definitions. A well formed part of a formula o is said to
be a subformula of a. Every formula is considered as being a
subformula of itself.

The propositional variables and the formulas of the form Oa
are said to be consiituents. The formulas of the form Ou are
said to be modal constituents.

A constituent which is a subformula of a is said to be a
constituent of a. If a constituent a is a proper part of a consti-
tuent B then « is said to be a subconstituent of f.

1.1. The degree of a formula a is defined as follows by in-
duction on the construction of a.

If u is a variable, then the degree of a is 0.

If o is of the form ~ f and if the degree of § is n, then the
degree of a is n.

If a is of the form f — v and if the degrees of § and y are n'
and n" respectively, then the degree of a is the highest number
n such thatn =n'orn = n".

If o is of the form Of and if the degree of § is n, then the
degree of a isn + 1.

1.2, We refer to sets of formulas by way of the letter "&"
followed by a suitable index.
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Definition. A set &, of constituents is said to be adequate
iff (1) &, is not empty, (2) &, is finite and (3) every constituent
of a member of &, is a member of &,. If an asc (an adequate
set of constituents) &, contains all the constituents which oc-
cur in a formula a [which occur in any formula of a set &), of
formulas] &, is said to be an asc for a [for #].

If an asc &, contains just all the constituents which occur
in a formula o [which occur in any formula of a set &, of for-
mulas] &, is said to be the minimum asc for a [for &}).

If an asc &), contains all the constituents which occur in an
asc &,, then &, is said to be a subasc of &,

1.3. Theorem. Let &, be a subasc of %), such that &, contains
just n (n > 0) constituents more than &,. Then it is possible
to construct a series of ascs &, &, ..., &#, such that &, is
&y Fu is &), and for each i such that 0 < i <<n we have that
;.1 contains just one constituent more than ;.

Proof by induction on n. If n = 1 then let &, be &, and let
&1 be &, and the theorem holds trivialy.

Let n =m + 1 (0 <m). The n constituents of &, which are

not in &, can be ordered so as to form a series qay, ..., Oy Ol
such that for every i and j (1 <i<{j < n) we have that q; is
not a constituent of «;. To obtain such a series it suffices to see
to it that in the series every constituent «; precedes all the
constituents of a degree higher than the degree of ;. We then
define the series &, ..., &, &, as follows. &, is &,. For
every i (0 <i<{n) &, contains the constituents of &; plus
;1. It is obvious that &, will be &,
We prove now that &, is an asc. Let a be any constituent of
&, and let p be any subconstituent of a. If « is in &, then, as
&, is an asc, § is in &, and so in &, If a is in the series [V P
oy then, as &, is &)}, and so an asc, f§ is in &, and so either in
&, or in the series oy, ..., @, If B is in &, then B is in &, If B
is in the series g, ..., a, then o, cannot be f as «, is of a degree
not lower than the degree of o, and so § is in the series oy, ...,
oy and so in &, It follows that in every case P is in &, and
that &, is an asc.

Then by the hypothesis of the induction on n we have that the
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theorem holds for the series &, ..., ¥, As &, is an asc and
as &, contains just the constituent o, more than %, the
theorem holds for the series &, ..., %,.

1.4. Definitions. A value-pair from an asc %, is a set contai-
ning just one of the constituents of %, and one of the letters
“T" or “F".

A row from an asc &, is a set containing just for every
constituent o of &, one and only one of the two value-pairs
which contain a.

The table from an asc %, is the set of all the rows from &%,.

We shall refer to rows by way of the letter "#" followed by
a suitable index, and to tables by way of the letter "&" fol-
lowed by a suitable index.

1.5. Definitions. If the tables &, and @, are the tables from
the ascs &, and &), respectively, then @, is said to be a [proper]
subtable of @), iff &, is a [proper] subasc of &,

If a table &, is the table from the asc &,, then @, is said to
be a [minimum)] table for a formula o [for a set of formulas %}]
iff &, is an asc [a minimum asc] for a [for &}].

If @, is the table from the asc &,, if the constituent a occurs
in &, [is in &,], we say that a occurs in @, [is in @,].

If #; and #; are rows of the tables &, and &), respectively,
if @, is a [proper] subtable of &), and if for every constituent
a in &, the value-pair which contains « and which occurs in
R; is the same as the value-pair which contains « and which
occurs in #;, we say that %; is a [proper] subrow of #&;.

1.6. Definition. Let &, be a table for o and let %, be a row of
@,. We define under what conditions &; verifies or falsifies c.

If a is a constituent, then %, verifies o iff #; contains the
value-pair (a, T) and #; falsifies o iff %; contains the value-
pair (o, F).

If a is of the form ~f, then &, verifies a iff #; falsifies 8
and %, falsifies o iff &; verifies f.

If a is of the form f — vy, then &, verifies o iff &, falsifies 8
or verifies y, and 4, falsifies o iff #; verifies § and falsifies y.
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We say also that #; gives the value T (F) to o, and that «
has the value T (F) for &,.

1.7. Theorem. Let &, be a subtable of @), let %#; and #%; be
rows of &, and &), respectively, let %#; be a subrow of #;, and
let @, be a table for a [for the set of formulas &;j]. Then we
have for a [for every formula § in &;] that &, verifies o [veri-
fies B] iff &, verifies o [verifies §§], and £, falsifies o [falsifies f]
iff &; falsifies a [falsifies f].

Proof. By an induction on the construction of a [of B] like in
1.6.

1.8. Definitions. Let a be a variable, let § be any formula,
let &, be an asc, and let &,, be the set of formulas obtained by
substituting in all the constituents of &, the formula B for the
variable a. Then in general &,, will not be an asc. Let &}, be the
minimum asc for &,,. Then &, is said to be a B/a-asc from &,.
Let o be a variable, let § be any formula, let &, be the B/a-
asc from &,, and let @, and &) be the tables from &, and &,
respectively, then @), is said to be the f/a-table from &,.

Let a be a variable, let p be any formula, let &, be the p/o-
table from @, let #; be a row in &, and let %; be the row in
@, such that for every constituent vy in &, %, verifies or falsifies
y according as #; verifies or falsifies , where § is the result
of substituting § for a in y. Then #; is said to be a p/a-row
from ;. Remark. It will often happen that, if &, is the p/a-
table from &, and if %, is a row of @,, then there will be in
@, more than one row which are f/o-rows from ;. It will
also happen that for some row #; in @, there will be no p/a-
rows from £;. A reason for this can be the fact that f is a tau-
tology by plain proposition logic and that #; falsifies a. Another
reason can be the fact that some constituent 6 in &, can be
considered as the result of substituting § for o in different
constituents y and y' in @, and that %, assigns different values
to y and ¥'. This can be the case if for instance we have as
constituents in &, O(a — ) and O(f—> a) where a does not
occur in B. However for every row #; in @), there will always
be a unique row %, in @, such that &; is a p/a-row from £,.
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1.9. Theorem. Let a be a variable, let § be any formula, let
y be any formula, let & be the result of substituting f for a in
v, let @, be a table for v, let @, be the p/o-table from &, let
#; and #; be rows of @, and &), respectively, and let #; be a
f/a-row from £;. Then we have that (1) @, is a table for &
and (2) &; verifies (falsifies) d iff #; verifies (falsifies) v.
Proof of (1). By an induction on the construction of y like in
1.6 and by the definition of “B/u-table".
Proof of (2). By the same kind of induction and by the definition
of "B/a-row”.

2. Contirol and acceptability.

2.0. Definitions. Let #; and #; be rows of a stable &, the
case where i = j not being excluded. We define as follows
the relations C0 and C1.

R; CO0 R; iff for every constituent Oa in &, we have that
if &, verifies Oa then £; verifies «.

Z;C1 &; iff for every constituent Oa in &, we have that
if Z, verifies Oa then %, verifies Oa.

2.1. Definitions. Let #; and %, be rows of a table &,, the case
where i = j not being excluded. We shall say that
2&; M-conirols &; iff #; C0 £,
R; B-controls &; iff #; CO #; and Z; CO &;,
R; S4-controls R; iff #; CO #; and &#; C1 %;,
R; S5-controls &; iff #; CO #; and #; CO #;, and #; C1 &; and
R, C1 &,

2.2, Definition. For all natural numbers n we define recur-
sively as follows what it is for a row %; of a table @, to be
n-M-acceptable, n-B-acceptable, n-S4-accepiable or n-S5-accept-
able.

For M. #; is 0-M-acceptable iff for every constituent Oa in &,
we have that if %, verifies Oa then %; verifies a. '

#;is n + 1-M-acceptable iff (1) #,; is n-M-acceptable and (2) for
every constituent Oa in &, we have that if %, falsifies Oa
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there is in &, an n-M-acceptable row #; such that #; M-controls
R; and %, falsifies a.

For B, S4 and S5. The same definition as for M, replacing the
prefix "M" by the prefix “B", "'S4" or ''S5",

2.3. Definition. A row %, of a table &, is said to be M-accept-
able [B-acceptable, S4-acceptable, S5-acceptable] iff for every
natural number n %, is n-M-acceptable [n-B-acceptable, n-S4-
acceptable, n-S5-acceptable].

