GRADES OF MODALITY

L. F. GoBLE

1. Despite its title, this paper does not deal with what Quine
discussed in his "Three Grades of Modal Involvement' [3]. It
may, however, apply somewhat to the sort of ‘gradualism’ with
regard to modal matters which Goodman suggested ([2], p. 7)
and which Quine further recommended ([5], p. 67). I shall de-
velop here a notion of modality according to which proposi-
tions can be distinguished by degrees or grades of necessity
or possibility. Thus it will be possible to say of two necessarily
true propositions that one is more necessary than the other, or
to say, simply, that one proposition is more or less necessary.

At this time I shall only be concerned with the formal be-
havior of these modalities; I shall not now discuss possible
applications of these notions of necessity. Accordingly, after
specifying the grammar I expect these modalities to follow, I
will examine them from both syntactical and semantical points
of view, The calculuses proposed will be shown to be consist-
ent and complete with respect to their suggested semantics. I
will only be concerned here with the degrees of modality in
propositional logic; I expect no new problems to arise when
the systems are extended to include quantifiers that do not
arise with any quantified modal logic.

2. Since we are investigating propositional logics, it will be
presumed that they are cast in a language that meets the usual
conditions for such systems; that it contains atomic formulas,
P: q, I... etc., and the truth-functional connectives, conjunction
(&) and negation (—7), obeying the usual grammatical rules.
(Other truth-functional connectives, e.g. disjunction (v) and
material implication () are to be defined in terms of conjunc-
tion and negation in the familiar ways.) In addition, it is sup-
posed that the language contains monadic modal operators,
Ny, Ng, ..., Nj, ..., such that for each of these operators, N;, N;A
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is a well formed formula if and only if A is. These operators
represent the different degrees of necessity; a formula, NjA,
should be read as saying that A is necessary to, at least, the
degree i. This should be interpreted in such a way that the
higher the degree, the stricter the necessity. Thus, for example,
the necessity of A is stronger when N;A is true than when
just NyA is true. Given these modal operators N; for necessity,
one can define possibility operalors M; as usual, so that M;A
is equivalent to —N;—~A.

Within this basic framework one can construct various lan-
guages, each containing a diferent number of modal operators
N;. The standard modal logics, of course, contain just one such
operator. It might be, however, that one would prefer to dis-
tinguish two grades of necessity, say, logical necessity and
physical necessity (assuming that if a proposition is logically
necessary then it must also be physically necessary), with the
former being the stricter of the two. Possibly one would want
to introduce a third and weaker sort of ‘practical’ necessity,
for when one says, ordinarily, of an event that it must occur.
For other purposes, it might be appropriate to have still a
greater number of distinct degrees of necessity. It is, of course,
possible to have a language with denumerably many modal
operators; indeed, the systems I describe below will be formul-
ated in a way to allow for this case.

A language of the kind just described will be called %,
where k is the number of operators for (different degrees of)
necessity in the language.

3. Given a language %) with its operators N; (1<i<k) to be
interpreted as degrees of modality in as ascending order of
strictness, it is fairly clear what axioms and principles of in-
ference should govern these concepts. Accordingly, we define
a calculus in %y by the following axiom schemata and rules:

A.0 a set of axioms which with modus ponens generates

the classical propositional calculus.

A1 NJADNA, for every i and j such that 1<j<i<k.

A2 Nj(ADB)> .N;ADN;B, for every i, 1 <i<k.

A3 N;ADA, for every i, 1 i<k,
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R.1 modus ponens: from A and ADB, to infer B.

R.2 necessitation: if ~ A, then - N;A, for every i, 1<i<k.
A.1 is introduced to express the ranking of the modalities ac-
cording to degree, the higher the degree, the stricter the neces-
sity. The other postulates and rules are all familiar from the
standard modal logics. !

Obviously, each individual modality, N;, in this system will
by itself behave like the necessity defined by the system T or
M of Goédel-Feys-von Wright. Hence, I will call this system
Ty, k being the number of modal operators in the language &.

Additional postulates may be added to define systems cor-
responding to S.4 and S.5. Thus, S.4; is the result of adding the
axiom schemata:

A4 NJADNNA, for every i, 1 i<k,
to Ty and S.5; is the result of adding:

A5 —-N;ADN;—NA, for every i, 1 <i<Kk,
to Ty. Other systems, corresponding to other standard modal
logics, may be defined in corresponding ways, but I shall not
be concerned with them here,

It might be suggested that a stronger axiom than A.2 should
be postulated for these systems. One might propose in its
place:

A.2" Nj(A>B)>.N;A>N,, where m = min (i, j).