Remark. In what follows we shall often formulate definition-
schemata, theorem-schemata and proof-schemata, where the
prefix X" will occur, and which will yield definitions, theorems
and proofs if "X" is replaced everywhere by “M", “B", "S4"
or "S5,

2.4. Theorem-schema. For every table &, there is a natural

number t such that if a row %; of &, is t-X-acceptable then %;
is X-acceptable. (The theorem does not state that the number
t is the same for M, B, S4 and S5).
Proof-schema. The set of n + 1-X-acceptable rows is by defini-
tion a subset of the set of n-X-acceptable rows. But the number
of rows of @, being finite the successive sets of n-X-acceptable
rows cannot decrease indefinitely with increasing n. So for
some natural number t the set of t + 1-X-acceptable rows will
be identifical with the set of t-X-acceptable rows. It is then
easily seen that, for all r, if #; is t-X-acceptable then %, is
t + r-X-acceptable. On the other hand for all s such that
s <t we have by condition (1) of n + 1-X-acceptability that
if &; is t-X-acceptable then %, is s-X-acceptable. So for all n
if #; is t-X-acceptable then %, is n-X-acceptable.

2.5. Definition-schema. The X-characteristic number of a
table @,is the smallest natural number t such that for every
row #; of &, we have that if #; is t-X-acceptable then %, is
X-acceptable.

2.6. Theorem-schema. Let #; be an X-acceptable row in &,.
Then for every constituent Oa in &, we have that if %, falsifies
Oo then there is in &, an X-acceptable row #; such that %;
X-controls #; and #; falsifies a.
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Proof-schema. Let t be the X-characteristic number of @,. %,
is X-acceptable and so t + 1-X-acceptable. So, by condition (2)
of t + 1-X-acceptability, for every constituent Oa in &, we
have that if %, falsifies Oa then there is in &, a t-X-acceptable
row &; such that #; X-controls #; and %; falsifies a. But %,
being t-X-acceptable is X-acceptable.

2.7. Theorem-schema. Let #; be an X-acceptable row in &,.
Then for every constituent o in T, we have that R; verifies
Oa iff all X-acceptable rows in &, which are X-controled by
R; verifie o, and that &, falsifies Oa iff there is in &, an X-ac-
ceptable row which is X-controled by £, and which falsifies a.
Proof. Obvious by the fact that X-control implies the relation
CO0, and by 2.6.

2.8. Theorem-schema. In every table @, the set of X-accept-
able rows is not empty.
Proof-schema. Let #; be a row of &, such that for every consti-
tuent Oa in @, (if any) &, verifies Do iff #,; verifies a (and so
R, falsifies Oa iff #; falsifies o). Obviously we can construct
such a row %, by first associating arbitrarily the letters "“T"
and “F" with the constituents of degree 0 and by associating
with every constituent Oa of degree n + 1 the letters “T" and
"F" according as «a is verified or falsified by the subrow of &,
which contains all the constituents of &, of degree not higher
than n. From this construction it will follow that %, is 0-X-
acceptable. For n + 1-X-acceptability, by the hypothesis of an
induction on definition 2.2, we may suppose that #; is n-X-
acceptable and so condition (1) for n + 1-X-acceptability holds.
By the construction of #; we have that #; X-controls itself, and
that for every constituent Oa in @,, if %; falsifies Oa then %,
falsifies a. So condition (2) for n + 1-X-acceptability holds.

2.9. Remark. If we limit our considerations about control to
X-acceptable rows, as every X-acceptable row is 0-X-accept-
able, it is easily seen that C1 implies CO. This would allow us

to simplify the definitions of S4-control and S5-control like
this:



ON TRUTH-TABLES FOR M, B, S4 AND S5 343

R; S4-controls R; iff R; C1 &;,

R; S5-controls R; iff #; C1 #; and #; C1 #,.

‘We shall however avoid making use of this facility for reasons
which will become clear in the last section of this paper.

3. Comparison between M, B, S4 and S5.

3.0. Theorem-schema. For every table &, the relation of

X-control is reflexive within the set of X-acceptable rows in
[
Proof-schema. The acceptable rows are 0-X-acceptable. For
every 0-X-acceptable row %; we have that, for every consti-
tuent Oa in &,, if &; verifies Oa then %; verifies a. So we have
2, CO &;. For every row #; (0-X-acceptable or not) we have
obviously #; C1 #,. The theorem follows then immediately by
definitions 2.1,

3.1. Theorem. For every table &, the relation of B-control

[S5-control] is symmetrical within the set of B-acceptable [S5-
acceptable] rows in &,.
Proof. By definitions 2.1 it is obvious that B-control and S5-
control are symmetrical within the set of all rows in &,. So
these relations are symmetrical within the set of B-acceptable
and S5-acceptable rows respectively.

3.2. Theorem. In every table &, the relation of S4-control
[S5-control] is transitive within the set of S4-acceptable [S5-
acceptable] rows in &, (in fact within the set of all rows).
Proof for S4. If in &, %, S4-controls #; and % S4-controls
#;» then we have that for every constituent Oa in &, if %,
verifies Oa then #; verifies Oa and if & verifies Oa, &,
verifies a. So we have that for every constituent Oa in &,, if
R, verifies Oo then #;» verifies « and so we have %,;C0
R;». If in &, R; Sd-controls #; and #; S4-controls #;~, then we
have that for every constituent O« in &, if %&; verifies Qo
then #; verifies Oa, and if # verifies Oa then &, verifies
Oa. So we have that for every constituent Oa in &,, if &,
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verifies Oa then #;~ verifies Oa and so we have %, C1 %;.
The proof for S5 is the same, a first time to show that %#; C0 &;~
and #;C1 #;» and a second time to show that £, C0 %; and
% Cl1 R,.

3.3. Theorem. Let #; and #; be rows of a table &,. Then we
have that a) if #; S5-controls #%; then #; S4-controls #;, b) if
Z; S5-controls #; then %, B-controls %&;, c) if #; S4-controls %,
then #; M-controls #;, d) if #; B-controls #; then %; M-controls
Z;, and e) if #; S5-controls #; then %#; M-controls %&;.

The theorem is trivial given definitions 2.1.

3.4. Theorem. Let &, be a row of a table &@,. Then we have
that a) if #; is SS5-acceptable then #; is S4-acceptable, b) if
2, is S5-acceptable then %, is B-acceptable, c) if &, is S4-accept-
able then £, is M-acceptable, d) if %, is B-acceptable then £, is
M-acceptable and e) if #; is S5-acceptable then £; is M-accept-
able.

Proof-schema where X and Y can be replaced respectively by
S5 and S4, or by S5 and B, or by S4 and M, or by B and M, or
by S5 and M. The proofs are by induction on definition 2.2.

If #; is 0-X-acceptable &, is 0-Y-acceptable by definition
22. If #; is n + 1-X-acceptable, then %; is n-X-acceptable. By
the hypothesis of the induction £, is n-Y-acceptable and so con-
dition (1) for n + 1-Y-acceptability holds for &,. If %, is n + 1-
X-acceptable then for every constituent Oa in &, we have that
if &; falsifies Oa there is in &, an n-X-acceptable row %; which
is X-controled by #; and which falsifies a. By the hypothesis
of the induction £; is n-Y-acceptable. By 3.3 #; Y-controls &,.
So condition (2) for n + 1-Y-acceptability holds for %,

3.5. Theorem. There is a table @, such that in it
a) there are two rows #; and %; such that %, M-controls
Z; and #; does not B-control %;,
b) there are two rows %, and %; such that #; M-controls
#&; and #; does not S4-control &,
c) there are two rows £, and %; such that #; B-controls
Z; and #; does not S4-control &;,
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d) there are two rows #%; and #%; such that #; S4-controls
; and Z; does not B-control #;.

Proof by table 3.9 hereafter.

3.6. Corollary. There is a table &, such that in it

a) there are two rows #%; and #; such that %#; M-controls
R; and #; does not S5-control #;,

b) there are two rows #%; and #; such that #%; B-controls
R; and Z,; does not S5-control £;,

c) there are two rows #%; and %; such that #; S4-controls
Z; and £, does not S5-control Z;.

Proof by 3.3 and 3.5.

3.7. Theorem. There is a table &, such that in it
a) there is a row which is M-acceptable and not B-acceptable,
b) there is a row which is M-acceptable and not S4-acceptable,
c) there is a row which is B-acceptable and not S4-acceptable,
d) there is a row which is S4-acceptable and not B-acceptable.

Proof by table 3.9 hereafter.

3.8. Corollary. There is a table @, such that in it
a) there is a row which is M-acceptable and not S5-acceptable,
b) there is a row which is B-acceptable and not S5-acceptable,
c) there is a row which is S4-acceptable and not S5-acceptable.

Proof by 3.4 and 3.7.

3.9. Let a be a variable. Let us consider the asc &,:

(¢, Oo, O0O¢, O~ 0Oa). The table @, from the asc &, is the
table required for the proof of 3.5. and 3.7.

The 0-X-acceptable rows of @, are the following:
Z0: (0, T) (e, T) (OO, T) (O~ O, F).
Z1: (o, T) (Oq, T) (00, F) (O~ O, F).
Z2: (o, T) (e, F) (O0Oq, F) (O~0ae, T).
23: (o, T) (Oa, F) (00w, F) (O~ Og, F).
24: (o, F) (Ow, F) (00w, F) (O~0Oa, T).
Z5: (o, F) (Oo, F) (OO0, F) (O~ 0O, F).
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For M we have:

Z0 M-controls £0 and £1;

21 M-controls £0, Z1, #2 and #3;

R2 M-controls #2, #3, #4 and &5,

A3 M-controls #0, #1, #2, 3, R4 and &5;

R4 M-controls #2, 3, #4 and #5;

A5 M-controls Z0, #1, 2, R3, R4 and #5;
Are M-acceptable: 20, #1, #2, #3, #4 and £5.

For B we have:

Z0 B-controls £0 and #1;

21 B-controls £0, #1 and #3;

X2 B-controls #2, #3, #4 and £5;

3 B-controls #1, #2, #3, #4 and &#5;

R4 B-controls #2, #3, #4 and &5;

A5 B-controls #2, #3, #4 and #5.

Are B-acceptable: 20, 21, #2, #3 and %4.

For S4 we have:

20 S4-controls #0;

Z1 S4-controls #0 and #1;

R2 S4-controls #2 and #4;

#3 S4-controls #0, Z1, B2, 3, R4 and R5;
R4 S4-controls £2 and #4;

R5 S4-controls R0, #1, #2, R3, R4 and &5.
Are S4-acceptable: 20, #2, #3, #4 and &5.

For S5 we have:

20 S5-controls %0;

Z1 S5-controls #1;

A2 S5-controls #2 and #4;

2R3 S5-controls #3 and #5;

R4 S5-controls Z2 and #4;

25 S5-controls #3 and £5.

Are S5-acceptable 20, #2 and #4.

(It is worth while noticing that although #3 is B-acceptable and
S4-acceptable, it is not S5-acceptable).
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4, Subtables and substitution-tables.

4.0. Theorem-schema. Let #; and #; be rows of a table &,.

Let #; and #; be rows of a table @,. Let &, be a subtable of
@), and let #; and %y be subrows of #; and #; respectively.
Then we have that if %#; does not X-control %y, then %; does not
X-control #;.
Proof. If #; COZ; does not hold then there is a constituent O
in &, such that &, verifies Oa and #%; falsifies o. But then by 1.7,
in &, &; verifies Oa and %, falsifies a, and so %#; CO %;. does
not hold. If &; C1 #;> does not hold then there is a constituent
Oa in @, such that &, verifies Oa and %y falsifies Oo. But then,
by the definition of "subrow", in &), #; verifies Ja and #; falsi-
fies Do, and so #; C1 #; does not hold. A similar reasoning
holds for the case where %, CO #; does not hold and for the
case where #;; C1 #; does not hold. The theorem then follows
immediately by definitions 2.1.

4.1, Theorem-schema. Let #; be a row of a table &, and let
Z; be a row of a table &,. Let @, be a subtable of &)}, and let %,
be a subrow of #;. Then we have that if R; is not X-acceptable
then £, is not X-acceptable.

Proof-schema. The proofs are by induction on definitions 2.2.
If #; is not 0-X-acceptable then there is in &, a constituent Oa
such that %, verifies Ou and falsifies a. But then, by 1.7, in
@, R; verifies Oa and falsifies « and so %, is not 0-X-acceptable.
If Z; is not n + 1-X-acceptable because it is not n-X-acceptable,
we have by the hypothesis of the induction that #; is not
n-X-acceptable and so not n + 1-X-acceptable. If %; is not
n -+ 1-X-acceptable because condition (2) of n + 1-X-accept-
ability does not hold, then there is a constituent Oa in &, such
that £, falsifies Ou and there is no n-X-acceptable row in &,
which is X-controlled by #; and which falsifies «. For every
n-X-acceptable row #; of &, which falsifies o, we have by 1.7
that the row £ of &, which is a subrow of &, falsifies o, and by
the hypothesis of the induction we have that #; is n-X-accept-
able. By the hypothesis about#;, #; does not X-control #; and
so by 4.0. #; does not X-control Rj. But as #; (which is a sub-



348 ARNOULD BAYART

row of #;) falsifies Oa, so does R;. It follows that condition (2)
for n + 1-X-acceptability for #; does not hold.

4.2, Definition-schema. Let &, and &), be tables such that &,
is a subtable of @), and &), contains just one constituent § more
than @,. Let us notice that obviously if f is of the form Oy
then @, is a table for y. Let &, be an X-acceptable row of &,.
Let #, and #;; be the two rows of &, of which £, is subrow.
Let &, verifie § and let & falsifie . We define what it means
to say that #;, or &;; is a ©,-X-selected row of @),

If § is a variable then both #;, and #;; are @ ,-X-selected.

If B is Oy, then % is & ,-X-selected iff all X-acceptable rows
of &, which are X-controled by £, verifie v.

If p is Ov, then & is @,-X-selected iff #;, is not &,-X-selected.
It follows immediately from this that, if f is Oy, &y is T,-X-
selected iff there is an X-acceptable row in &, which is X-
controled by #; and which falsifies v.

4.3. Theorem-schema. Let @, and @), be tables such that &,
is a subtable of @) and &, contains just one constituent p more
than &. Let #; and %; be X-acceptable rows of &, such that
R; X-controls #;. Let #; and &; be subrows of the &-X-selected
rows #; and #; of @, respectively. Then #; X-controls %;.
Proof for M. If #; M-controls #;: then #; C0O #;". So there is no
constituent Oa in &, such that %, verifies Oa and %; falsifies
a. By 1.7 we have that there is no constituent O« in &), such
that Oo is in @, and &, verifies Oua and %;, falsifies a. It follows
that, if B is a variable or if § is Oy and £, falsifies Oy then
R; CO #;» and so #; M-controls #p. If § is Oy and &, verifies
Oy then, as #; is &,-M-selected, all the M-acceptable rows of
@, which are M-controled by £; verifie y. So %y, and by 1.7,
R; verifie y, and so again #; C0 &;.

Proof for B. If #; B-controls Z; we have #,C0 #;» and #; C0 &,.
By reasoning like in the proof for M we can prove that if
.%i Co g?j’ then u%j CO@J" and that if -g?i’CO g@i then ‘@j’ Co e@j.

Proof for S4. If #; S4-controls %y we have #,C0Z%; and
#; C1 Z;. By reasoning like in the proof for M we can prove
that if #; CO #;: then #; COZ;. Furthermore if #; C1 &, there is
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no constituent Oo in @, such that £, verifies Oo and %, falsi
fies Oa. By the definition of subrow we have that there is no
constituent Oa in @), such that O is in &, and #%; verifies
Oa and #; falsifies Oa. It follows that if f is a variable or if
f is Oy and £; falsifies Oy then #; C1 #; and so, given the
proof for CO, #; S4-controls Z;. If § is Oy and if %; verifies
Oy then, as #; is &,-S4-selected, all the S4-acceptable rows of
@, which are S4-controled by #; verifie y. By the transitivity of
S4-control we have that all the S4-acceptable rows of &,
which are S4-controled by #%; are S4-controled by %;. So all
rows which are S4-controled by #; verifie y. As & is @,-S4-
selected #;, verifies Oy and we have again that %#; C1 &;..
Proof for S5. If #; S5-controls #; we have %;C0 &, &, C0 &,
R, C1 #; and #; C1 #,. By reasoning like in the proof for S4 we
have that if #; CO0 Z; and #;C1 #%; then #; CO #Z; and #; C1 &;.
By the same kind of proof we have that if % C0 %, and
R C1 R, then #;CO0 #; and &) C1 R;.

4.4. Theorem-schema. Let @, and @), be tables such that @, is
a subtable of @), and &), contains just one constituent p more
than @, Let #; be an X-acceptable row of &, Let & be a
subrow of the &,-X-selected row #; of &,. Then &; is X-accept-
able. (The theorem does not state that the &,-X-selected rows
of @, are the sole X-acceptable rows of @).
Proof-schema. By induction on definition 2.2. As %, is 0-X-
acceptable, #; C0 #,. By 4.3 we have #; C0 %;. So %; is 0-X-
acceptable. By the hypothesis of the induction %; is n-X-accept-
able and so condition (1) for n + 1-X-acceptability holds for
R;. As &, is X-acceptable, we have by 2.7 that for every consti-
tuent Ca in @, which is falsified by £, there is in &, an X-ac-
ceptable row #; such that #; X-controls #; and %, falsifies a.
Let #; be the @,-X-selected row of &), such that %, is a subrow
of #;. By the hypothesis of the induction #; is n-X-acceptable.
By 4.3 #; X-controls #;. By 1.7 #; falsifies a. So for every
constituent Oa in @), which is in &, and which is falsified by
Z; there is in @), a row %; such that #; is n-X-acceptable,
R; X-controls #; and £ falsifies o. It follows that if B is a
variable or if f is Oy and #%; verifies Oy then condition (2) for
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n + 1-X-acceptability holds for £;. If § is Oy and £, falsifies
Oy, then as %, is &,-X-acceptable there is in &, a row %y
such that #; is X-acceptable, %#; X-controls #; and #; falsifies
y. Let #;- be the @ ,-X-selected row of &), such that % is a
subrow of #;.. By the hypothesis of the induction we have that
#; is n-X-acceptable, by 4.3 we have that #; X-controls #;> and
by 1.7 &; falsifies y. So again condition (2) for n + 1-accept-
ability holds for #;.

4.5. Theorem-schema. Let &, and &), be tables such that &,

is a subtable of @). Let #; be an X-acceptable row of &@,. Then
in @), there is an X-acceptable row #£; such that %, is a subrow
of #;.
Proof-schema. Let n be the number of constituents in @, which
are not in @,. The proofs are by induction on n. If n = 0 the
theorem is trivial. If n > 0, we know by 1.3 that it is possible
to construct a series of tables &, ..., &, such that @, is
&, @, is @), and for each m such that 0Sm <n we have that
@, .1 contains just one constituent more than @,. By the hypo-
thesis of the induction there is in &,-; an X-acceptable row
Z, such that £, is a subrow of #,. Let %, be the &,_;-X-select-
ed row of &, (that is of &)) such that £, is a subrow of#;. By
4.4 Z; is X-acceptable and obviously #%; is a subrow of &;.