This corresponds to the widely accepted principle that the
conclusion of an inference (B) is at least as sure (necessary) as
the weakest of its premisses (A and A>B). A.2 would then
follow as a special case of A.2" wheni = j.

A2 is, however, already derivable in Ty, given A.2 and
A.1. Thus, suppose that j<i, so that A.2" appears as N;(A>B)
D.N;JASDN;B. By A.1 ~N;(ADB)> .N;(A>B) and by A.2 N;
(ADB)> . N;ADN;B; hence N;(A>B)> . N;A>N;B is derivable

(*) It is worth noting that the rule R.2 could be eliminated in favor .of
a principle to the effect that if a formula, A, is an axiom, then so is N;A
an axiom for every i, 1<i<k. In proofs of later theorems it will often be
convenient to thing of the systems formulated in this way, with modus
ponens as the sole rule of inference.
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by transitivity. Similarly, if i<j, so that A.2' is N;(ADB)> . N;A
DON;B; N;ADN;A holds by A.d; N;(ADB)D .N;ADN;B (A.2)
is equivalent to NJAD . N;j(ADB)D . NiB; so ~N;AD . N;(A>B)
D . N;B, which is equivalent to the desired A.2'.

But, by the same token, if A.2' be postulated as an axiom,
not only is A.2 derivable as a special case, but A.1 is redundant,
given R.2. Thus suppose that i=j; Nj(ADA)D .N;ADNA is
then an instance of A.2'. Since mADA, ~N;(ADA) by R.2.
Hence, N;ADN;A is provable whenever i2j. Thus, the systems
obtained from Ty (S.4y, S.5;) by replacing A.1 and A.2 by A.2'
is equivalent to Ty (S.4y, S.5;).

4. In another paper [1], I showed how one could construct
a general semantical theory for the standard modal logics in
the manner of Kripke's semantics, but in such a way that it
was not necessary to assume among the primitives of the
semantics a relation, R, of relative possibility between possible
worlds. Those methods will now be extended to provide an
interpretation for the different modalities N; in a language
-gk-

In [1] I suggested that we conceive a possible world, wy, as
defined by the ordered pair <P,, B,>, where B,, is a complete
and consistent set of formulas (intuitively, the atomic formulas
in B, may be thought to be all the sentences asserting atomic
truths of w,) and P, is a consistent, but not necessarily com-
plete, set of formulas included in B,. P,, was called the set of
‘fundamental postulates’ governing wy,; any atomic formula
in P, was necessary in w,, i.e., if p€P,, then Np is true in w,,.

Since we now wish to distinguish grades of necessity, we
must distinguish grades amongst the fundamental postulates.
Thus, for a world, w,,, we should have different sets of formulas,
P, P2, ..., Pi, ... etc, so that a formula in P?,, for example,
is ‘fundamental to, at least, the degree 2'. We should then de-
fine evaluation rules for formulas in such a way that if an
atomic formula, p, belongs to Pi,, then it is necessary to, at
least, the degree i (i.e., Njp is true in wy).

Let us put this more precisely. A normal world, w,, is an
ordered set, m,, of sets of formulas in &, P%, Pi,, ..., Pi, ...
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(1<i<k), satisfying these conditions: (i) that as there are k
many distinct modal operators N; in %, there are at least k
many sets Pi, (j > 0) in x,, besides P?,; (ii) that each set Pi in
m, is a consistent set of formulas (i.e. there is no formula in
&y such that both it and its denial belong to Pi,); (iii) more-
over, that P’ is a complete set (i.e. for every formula in %}
either it or its denial belongs to P%,); P%, thus plays the role
played by B, in the account of [1]; and (iv) that for each P!
and Pi, in m, if i2j, then P!,CPl, (thus all the Pi, must be
included in P%,).

Given this notion of a ‘possible world’ it is now possible to
define models by which formulas can be evaluated. As in [1]
let a model, u, be a pair <wp, W>, where W is a set of worlds
as defined above and woeW. For each model, p = <<woy, W=,
let the evaluation function, ¢, which maps pairs of formulas,
A, and possible worlds, wy, to truth wvalues, be defined as
follows:

(@ If A is an atomic formula, q. (A, wy,) = T if and only if
Aepo,.

Suppose than ¢, is defined for formulas B and C and all
worlds w,, in W.