4.6. Theorem-schema. Let &, and &, be tables such that &,
is a subtable of @). Let %; and %y be X-acceptable rows of
@, such that #; X-controls #y. Then there are in &), X-accept-
able rows #; and #; such that #; and %; are subrows of %
and #;y respectively and #; X-controls #;..

Proof-schema. Le n be the number of constituents in &}, which
are not in @,. The proofs are by induction on n. If n = 0 the
theorem is trivial. If n > 0 let us consider the series of tables
@,, ..., @, of 4.5. By the hypothesis of the induction there are
in @,.; X-acceptable rows %, and %, such that %; and %;
are subrows of %, and £, respectively and %, X-controls
A, Let #; and #; be the &, -;-X-selected rows in &, (that
is in @) such that #; and %, are subrows of #; and #; re-
spectively. By 4.4 #; and %, are X-acceptable, by 4.3 #; X-con-
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trols #; and obviously %; and %y are subrows of #; and %
respectively.

4.7. Theorem-schema. Let o be a variable, let § be any formu-

la, let @), be the p/u-table from @,, let #; and %, be rows of
@y, let &#; and #; be rows of &, such that %; and #; are f/o-
rows from #; and #%; respectively. Then we have that if &,
does not X-control #; then #%; does not X-control %;.
Proof. If #; C0O #; does not hold then there is a constituent Oy
in @, such that #%; verifies Oy and %y falsifies y. Let d be the
result of substituting f§ for o in y. Then by 1.9 we have that
#; verifies 0d and #; falsifies 8. So #; C0 #;> does not hold.
If #; C1 #; does not fold' then there is a constituent Oy in &,
such that #; verifies Oy and %y falsifies Oy. Let 08 be the
result of substituting B for o in Oy. Then by the definition of
"B/a-row” we have that #; verifies (18 and &; falsifies [1d.
So #; C1 &, does not hold. A similar reasoning holds for the
case where #;, COR; does not hold and for the case where Z;
C1 #; does not hold. The theorem then follows immediately by
definitions 2.1.

4.8. Theorem-schema. Let a be a variable, let f§ be any formu-
la, let @, be the p/o-table from &,, let %; be a not X-acceptable
row of @), such that #; is a f/a-row from £;. Then #; is not
X-acceptable.

Proof-schema. The proofs are by induction on definitions 2.2.
If Z; is not 0-X-acceptable then there is in &, a constituent Oy
such that %, verifies Oy and falsifies y. Let & be the result of
substituting p for « in y. Then by 1.9 we have that £&; verifies
[Ob and falsifies §, and so #; is not 0-X-acceptable. If %; is not
n + 1-X-acceptable because it is not n-X-acceptable, we have
by the hypothesis of the induction that #; is not n-X-accept-
able and so not n + 1-X-acceptable. If %; is not n + 1-X-ac-
ceptable because condition (2) for n + 1-X-acceptability does
not hold, then there is a constituent Oy in &, such that %,
falsifies Oy and there is no n-X-acceptable row in @, which
is X-controled by #; and which falsifies y. Let § be the result
of substituting § for a in y. Then for every n-X-acceptable
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row #;: of &, which falsifies §, we have by 1.9 that the row
Ry of @,, which is such that #; is a p/a-row from &y, falsifies
v, and by the hypothesis of the induction we have that %y is
n-X-acceptable. So by the hypothesis about %;, %; does not
X-control #;, and so by 4.7 #; does not X-control #;. But as
R; is P/o-row from #; and as #,; falsifies OOy, we have that
X falsifies 8. It follows that condition (2) for n + 1-X-accept-
ability for #; does not hold.

5. Tautologies.

5.0. Definition-schema. Let @, be a table for o. Then a is
said to be a @,-P-laulology [a @ ,-X-tautology] if o is verified
by all [by all X-acceptable] rows of &,.

5.1. Definition-schema. The formula « is said to be a P-tauto-
logy [an X-tautology] iff, for every table @, such that @, is
a table for o, a is a @,-P-tautology [a &,-X-tautology].

5.2. Theorem-schema. Let @, and @}, be tables for a such that
@, is a subtable of &,,. Then we have thatif a is a @ ,-P-tautology
[a &@,-X-tautology] then a is a &,-P-tautology [a &,-X-tautolo-
gyl.

Proof for P. Let #; be any row of @). Let #; be the row of @,
which is a subrow of #;. By the hypothesis of the theorem %;
verifies o. By 1.7 &, verifies o.

Proof-schema for M, B, S4 and S5. Let #; be any X-acceptable
row of @,. Let #; be the row of &, which is a subrow of Z;. By
4.1 #; is X-acceptable. By the hypothesis of the theorem %;
verifies o. By 1.7 %, verifies a.

§.3. Theorem-schema. Let &, and &, be tables for o such
that @, is a subtable of &),. Then we have that if a is a &,-P-
tautology [a @),-X-tautology] then a is a @ ,-P-tautology [a @,-_
X-tautology].

Proof for P. Let #; be any row of @,. Let #; be a row of &,
such that &, is a subrow of #,. By the hypothesis of the theorem
R; verifies a. By 1.7 &, verifies a.

Proof-schema for M, B, S4 and S5.
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Let #; be any X-acceptable row of &, By 4.5 there is in &} an
X-acceptable row £; such that #; is a subrow of #;. By the
hypothesis of the theorem #; verifies a. By 1.7 &, verifies o.

5.4. Theorem-schema. If there is a table &), for o such that a
is a &),-P-tautology [a &,-X-tautology] then a is a P-tautology
[an X-tautology].

Proof-schema for P, M, B, S4 and S5. Let &, be the minimum
table for a. Let &, be any table for a. @, is a subtable of @,
By the hypothesis of the theorem a is a @,-P-tautology [a &-
X-tautology]. So by 5.3 a is a &,-P-tautology [a & ,-X-tautology].
But @, is a subtable of &.. So by 5.2 a is a &,-P-tautology [a
@ -X-tautology].

5.5. Theorem, All P-tautologies are M-tautologies. All M-tau-
tologies are B-tautologies. All M-tautologies are S4-tautologies.
All B-tautologies are Sb5-tautologies. All S4-tautologies are
S5-tautologies.

Proof. Let @, be a table for a. If a is verified by all rows of
@,, then o is verified by all M-acceptable rows of &@,. If a is
verified by all M-acceptable rows of &, then by 3.4 « is verified
by all B-acceptable rows of @,. If a is verified by all M-accept-
able rows of @, then by 3.4 a is verified by all S4-acceptable
rows of &,. If a is verified by all B-acceptable rows of &,, then
by 3.4 o is verified by all S5-acceptable rows of @,. If a is
verified by all S4-acceptable rows of @, then by 3.4 o is veri-
fied by all S5-acceptable rows of @,.

5.6. Theorem. (1) There is a formula which is an S5-tautology
and not an S4-tautology. (2) There is a formula which is an S5-
tautology and not a B-tautology. (3) There is a formula which
is an S4-tautology and not a B-tautology. (4) There is a formula
which is a B-tautology and not an S4-tautology. (5) There is
a formula which is an S4-tautology and not an M-tautology.
(6) There is a formula which is a B-tautology and not an M-tau-
tology. (7) There is a formula which is an M-tautology and not
a P-tautology.
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Proof. Let a be a variable. The table for «, Oo, OO« and
O~ O« and the following formulas yield a proof of the theo-
rem. (See 3.9).

For (1) and (2), ~ Oo— O~ Oa is falsified by #3 of table 3.9,
but is verified by all S-5-acceptable rows.

For (3) and (5), Ooa— OOa is falsified by #1 of table 3.9,
but is verified by all S4-acceptable rows.

For (4) and (6), ~a— O~ Oa is falsified by #5 of table 3.9,
but is verified by all B-acceptable rows.

For (7), Ou — o is falsified by the following not 0-M-acceptable
row: (o, F) (O, T) (OO0« T) (O~ Oa, T), but is verified by
all M-acceptable rows.

5.7. Theorem-schema. Let a be a variable, let § be any formu-
la, let y be any formula, let § be the result of substituting f for
o in y. Then we have that if y is a P-tautology [an X-tautology]
then 3 is a P-tautology [an X-tautology].

Proof for P. Let @, be a table for v, let &), be the p/a-table from
¥, let Z; be any row of &), and let %, be the row of &, such
that #; is a p/a-row from #;. Then we have by the hypothesis
about vy, that #; verifies y. By 1.9 we have that %; verifies 9.

Proof-schema for M, B, S4 and S5. Let &, be a table for v, let
@, be the p/a-table from &,, let #; be any X-acceptable row of
@), and let #; be the row of &, such that %, is a B/a-row from
. Then we have by 4.8 that #; is X-acceptable and so, by the
hypothesis about vy, #; verifies y. By 1.9 we have that #; veri-
fies 8.
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PART II
6. Plain proposition logic.

6.0. Definitions. An uncovered occurence of a constituent f
in a formula a is an occurence of § in a not as a part of a consti-
tuent.

An uncovered constituent of a formula « is a constituent of
a which has an uncovered occurence in a.

A value-assignment for a formula o is a monadic function
which takes the uncovered constituents of a as arguments and
the letters "T" or "F'"" as values.

6.1 Definition. Let ¥7; be a value-assignment for a. We define
under what conditions ¥#7; verifies or falsifies .

If o is a constituent (and so an uncovered constituent of
itself) then ¥#7; verifies a iff ¥"; applied to o takes the value "T"',
and Y7 falsifies « iff ¥7; applied to « takes the value “F".

If a is of the form ~f, then ¥ verifies o iff ¥7; falsifies B, and
¥’ falsifies o iff ¥7; verifies f.

If a is of the form f—>y, then ¥"; verifies o iff ¥7; falsifies §
or verifies y, and ¥7; falsifies o iff ¥7; verifies p and falsifies vy.

6.2. Definition. A formula a is said to be a plain tautology iff
all value-assignments for a verifie a.

6.3. Let @, be a table for a, let #; be a row of &, and let ¥
be a value-assignment for a. We say that #; and ¥7; are a-
equivalent iff, for every uncovered constituent f of o, %
verifies p iff ¥7; verifies § (and so %; falsifies f iff ¥7; falsifies f).

6.4. Theorems. Let @, be a table for a, let #, be a row of &,
and let ¥7; be a value-assignment for a, such that #; and ¥/
are a-equivalent. Then (1) &, verifies [falsifies] a iff ¥7; verifies
[falsifies] a. (2) The formula a is a &,-P-tautology (and so a
P-tautology) iff it is a plain tautology.

Proof for (1). By definition 6.3 and the parallelism between
1.6 and 6.1.
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Proof for (2). If a is a &@,-P-tautology then « is verified by all
rows of @, Obviously every value-assignment for o is a-
equivalent with some row of @,. So by (1) all value-assign-
ments for o verifie o. If o is a plain tautology then a is verified
by all value-assignments for a. Obviously every row of @,
is a-equivalent with some value-assignment for a. So by (1)
all rows of @, verifie a.

6.5. Definition. Let oy, ..., o, be the n distinct constituents
of an asc &,. Let #; be a row of the table &, from &,. Then the
representing formula (the rf) of #; is the formula ;... ABy
where B, (1 <m<n) is a,, or ~a, according as #; verifies or
falsifies a,.

6.6. Theorems, Let %, be a row of a table @, and let a be the

rf of #;. Then (1) #; verifies o and (2) every other row %; of
@, falsifies a.
Proof. By plain proposition logic it is easily seen that for
every row %, of &, we have that %, verifies « iff &, verifies
all the members of the continuous conjunction «, and that £,
falsifies o iff %, falsifies one of the members of the continuous
conjunction «. By the hypothesis of the theorem we have that
Z; verifies all the members of the continuous conjunction «
and that every other row #%; falsifies one of the members of the
continuous conjunction a.

6.7. Theorem. Let @, be a table with r distinct rows. Then
the following formulas are @,-P-tautologies (and so P-tauto-

logies):

(1) o;V...Va,, where ay, ..., a, are the rfs of the r distinct rows
of 5&?

(2) (A A ~a) = (0;V... Va,) where ay, ..., o; are the rfs of i
distinct rows of &, and where a;, ..., o, are the rfs of the r-i other
rows of @ ;

(3) a — f where a is the rf of some row #%; in &, and where
B is a formula such that @, is a table for § and £, verifies f3;

(4) a« = ~p where o is the rf of some row £, in &,, and where
f is a formula such that @, is a table for § and #; falsifies fB:
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(5) B~ (xV...Va;) where B is a formula such that &, is a

table for B, and «, ..., o; are the rfs of all the rows in &, which
verifie §;
(6) ~B— (xV...Vo;) where § is a formula such that @, is a
table for B, and ay, ..., o; are the rfs of all the rows in &, which
falsifie f.

Proofs. For (1). Every row of &, verifies one of the members of
the disjunction and so verifies the disjunction.

For (2). Every row of &, either falsifies one of the members of
the antecedent of the implication and so falsifies that anteced-
ent and verifies the implication, or verifies one of the members
of the consequent of the implication, and so verifies that con-
sequent and the implication,

For (3) and (4). Every row %; in @, other than %, falsifies a,
and so verifies o = f and « > ~f. &; verifies a —>f or a— ~f
according as %, verifies or falsifies f.

For (5). Every row in &, which falsifies B falsifies the anteced-
ent of the implication and so verifies the implication. Every
row in &, which verifies p verifies one of the members of the
consequent of the implication and so verifies that consequent
and the implication. For (6). Every row in &, which verifies f§
falsifies the antecedent of the implication and so verifies the
implication. Every row in @, which falsifies 8 verifies one of
the members of the consequent of the implication and so veri-
fies that consequent and the implication.

6.8. Definition. The deductive system P is the system which
contains the following three axiom-schemata and the following
deduction rule.

A0. o= (p— a).

Al (a=> (B > V)= ((a=>f) = (e —=>7)).
A2, (~o— ~B)—= (3 — ).

MP. Modus ponens for material implication.

6.9. Theorem. A formula « is a theorem of the system P (a
P-theorem) iff  is a P-tautology.
Proof. We can consider the language, constructed from proposi-
tional variables and the three constants for negation, material
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implication and necessity, as a language for plain propositional
logic by considering all constituents, modal or not, as being
variables for propositions and by considering that only the un-
covered occurences of the constituents are occurences of these
variables. Such a convention is quite similar to the convention
according to which, in a language where we have the variables

“ "o LT T "o "

p’,"p ", "p"" etc, the occurences of the expressions ' p
and " p' " within the variable " p" " are not considered as oc-
curences of the variables “p " and " p'". Once we have made
such a convention we can see in Church's [8] that a formula o
is a P-theorem iff o is a plain tautology. The theorem then fol-

lows by 6.4.

7. The deductive systems M, B, S4 and S5.

7.0. We give ourselves the following five axiom-schemata
and the following deduction rule.
AD. O(x—B)— (Oa— OP).
AR. Oa—oa.
AS., ~o->0~D0a
AT. Oa- 0O0Oc.
AST. ~Oo— 0O~ Oua.
NE. Necessitation. From o to deduce Oa.
(The letters "D"”, "R", “S" and "T" are suggested by the words
“distribution”, "reflexive"”, “symmetrical” and "transitive".)
The deductive systems M, B, S4 and S5 contain the following
axiom-schemata and deduction rules respectively.
M. The same as P plus AD, AR and NE.
B. The same as M plus AS.
S4. The same as M plus AT.
S5. The same as M plus AS and AT.
To indicate that a is a theorem of one of these systems or of
some other system we write “o", relying on the context to
avoid ambiguities.

7.1. Theorem. In M, B, S4 and S5 if ~a=p, and if § is the
result of replacing an occurrence of a in y by an occurrence of
B, then y=34.
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Proof by induction on the construction of y from o. If vy is «
the theorem is trivial. If y is (1) ~¢, or (2) e =, or (3) {—¢ or
(4) Oe, where ¢ contains o, and if 7 is the result of replacing
an occurrence of o in € by an occurrence of f§, then by the hypo-
thesis of the induction ~&=n. By P we have then - ~e=~n,
or e=>0)=M—C), or —(C—>¢)=(C—>n) and so the theorem
is proved for cases (1), (2) and (3). For case (4) we have by P,
NE and AD e—=n, Fn—¢ FO@E—1), ~0Mn—e), ~0O
e—> On, - 0On— Oeand +~ Oe=0n,.

7.2, Theorem, In M, and so in B, S4 and S5:  O(a/AB)—
(OaAOB).
Proof. (In this and in the following proofs obvious steps will
be omitted).
D)~ (@AB) = a. (P).
(2) - 0O((a/AB) =a) . (1)(NE).
B)+0O(aAp) = Oa. (2)(AD)(MP).
(4) - (@/\B) = B . (P).
(5) + O ((@/Ap) = B) . (4)(NE).
(6) - O(aAB) = OB . (5)(AD)(MP).
()= 0O(AB) = (OcADOBP) . (3)(6)(P).

7.3. Theorem. In M, and so in B, S4 and S5 we have:
O Aap -1 Aag) = (Oae A A Oy -y A Owy).
Proof by induction on n.
7.2 treats the case where n=1.
Forn > 1 we have by 7.2:
(D)= O(aA.. . Aay-1Aay) = (O(aeA... Aay-) A Oay).
By the hypothesis of the induction we have:
(2) O A...Aog 1) = (Ooa N . A Doy -g).
By (1), (2) and P we have:
(B) = O(woA...Aog-1Aa) = (OagA... A Ooy -y A Ooy).

7.4, Theorem. In M, and so in B, S4 and S5: ~(OuAOB) -
Ol AB). ‘
Proof.

(D =a= (= (@Ap)) . (P).

(2)+DOfa = (8= (@/AB)) . (1)(NE).
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(3)=0Oa— OB — («Ap)) . (2)(AD)(MP).
4)=0@B— (@/AB) = (OB — O(AB)) . (AD).
(5) = Oa— (OB — O(aAP)) . (3)(4)(P).

(6) - (OaA OB) = O(aAB) . (5)(P).

7.5. Theorem. In M, and so in B, S4 and S5 we have:
l-(l:lao/\.../\an_l/\ Dﬂn] bl D(ao/\.../\an_l/\an).
Proof by induction on n.
7.4 treats the case wheren = 1.
For n > 1 we have by the hypothesis of the induction:
(M~ (OaA...AQop-1) = O Ay -1).
(2) - (Oa A oA Oy - AQay) = (O (A ... Ady o) A Ooy) . (1)(P).
@)~ (O(weA... A Oy - ) A Ooy) = O ... Aay_1Aay) . (7.4).
4) ~ (Oap A oA Doy -1 A Qo) = O, A Aoy o Aey) - (2)(3)(P).