(b) u(B&C,wy,) =T if and only if ¢u.B,w,) =T and q
(C wy) =T.

(c)gu(~B, w,,) = T if and only if ¢.(B, w,) =+ T.

To determine truth values for necessitative formulas, N;B, we
define relations between the possible worlds in W, different
relations being used in the evaluation of different modalities.
Following the pattern of [1], let us define relations RY; as
follows:

wy RYy w, if and only if PL, CP°, (1<i<Kk).

We can then give a comprehensive definition of g, for all
formulas of the sort N;B: '

(d) @u(N;B, wn) =T if and only if ¢.(B, w,) = for every w,
in W such that w,, Ry wy,
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The clause (d) above defines a T-ish necessity, as will be
shown; notice that all the relations Ri; are reflexive, but not
necessarily transitive or symmetric. If an S.4 necessity is to be
obtained, relations R! which are transitive as well as reflexive
must be defined. For an S.5 necessity relations which are sym-
metric, transitive and reflexive are required. These conditions
are met by R%; and Ri; respectively:

wp, Riy wy, if and only if Pi,,C P!, for every j such that i<j<k.

Wn, Ry w, if and only if Pi, = Pi, for every j such that

i<j<k.
(Notice that the Ri; are included in the R%; which are included
in the R\) For the S.4 and S.5 kinds of necessity, (d) above
should be modified by replacing ‘Ri;" in its statement by ‘Riy
and ‘R’ respectively. In what follows I shall treat these three
cases as one, letting '¢' and correlatively 'N;’ be ambiguous,
except as otherwise mentioned. The definitions of 'Riy’ and
‘Riy’ may seem unduly complex. However, it is necessary
to introduce talk of the sets Pi,, and Pi, for every j=i, in order
to insure the validity of A.1 as well as A.4 and A.5. Notice that
the analogous condition for Rij, that w, Ry w, iff Pi CP°’, for
every j=1i, is already met since Pi,, ©P;, when j=i.

¢u(A, Wy) = T may be read as 'A is true in w,, on p'. We say
go on to say that A is true on p(=<<w,, W>) iff q.(A, wy) = T,
since wo is supposed to be the actual world (for p). Finally let us
say that A is valid if and only if A is true on every model p.
These formulations are ambiguous, depending on which rela-
tions R! are used in clause (d) of the definition of ¢. To be
accurate, we should speak of a formula's being Ty-valid, S.4;-
valid, or S.5.-valid according as these relations are Ri;, R; or
Rly respectively (and the models are defined for #;.)

5. We are now in a position to establish consistency and
completeness theorems for the calculuses defined in section 3
relative to the semantics just given.

Theorem 1. If A is provable in Ty (S.4y S.5;), then A is
Tk (S.4k. S.5k]-V&1id.
I leave the proof of this to the reader; it is easily shown that
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all the axioms are valid and that the rules preserve this proper-
ty.

Theorem 2. If A is Ty (S.4;, S.5;)-valid, then A is provable in
Ty (S.4y, S.54).

This may be established along the lines given in [1] utilizing
a Henkin-type argument. We observe first that some quite
general results hold for these systems:

Lemma 1. If X is any system containing the classical propo-
sitional calculus, and if —A is not provable in X, then the
system X' obtained from X by the addition of A as an axiom is
consistent (i.e there is no formula B such that both B and —B
are provable in X").

Lemma 2, If X is any consistent system containing Ty (S.4y,
S.5;), and if A is not provable in X, then there is a complete and
consistent extension of X in which A is not provable.

We can now show that any non-theorem of these systems is
falsifiable, which gives us Theorem 2.

Let K be any consistent extension of Ty (S.4y, S.5;) in which
both R.1 and R.2 are admissible, and let L, M, N, ... etc. be
complete and consistent extensions of K (lemma 2). For any
such system M, let the world determined by M, wy = ny =
<P%;, Py, ..., Piy ...>>, where P% is the set of all formulas, B,
provable in M, and each Piy (i>0) is the set of all formulas, B,
such that ~ yIN;B. Clearly each set Piy (i=0) is consistent, since
M is consistent, and P% is complete, since M is complete. There
will be one set Ply for each operator, N;, in the system, and
moreover, if iZj, then PySPiy by virtue of A.1. Hence, each
each wy so defined qualifies as a possible world in the sense
of section 4. Let us speak of a model determined by K, ug, as a
pair <<wp, W>, where W is the set of all worlds determined by
complete and consistent extensions of K, and wy, is a world
determined by L, any complete and consistent extension of K.
Given pg defined this way, we have:
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Lemma 3. For all wyeW, gu (B, wy) = T, if and only if + yB.