7.6 Theorem.In S5: - ~Ooa— O~ Oa.
Proof.
(1) - Oa— OOa. (AT).
2) - ~ 00— ~Oa. (1)(P).
(3)+ O(~O0a— ~ Do) . (2)(NE).
(4)~0~000— O~ Oa. (3)(AD)(MP).
B ~Oa— O~0O0w. (AS).
(6) - ~Oa— O~ DOa. (5)(4)(P).

7.7. Theorem. In the system which contains the axiom-sche-
mata and deduction rules of M plus AST:  ~a — O~ a.
Proof.

(1) ~0Oa— O~DOa. (AST).
(2)-0Oa—a. (AR).

B) ~a— ~Oa. (2)(P).

4 ~a— O~0Oa. (3)(1)(P).

7.8. Theorem. In the system of 7.7: ~ Oua— 0 Qa.
Proof.
(1) ~Oa—> O~ Oa. (AST).
2} ~ O~ DOa—> Oa. (1)(P).
3)+ O(~0O~0Oa— Ou) . (2)(NE).
(4)-0~0O~0Oa—> OOa. (3)(AD)(MP).
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(5) - ~ O ~DOa— O~ O~ Oa. (AST).
(6) - ~ O ~Oa— OOa. (5)(4)(P).

(A +~0~0a— ~DOa. (AR).

8) - Oa— ~O~Oa. (A(P).

(9) - Do — O Oa. (8)(6)(P).

7.9. Theorem. S5 and the system of 7.7 are equivalent, that
is they vield the same set of theorems.
Proof. By 7.6, 7.7 and 7.8.

Remark. The system of 7.7 is the Godel formulation of S5. It
should be noticed that in 7.6 no use is made of AR, but that
use is made of AR in 7.7 and 7.8.

8. Consislency.

8.0. Theorem-schema. The formulas which are axioms by A0,
Al or A2 are X-tautologies.
Proof. The formulas in question are plain tautologies. So by
6.4 they are P-tautologies, and by 5.5 they are X-tautologies.

8.1. Theorem-schema. MP preserves X-tautologyhood.
Proof-schema. Let @, be a table for o = . If « and a—>f are
X-tautologies then they are & ,-X-tautologies and so a and o = §8
are verified by all X-ecceptable rows of &,. By 1.6 this supposes
that all X-acceptable rows of &, verifie 8. So B is a &,-X-tauto-
logy and by 5.4 an X-tautology.

8.2, Theorem-schema. The formulas which are axioms by AD
are X-tautologies.
Proof-schema. Let @, be a table for O(x— f) = (Oa— OP).
A row &, of &, will not falsifie this formula unless &, verifies
O(o — ) and Oa and falsifies [Of. This is impossible if %, is
X-acceptable. Indeed if #,; is X-acceptable and verifies O (a — B)
and Oo, then by 2.7 in &, every X-acceptable row %; which is
X-controled by #; verifies « = and «. But then by 1.6 every
such row #;: must verifie § and so by 2.7 #; verifies Op.
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8.3. Theorem-schema. NE preserves X-tautologyhood.
Proof-schema. Let &, be a table for Oa. If a is an X-tautology
then all X-acceptable rows of &, verifie a. So for every X-ac-
ceptable row %; of &, all X-acceptable rows of &, which are
X-controled by £, verifie a. So by 2.7 every X-acceptable row
R, of &, verifies Oa.

8.4. Theorem-schema. The formulas which are axioms by
AR are X-tautologies.
Proof-schema. Let &, be a table for OJa. A row #; of &, will
not falsifie Oo —> a unless %, verifies Oa and falsifies a. This
is impossible if &; is X-acceptable. Indeed if %; is X-acceptable
it is 0-X-acceptable and then by definition 2.2 if %#; verifies
Oa, &, verifies a.

8.5. Theorem. The formulas which are axioms by AS are B-
tautologies and S5-tautologies.
Proof for B. Let &, be a table for O~ Oa. A row %, of &, will
not falsifie ~a — O ~ Oa unless &, falsifies o and O ~ Oc. This
is impossible if #; is B-acceptable. Indeed if %; is B-acceptable
and falsifies O ~ Oa, then by 2.7 there is a row Zy in &, such
that #; is B-acceptable, #; B-controls #; and #; falsifies ~ Oa
and so verifies Oo. By definition 2.1 % C0 %, and so %; must
verifie a.
For S5 the theorem follows by 5.5.

8.6. Theorem. The formulas which are axioms by AT are
S4-tautologies and S5-tautologies.
Proof for S4. Let &, be a table for OOua. A row %; of &, will
not falsifie Ooa— O0Oa unless %#,; verifies Oa and falsifies
OOa. This is impossible if %; is S4-acceptable. Indeed if #;
is S4-acceptable and falsifies (0 Oa, then by 2.7 there is a row
Z; in &, such that #; is S4-acceptable, #; S4-controls #; and &;
falsifies Oa. By definition 2.1 #; C1 #; and so #; cannot verifie
Oa.
For S5 the theorem follows by 5.5.
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8.7. Theorem-schema. All X-theorems are X-tautologies.
Proof. For M: by 8.0 — 8.4. For B: by 8.0 — 8.5. For S4: by
8.0 — 8.4 and 8.6. For S5: by 8.0 — 8.6. By saying that the
deductive systems M, B, S4 and S5 are consistent we mean
that theorem 8.7 holds.

8.8. Theorem-schema. If #; is an X-acceptable row of a table
@, and if o is the rf of #,, then ~a is not an X-theorem.
Proof-schema. By 6.6 we see that £, falsifies ~a. So ~a is
falsified by an X-acceptable row in &, and is not an X-tauto-
logy. By 8.7 ~a is not an X-theorem.

9. Completeness

9.0. Theorem. Let #; be a row of a table @, and let ¢ be the
rf of #;. Then we have that, if %, is not S5-acceptable, ~v is an
S5-theorem.

Proof by induction on definition 2.2.

a) If #; is not 0-S5-acceptable, then there is a constituent
Oa in @, such that &; verifies O« and falsifies a. By 6.6, 6.7 and
6.9 ¢y —» Oo and ¢y — ~a are P-theorems and so S5-theorems.
So we have in S5:

)y — (OuA ~ao).
(2) - ~ (OaA ~a) . (AR)(P).
BV = ~y. (1)(2)(P).

b) If #; is not n + 1-S5-acceptable and if condition (1) for
n + 1-S5-acceptability does not hold, then #; is not n-S5-ac-
ceptable. In this case we have by the hypothesis of the induc-
tion:

(1) = ~y.

c) If &, is not n + 1-S5-acceptable although condition (1) for
n + 1-S5-acceptability holds, then condition (2) for n + 1-S5-
acceptability does not hold. So there is in &, a constituent
Oa such that #, falsifies Oa and there is no row #; in &, such
that #; is n-S5-acceptable, #; S5-controls #; and #; falsifies a.
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So we have:

1) =y — ~0Oa.

If there are in &, no rows at all which falsifie @, then a is a
P-tautology and so a P-theorem and an S5-theorem. So we have:
(2)~a.

(3)=0a . (2)(NE).

(4= ~y. (1)(3)(P).

d) Let us suppose we have the same case as in c) except

that some rows of &, falsifie a. Let %, ..., %, be the rfs of all
the r distinct rows of &, which falsifie a. Then we have:
M +~y— ~0Oa.

2) - ~a—> (mV...Vz,).

If none of the rows of &, which falsifie a are n-S5-acceptable,
then by the hypothesis of the induction we have:

B ~%1 s i b ~ny.

A -~ V...Vx). (3)(P).

(O) +a. (2)(4)(P).

(6) - Oa. (5)(NE).

()= ~y. (1)(6)(P).

e) Let us suppose we have the same case as in d) except
that some rows of &, which falsifie a are n-S5-acceptable. Then
these rows are not S5-controled by #;. S5-control of a row
Z; by #; implies the following four conditions: (1) %; C0 %;,
(2) #; CO R, (3) #:C1 #; and (4) #; C1 #..

Let %y, ..., %, be the rfs of all the r distinct rows of &, which
falsifie « and which are not n-S5-acceptable.

Let vy, ..., vs be the rfs of all the s distinct rows of &, which
falsifie o, which are n-S5-acceptable and for which condition (1)
for S5-control by %; falls.

Let py, ..., uy be the rfs of all the t distinct rows of &, which
falsifie a, which are n-S5-acceptable and for which condition (2)
for S5-control by %; falls.

Let 94, ..., ou be the rfs of all the u distinct rows of &, which
falsifie a, which are n-S5-acceptable and for which condition (3)
for S5-control by &, fails.

Let gy, ..., ¢, be the rfs of all the v distinct rows of &, which
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falsifie a, which are n-S5-acceptable and for which condition (4)
for S5-control by £, fails. Then we have:

(1) =y — ~Oa.

2 ~a= V..V, ViuV..ViuVer V.. Vou. Vo V.. Vg, Vg

Vo Vi)

By the hypothesis of the induction and P we have:
B~ V...Vx,).
@+ ~a—=>mV..Vy:VuV..ViuVe V.. Vo, Ve V...V, .

(2)(3)(P).

(We can have r=0 and then we have immediately (4). We can
have s=0, or t=0, or u=0, or v=0, but by the hypothesis of
the case s+t+u+v > 0).

For all m such that 1<m<s, if &, is the row of &, which is
represented by vy, we have that there is a constituent OB, in
@, such that &, verifies OB, and £, falsifies ,. So we have:
G Fy—=> 085 ... ; —y— OB
O)Fyi=> ~Bri- i FYs—> ~Be

For all m such that 1<m<t, if &, is the row of &, which is
represented by p,, we have that there is a constituent 0T, in
@, such that #,, verifies O, and £, falsifies {,. So we have:
A= ~C i i FY—> ~L
B)w = 0O ;... ; —p— OC,.

O=y—0~0C;...; ~p— O~ 0O . (A(AS).

For all m such that 1Sm<u, if #,, is the row of &, which is
representer by g, we have that there is a constituent O%, in
@, such that &, verifies O04%,, and £, falsifies (09,,. So we have:
(10)-yp— 0% ;... ; —y— O,

(1) o= ~0O8 .. 5 Fou—> ~ Oby.

(12)-y—00% ; ...; my=— 003, . (10)(AT).

For all m such that 1 Sm<v, if &, is the row of &, which is
represented by ¢, we have that there is a constituent O, in
@, such %, verifies O\, and %, falsifies ), So we have:
(13) =y — ~0Oy ;e s =Y — ~ A,

14— 0% ;. Foy— Oy

(18)Fy—=>0O~0Ok ;... ; —p—= O~ 04 . (13)(AST).

By (4), (6), (8), (11), (14) and P we have:

(16)]— ~Q—> {~{31V...V~ BEV DT;1VVDQV ~ EH}IVV ~0O
4. VIOLV...VOL).
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AP = BN ABA ~OGA LA ~OGAOXA L AOWA ~OM

A A ~0Ok)—>a. (16)(P).

(18) = OB ... NBNA ~DOGA...NA~OGAOWA.AOWA~O

MA...A~0OL) — Oa. (17)(NE)(AD)(MP).

(19) ~ (OBA...AOBADO~OuA..ANO~DOAOO0HA...AO
O AO~OMA..AO~0Or)— Oa. (18)(7.5)(P).

By (), (9), (12), (15) and P we have:

(20) =y — & where d is the antecedent of (19).

(21) =y — Oa. (20)(19)(P).

(22) -~y . (1)(21)(P).

9.1 Theorem. Let #; be a row of a table @, and let ¢ be the 1f
of #;. Then we have that, if %, is not S4-acceptable, ~ is an
S4-theorem.

Proof by replacing in the proof of 9.0 the prefix "S5 by the
prefix “S4" and by introducing the following simplifications
in case e).
S4-control of a row %; by #; implies the following two condi-
tions: (1)%; C0 #; and (2) #; C1 #;. Considerations about py, ...,
W @1y -oor @y Ty, ..., OT, and Oy, ..., O, are dropped and the
schemata (2), (4) and (16} — (19) are shortened in accordance.
(7) — (9) are dropped and so no use is made of AS.
(13) — (15) are dropped and so no use is made of AST.

9.2. Theorem. Let %, be a row of a table &, and let ¢ be the
rf of #;. Then we have that, if %; is not B-acceptable, ~y is a
B-theorem.

Proof by replacing in the proof of 9.0 the prefix “S5" by the
prefix "B" and by introducing the following simplifications in
case e).
B-control of a row #; by #; implies the following two condi-
tions: (1) #;CO%; and (2) £; CO ;. Considerations about g,
cenr O Pty +ony @y OBy, ..., O8, and O4y, ..., OA, are dropped and
the schemata (2), (4), and (16) — (19) are shortened in accord-
ance,

(10) — (12) are dropped and so no use is made of AT.

(13) — (15) are dropped and so no use is made of AST.
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9.3. Theorem. Let &; be a row of a table &, and let vy be the
rf of #;. Then we have that, if %; is not M-acceptable, ~1 is an
M-theorem.

Proof by replacing in the proof of 9.0 the prefix “"S5" by the
prefix “M" and by introducing the following simplifications
in case e).

M-control of a row #; by #; implies the following unique
condition: #; C0%;. Considerations about i, ..., iy Q1 ---s Ou
Q1 o @y, O, ...0OC, Oy, ..., O9, and ON, ..., A, are dropped
and the schemata (2), (4) and (16) — (19) are shortened in ac-
cordance.

(7) — (9) are dropped and so no use is made of AS.

(10) — (12) are dropped and so no use is made of AT.

(13) — (15) are dropped and so no use is made of AST.

9.4, Theorem-schema. If a is an X-tautology then o is an X-
theorem.
Proof-schema. Let @, be a table for «. If there is no row in &,
which falsifies a, then o is a P-tautology and so a P-theorem
and an X-theorem. If some rows of &, falsifie o then these
rows are not X-acceptable. Let vy, ...,y be the rfs of the r
distinct rows of @, which falsifie a. Then we have:
D ~a= @ V...Vy,) . (6.7).
2~ V...Vy,). (by 9.0, 9.1, 9.2 or 9.3 and by P).
@) +a. (1)(2)(P).

By saying that the deductive systems M, B, S4 and S5 are
complete we mean that theorem 9.4 holds.

10. Models

10.0. Definition. Let us denote by “#" the language of modal
propositional logic with negation, material implication and
necessity as primitives.

A model # for &£ is a set of three elements namely (1) a
not empty set, the elements of which are called “worlds”, (2)
a dyadic relation R defined on the worlds of .# and (3) a dyadic
function ¥", which takes the variables of &% as first arguments
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and the worlds of # as second arguments and which takes as
values the letters "T" and "F".

We refer to models and to worlds by means of the letters
“.#" and “#"" respectively, eventually followed by suitable
indexes.

10.1. Definition, Let o be a formula of %, let ., be a model
containing the relation R and the function ¥7, and let #7; be a
world of #,. We define by induction on the construction of
o under what conditions "', %", verifie oM W', falsifie” o"'].
If o is a variable, #,#"; verifie o iff ¥ applied to « and #;
takes “T" as value, and #,%#"; falsifie o iff ¥ applied to o
and #'; takes "F'"' as value.

If a is of the form ~f, .#,#"; verifie a iff .#,#"; falsifie B, and
MW falsifie o iff A W7 verifie .

If o is of the form B — vy, #, % verifie o iff 4, %" falsifie § or
verifie vy, and 4, %", falsifie u iff 4 #"; verifie B and falsifie y.
If o is of the form OB, 4, #"; verifie a iff for every world #7; of
M, such that #;R#¥’; we have that #,%"; verifie §, and
MW falsifie a iff for some world #7; of 4, such that #;R
#"; we have that .#,%; falsifie .

10.2. Definition. Let o be a formula of %, and let .#;, be a
model. Then we say that o is .#,-valid iff for every world
W, of #, we have that # #; verifie a.

10.3. Definitions. A model is an M-model iff its relation R
is reflexive. A model is a B-mode! iff its relation R is reflexive
and symmetrical. A model is an S4-model iff its relation R is
reflexive and transitive. A model is an S5-model iff its relation
R is reflexive, symmetrical and transitive.

10.4 Definition-schema. The formula o is X-valid iff for every
X-model #, the formula a is 4 ,-valid.
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11. Truth-tables and models.

11.0. Definition-schema. An X-image of a truth-table &, is
a set of three elements namely (1) a set, the elements of which
are called "“worlds"”, (2) a two-place relation R defined on the
worlds in question and (3) a two-argument function ¥, which
takes the variables of % as first argument and the worlds in
question as second argument and which takes as values the
letters “T'" and "F’’, the set of worlds, the relation R and the
function ¥” in question being such that there is a one-onerela-
tion I between the X-acceptable rows of &, and the worlds in
question such that (1) if among the worlds in question #7 and
#"; correspond by I respectively to the rows #; and %, of &,
then #", R¥"; iff #; X-controls #; and (2) if among the worlds
in question #7; corresponds by I to the row &; of &,, then for
every variable a in &, we have that ¥ applied to « and #7; takes
"T" ("F")as value iff &; verifies [falsifies] a.

11.1. Theorem-schema. For every table &, the X-images of
@, are X-models.
Proof-schema. By 2.8 we see that the X-images of &, are
models, because the set of X-acceptable rows of &, is not
empty, and so the set of worlds in the X-images of &, will not
be empty. By 3.0, 3.1 and 3.2 we see that in every X-image of
&, the relation R will be reflexive,and will be symmetrical
and/or transitive as needed to be a B-model, an S4-model or
an S5-model.

11.2. Theorem-schema. Let #, be an X-image of @, let #;
be the world of .#, which corresponds by the one-one-relation
I to the row %, of @,, and let a be a formula such that @, is a
table for a. Then we have that 4, %" verifie (falsifie) a iff %;
verifies (falsifies) a.

Proof-schema. The proofs are by induction on the construction
of a. If o is a variable, then the theorem holds by definitions
10.1 and 11.0. If o is of the form ~f, we have that by the
hypothesis of the induction that .#,%#"; verifie (falsifie) p iff
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R, verifies (falsifies) f and from this the theorem follows for
this case by definitions 1.6 and 10.1. If o is of the form f—>y, we
have by the hypothesis of the induction that .#,%7 verifie
(falsifie) p iff %&; verifies (falsifies) f and that 4., #"; verifie
(falsifie) v iff #; verifies (falsifies) y. From this the theorem
follows for this case by definitions 1.6 and 10.1, If « is of the
form OB and if #; verifies OB, then by 2.7 we have that
every X-acceptable row in &, which is X-controled by %;
verifies B. By the definition of “X-image" we have that for every
world #7; in 4, such that #7; R #7; there is in &, an X-accept-
able row #; which corresponds by the one-one-relation I to
#’;, which is X-controled by £;, and so which verifies §. By the
hypothesis of the induction we have that for every such
world #7;, # W verifie . By the definition 10.1 we have that
MW verifie OB, If « is of the form OP and if &, falsifies OB,
then by 2.7 we have that there is an X-acceptable row &; in &,
which is X-controled by #; and which falsifies f. By the defini-
tion of "X-image” we have that in ., there is a world #7; such
that 7 R#"; and #); corresponds by the one-one-relation I to
Z;. By the hypothesis of the induction we have that 4, %#7; fal-
sifie B. By definition 10.1 we have that .#, %" falsifie CIp.