Proof is by induction on B. (a) If B is an atomic formula, then
~uB iff BEP% iff qux (B, wy) = T. Suppose then for the induc-
tion that the lemma holds for formulas C and D. (b) If B = C&D,
'-MC & D iff —uC and —uD iff Puk [C, Wm) =T and Puk (D, WM)
= T (inductive hypothesis) iff g (C&D,wy) =T.(c) If B=
—C, then if —C is provable in M, then not yC (by the con-
sistency of M), so q«x(C, wy) #* T by the inductive hypothesis;
hence, gux (—C, wy) = T. But, if it is assumed that .k (—C,
wy) = T, then quk (C, wy) = T, so not yC. But if not —yC
then - y=—>C (by the completeness of M). (d) If B = N;C, CePiy.
Let N be any complete and consistent extension of K such that
wy Ri wy. wyeEW. Since PiyCP%, CeP% which is to say ~yxC;
so quk (C, wy) = T inductive hypothesis). Hence, qux (N;C, wy)
=,T.

Suppose that g (N;C, wy) =T, but that not ~yIN;C. Let N be
the system all of whose axioms are the formulas, A, such that
+uN;A. R.1 is admissible in N, so C is not provable in N. N is
a consistent extension of K, for if A, ~xN;A by the admissi-
bility of R.2 in K, so ~yN;A and +yA. N thus has a complete
and consistent extension, N* in which C is not provable (lemma
2). wyre€W. wy Riwy*, for if (i) R' is R} and K is from T,
then PiyCPY%* since if ~yN;A then ~y*A, or if (ii) R! is
Ri; and K is from S.4y, then for any j=i, PiyCPiy* since if
AePy then AsPiy+ as for (i), and also if A&Piy ie.
+x*N;jA, then not ~yx—=N;A, by the consistency of N*, so not
—uN;—7N;A, in which case not ~yN;—=N;A by A.l. If that be
so, then +yu—>N;—N;A by the completeness of M, and so
—ulN;=>N;A by A.5. Thus APy and therefore wy Rl wy*.
Now, given that gux (N;C, wy) = T, quk (C, wy) = T for every
world wy in W related by Ri to wy. In particular, qux (C, wy*)
= T, But by the inductive hypothesis, this implies that  yx*C,
contrary to the specification of N*. Consequently, we must
conclude that ~yN;C. This completes the proof of lemma 3.

Theorem 2 now follows immediately. For, if a formula, A,
is not provable in Ty (S.4y, S.5), there is a system L such that
L is a complete and consistent extension of Ty (S.4;, S.5;) and
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A is not provable in L (lemma 2). Let the model p be <wy, W>
where W is the set of all worlds determined by complete and
consistent extensions of Ty (S.4y, S.5;) and w; is the world
determined by the aforementioned L. By lemma 3, q, (A, wy)
=T iff ~1LA; so ¢u (A, w.) # T. The non-theorem A is thus
falsified by this p. Therefore, if A is Ty (S.4y, S.5;)-valid, it must
be provable in Ty (S.4;, S.5¢).

6. Thus far we have constructed equivalent syntactical and
semantical frameworks in which true propositions can be dis-
tinguished according to the degrees of their necessity. We
could say that A is more necessary than B if A's greatest degree
of necessity is greater than the greatest necessity of B. That
is to say, A is more necessary than B when N;A and N;B are
true and i > j and there is no m such that m=i and N,B is
true. Nevertheless, not all (true) propositions belong to the
spectrum of necessity. There remains a gulf between those pro-
positions which a necessary to some degree, and those true
but contingent propositions which are in no wise necessary.
It would be desirable to arrange all (true) propositions along
a single continuum of degrees of necessity.

Along these lines it would seen natural to introduce into the
language of these systems another operator, Ny, which should
satisfy the principle

A3 A = NoA.

This postulate would replace A.3 in Ty (S.4y, S.5), its being
understood that all the other postulates of the system would
now apply to Ny as well as the other operators for necessity.
Since NoA would be equivalent to A, we could then say that
any true proposition was necessary to, at least, the degree 0.
This is not to say very much, to be sure; it does not commit one
to saying that contingent propositions are necessary in any
orthodox sense, but it does allow one to locate them within the
spectrum of modality. ,

From the semantical point of view presented in section 4,
one would like to introduce a relation, R%, such that

wn R% w, if and only if P?, CPY,
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(similarly for R% and R%) and then evaluate formulas of the
form N,C in the same manner as other formulas NiC.

This will not do, however. The axiom A.3 is not valid by
this account. Those instances of A.3' in which A contains no
well formed parts of the form N;B for i > 0 are valid, but if an
N; (i>0) does occur in A, the axiom might be falsifiable. Thus
the formula N;p>NoN;p is falsified by a model p = <wy,
{wo, wy, Wy} =>, where P% =P = {p,qrs,..}; PYy={p}
P!, = {q}; and P% = {—p, q,...}. This describes enough to
show that q. (N;p, wo) = T since g (p, wo) = T and ¢, (p, wi) =
T and w, and w, are the only worlds related by R! to wy for
this p), but . (NyN;p, wy) *= T (since wy R w; but ¢ (N;p, wy)
#+ T as W; R! wy and g, (p, w2) #= T).

A.3 fails in cases like this because distinct worlds w,, and
w, agree in all formulas in their initial sets, P%, and PY, but
differ in some fundamental postulates, P, and Pi,, Ny as a
‘truth operator’ says, in effect, when evaluating formulas NyA
in wy,, look at A only in the world w,,. R? as given above does
not narrow one's vision enough; it allows one to shift one's
view to some other w,. Accordingly, let us instead stipulate
that

wy, R w, if and only if w,, = w,,.

A3 is valid on this account, as are all the other axioms for
Ny. The proof of semantic completeness is unaffected by this
addition to the semantics for Ty. Thus in the proof of lemma 3,
case (d) (2nd part) in which B might have the form NoC, we
observe that for the systems M, N, and N* described, if CEP!,
(i20), then —yN;C, so by A.3" - yNoN;C, in which case +~yN;C
and ~y*N,C and so CePiy+, Therefore, PiyCSPiy* for every
i20. Similarly, PiyCPiy; so wy =wy*, and wy R% wy*,

It is unfortunate that in the semantics for T, as enriched by
Ny and A.3' R, must be given special treatment, that it must
be defined significantly differently than the other relations
Ri;. Perhaps one would expect this, however, as one notices that
in Ty NJADNgNgA and —NyA DNe—NoA are both derivable.
And there's A.3' itself. R, must also be given special handling
in the semantics for S.4; (extended). Thus let us also say:

wn R% wy, if and only if w, = w,.
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For S.5;, however, because of the restrictions already on all
the relations RY;, one can define R% in the same way as these
other relations:

7. At the opening of this paper I suggested that the account
of modalities given here might have some application to the
modal ‘gradualism’ of Goodman, Quine and others. I should
now like to caution that suggestion somewhat. I believe some
progress has been made here in developing the idea of a spec-
trum of modal degrees; we can explicate how one proposition,
p, is more necessary than another, g, in terms of p's posses-
sing a higher degree of necessity than q. Moreover, one could
say simply that a proposition, p, is more or less necessary
according as the degree of necessity on p is more or less high.
Nevertheless, I doubt that the critics of modal logic would find
these notions much more congenial than they found the more
familiar ideas of (absolute) necessity and its correlative, ana-
lyticity. For arguments similar to those wrought against strict
necessity and analyticity might be turned against the present
graded modalities.

Thus, it might be argued against the absolute necessity as
formalized by the familiar modal logics, that no clear sense
can be made of this concept since there are no useful criteria
which unequivocally locate propositions some as ‘fundamental
postulates’ and so as necessary, others as true but contigent (as
described in [1]). This problem need not arise within the pre-
sent framework. All that is required is that one be able to say
of a proposition, p, that it is more fundamental than another,
g, or that p is more central to one's conceptual framework than
q. p should then be located in a set P! and q in Pi where i > j.
It does not matter if this grants some degree of necessity to
statements like ‘there have been black dogs' as well as to those
like '2 + 2 = 4', though one would expect it to be a lesser
degree.

Some sort of relative centrality of propositions in conceptual
frameworks does belong within the picture sketched by
Quine in, e.g. [4]. Nevertheless, it is not clear that the behav-
ioral criteria which Quine would allow to determine how
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central or how fundamental a statement is, would define the
linear order among classes of statements which is required by
the present semantical account. If not, then the theory of
grades of modality proposed here would not provide a true
explication of that sort of gradualism.

University of Wisconsin L. F. GoBLE
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