11.3. Theorem-schema. If a formula « is X-valid then o is
an X-tautology.
Proof-schema. If o is not an X-tautology then, if &, is a table for
o, there is in &, an X-acceptable row #%; which falsifies a. Let
A, be an X-image of &, and let #7; be the world in 4, which
by the one-one-relation I corresponds to #;. Then by 11.2 we
have that 4, %", falsifie a. So there is an X-model 4, such
that o is not ., valid. So a is not X-valid. The theorem then
follows by contraposition.

11.4 Definition. Given a table @,, a model .}, and a world
W' of M, we say that the representing row of #'; in @, is the
row #; of @, such that for every constituent « in %‘a, R, venhes
{faISIfles] o iff M W; verifie (falsifie) o

11.5. Theorem. Let #; be the representing row in the table
@, of the world #7; in the model .#,,. Let « be a formula such
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that @, is a table for a. Then we have that #,; verifies (falsifies)
a iff M W'; verifie (falsifie) a.
Proof. By an induction on the construction of o like in 1.6.

11.6. Theorems. Given the table &, and the model 4, let

R; and #; be respectively the representing rows in &, of the
worlds #7; and #°;» of .#,. Then we have that (1) if #7 R
#'; then #; CO #; and (2) if #; R #"; and if R is transitive then
R, C1 Ry,
Proof for (1). For every constituent Oua in &, we have that if
R; verifies Oa then by 11.4 A4\ ¥%"; verifie Oa. By 10.1 # %
verifie a and by 11.5 it follows that #; verifies a. So %; C0 ;.
Proof for (2). For every constituent Ou in &, we have that if
R; verifies Do then by 11.4 4, #"; verifie Oa. By the transitivi-
ty of R, for every world #7;» in 4}, such that # yR¥";» we have
that #7; R #;» and by 10.1, for every such world #7;» we have
that #,# ;- verifie a, and so that .#,%#"; verifie Oa. By 11.4 it
follows that #; verifies Oa and so %; C1 &;.

11.7. Theorem-schema. Given the table @, and the model
M, let Z; and #; be respectively the representing rows in &,
of the worlds #7; and %' of .#). Then we have that if . is
an X-model and if #°; R #"; then #; X-controls ;..

Proof for M. By 11.6 for any model and so for all M-models, if
#'; R W, then #; CO0 #; and so #; M-controls %;..

Proof for B. By the symmetry of R if #°;R %" then #; R#;.
It follows by 11.6 that if #7; R #7; then #; CO % and %; CO &;,
and so #,; B-controls Z;.

Proof for S4. If R is transitive then, by 11.6 we have that if
#;R#; then #,C0 & and #,Cl #; and so #; S4-controls #;.
Proof for S5. By the symmetry and the transitivity of R we have
by 11.6 that if #;R%; then #£;,CO%y and %;CO%; and
R, C1 &, and #;, C1 &;, and so &%, S5-controls %;.

11.8. Theorem-schema. Given the table @, and the model
M, let &; be the representing row in &, of the world #7; in
#\. Then we have that if 4, is an X-model then %, is X-accept-
able.
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Proof-schema by an induction on definition 2.2, In X-models
R is reflexive and so #7; R #7;. By 11.6 we have %; C0 #; which
amounts to the same as saying that #; is 0-X-acceptable. By
the hypothesis of the induction #; is n-X-acceptable and so
condition (1) for n + 1-X-acceptability holds for #;. For every
constituent Do in @, which is falsified by #; we have by defini-
tion 11.4 that .#,#"; falsifie Oa. By definition 10.1 there is in
M), a world #7y such that #°; R %" and # %" falsifie a. Let
Z; be the representing row in @, of #7y. By 11.5 #; falsifies
a, by the hypothesis of the induction #;' is n-X-acceptable and
by 11.7 #; X-controls #;. So condition (2) for n -+ 1-X-accept-
ability holds for #;.

11.9. Theorem-schema. If a formula a is an X-tautology then
o is X-valid.
Proof-schema. If a is not X-valid then there is a model .#,
and a world ¥ in .}, such that 4, % falsifie a. Let &, be a
table for a and let #; be the representing row in &, of the
world #7; in #,. By 11.5 %, falsifies « and by 11.8 £, is X-ac-
ceptable. So « is not a &,-X-tautology and so not an X-tauto-
logy. The theorem then follows by contraposition.

12. Not reflexive systems.

12.0. In [7] considerations can be found about systems which
can be called “not reflexive' because about the models for
these systems it is not stipulated that the relation R should
be reflexive. We shall call these systems "“M?®'", "Bo", 'S4°",
85, "M, "B, 54" " and " S5' . It will however appear
that S5' is identical with S5. The whole preceding theory is
easily adapted to these eight systems once the following basic
adaptations are made.

12.1. Definitions. All models as defined in 10.0 are Me°-mo
dels. Models where the relation R is symmetrical are B°-mo-
dels. Models where the relation R is transitive are S4°-models.
Models where the relation R is symmetrical and transitive
are S5°-models.
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12.2. Definitions. The deductive systems M?°, B° S4° and
S5° contain the following axiom-schemata and deduction-rules
respectively.

Me, The same as P plus AD and NE.
Be. The same as M° plus AS.

S4°, The same as M° plus AT.

S5°. The same as M° plus AS and AT.

Remark. In S5° we have + ~Ooa—> O~ Oa because no use
is made of AR in theorem 7.6. But as in theorems 7.7 and 7.8
use is made of AR, S5° cannot be defined as containing the
same postulates as M° plus AST.

12.3. Definitions. M¢®-control, B°-conirol, S4°-control and
S5°-control are identical with M-control, B-control, S4-control
and S5-control respectively.

12.4. Definition-schema, in which the prefix "“X°' can be
replaced by "M°", "B°", "'S4°" or "'S5°",

In every table &, all rows are 0-X°-acceptable. A row %; in
@, is n + 1-X°-acceptable iff (1) &, is n-X°-acceptable and (2)
for every constituent Oa in @, we have that if #,; falsifies Oa
there is in @, an n-X°-acceptable row £, such that %#; X°-con-
trols #; and %, falsifies a.

Remark. As we do not stipulate any more that for every
0-X°-acceptable row #; we must have %;C0 %, we can not
say anymore that, between X°-acceptable rows, Cl implies
C0. So no use can be made here of the simplified definition of
S4-control and S5-control considered in 2.9.

12.5. Definition. A model 4, is an M'-model iff for every
world #7; in #, there is a world #7; in .#, such that # R
W';. M'-models where the relation R is symmetrical are B'-mo-
dels. M'-models where the relation R is transitive are S4'-mo-
dels. M'-models where the relation R is symmetrical and transi-
tive are S5'-models.

Remark. It is easily seen that in S5'-models R is reflexive and
so S5'-models are S5-models. As in S5-models R is reflexive,
S5-models are obviously S5'-models.
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12.6. Definitions. We give ourselves the following axiom-
schema:
AC. 0 ~a— ~ O,
(the letter "C" is suggested by the word “control”). The deduc-
tive systems M', B’, S4' and S5 contain the following axiom-
schemata and deduction rules respectively.
M'. The same as P plus AD, AC and NE.
B'. The same as M’ plus AS.
S4'. The same as M' plus AT.
S5'. The same as M’ plus AS and AT.

Remarks. a) For the same reason as in 12.2, S5 cannot be
defined as containing the same postulates as M' plus AST.
b) In S5 we have ~ O ~a—> ~ Oa.

In 85 we have ~ Oa — a as follows.
(1) ~ae—0O~0Oa. (AS).
2)-0~0Oa—> ~0O0a. (AC).

B ~a— ~0O0a. (1)(2)(P).
(4)-000—a. (3)(P).

(5)0Oac— O0a. (AT).

(6)Oa— a. (5)(4)(P).

So S5 and S5’ yield the same theorems.

12.7. Definitions. M'-control, B'-control, S4'-control and S5'-
control are identical with M-control, B-control, S4-control and
S5-control respectively.

12.8. Definition-schema, in which the prefix " X' "' can be re-
placedby “"M'","B'", " S4" " or " S5 ",

In every table @, all rows are 0-X'-acceptable.

A row &, in &, is n + 1-X'-acceptable iff (1) &, is n-X'-ac-
ceptable, (2) for every constituent Dua is &, we have that if &,
falsifies Ou there is in &, an n-X'-acceptable row %; such that
#; X'-controls #; and #; falsifies « and (3) in any case there
is in @, an n-X'-acceptable row #; such that #; X'-controls
Qj. -

Remarks. a) for the same reason as in 12.4 S4'-control an
S5'-control cannot receive the simplified definition considered
in 2.9.
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b) By an induction on definition 2.2 one can prove that in every
table &, all S5'-acceptable rows are S5-acceptable. By an in-
duction on definition 12.8 one can prove that in every table

v,

all S5-acceptable rows are S5'-acceptable.

12.9. Final remark. The technique proposed in this paper can

be called the technique of "clean truth-tables".

{1
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