ON THE SYMMETRY OF MANY-VALUED LOGICAL SYSTEMS

Jorge TALLET

Every many-valued logical algebra consists of the mutual
inclusion of two-valued systems any one of which could be
taken as a whole expression of the universe, ignoring the
others. But the functioning of the calculus as many-valued en-
tails the simultaneous consideration of all given two-valued
components, arranged according to arbitrarily assigned sharing
of the domain between the two complementary classes of each
pair of values.

The number of one-variable functions allowed by the many-
valued system depends then upon the number of two-valued
sub-systems; any one of these functions may be taken as af-
fecting in a mode different from that in which it likewise
affects the others, certain pair of complementary values which
are then designated as extreme cases of universe dichotomy.
The interpretation of the values and of the modal functions is,
of course, arbitrary, and there is no particular reason to call
‘truth’ the function specially affecting the first designated value
and its negative or complement; but it could be a convenient
expedient to make a corresponding characterization between
pairs of values and modal functions, obtaining as many one-
variable functions as allowed by the algebra.

The foregoing necessitates that the many-valued system be
symmetric; that is, its values should be even-numbered. Every
odd-number system is to be taken as having in fact as many
values as its number's (even) successor,

Let us examine as an illustration the classical three-valued
matrix calculus of kukasiewicz enriched by Tarski's contribu-
tion, as expounded in Lewis’ and Langford's Symbolic Logic.
A mathematical method of determining the value @, 1/2 or 1 of
a function is based on the primitive operations of implication
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(C) and negation (N), the other functions being defined in terms
of those. The method is: pCq=1 for p<q, pCq=1—p—+q for
p>q; Np = 1 —p. (Here '@’ is numerically zero, not to confuse
it with the disjunction sign '0').

The rule whereby the negation function Np has the inter-
mediate value 1/2 (or ?) when the value of its variable, p, is
likewise 1/2 (or ?), as pertaining to an asymmetric (odd-number-
ed) system, destroys the powerful equivalence between the
implication function pCq and the disjunction function NpOq.

According to the definition pOq.=: pCq.Cq, the value of pOq
is the larger of the two values of the variables when these are
different, and the same as theirs when they have equal value.
This corresponds to the two-value algebra rules.

Now, the absence of equivalence between pOq and NpOq is
shown in the following table:

Np pCq NpOq
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The difference, the only one, is for value ? for both p and q.
In this case, pCq has value 1 whereas NpOq has value 2.

The conjunction function pAq being defined as N(NpONq),
its values are, similarly as in the two-valued algebra, the lesser
of the two values of the variables when these are different, and
the same when they have equal value, Then, if the equivalence
function is pEq, and pEq .=: pCq.A.qCp, the lack of interchan-
geability between pCq and NpOq is explicitly expressed in the
following table — offered for the sake of completeness —
where pCq.E.NpOq :=:. pCq.C.NpOq:A:Np0q.C.pCaq.
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Np pCq NpOq pCq.C.NpO0g Np0q.C.pCq pCq.E.NpOq
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While Np0q.C.pCq is a law of the system, this is not the case
with pCq.C.Np0Oq and, consequently, neither with pCq.E.Np0Oq.

The non-matrix method proof may be effected by reductio ab
absurdum. We have that pCq.A.qCp:=:pEq and also pCq and
N(qCp), and we take the hypothesis pEq; then we have to have
pCq, which we do, and qCp; but the latter is not the case since
we have N(qCp); hence, N(pEq).

In an ad hoc matrix pCq would be a law by definition, and
also N(gqCp). Therefore qCp would be null, and consequently,
pCq.A.qCp too. Hence, pEq would be null and, therefore, N(pEq)
would be a law.

Or: there is no equivalence between the two considered func-
tions.

The obstacle is found in the negation table:

p Np
1 @
?2 2
¢ 1

where the negation of ? is ? itself, when it should be a comple-
mentary expression.

Now, if we consider this system a four-valued calculus, its
values are @, 2, —?, 1, where ? and —? (or 1/2 and —1/2) share
the universe equitatively. In a ‘regular’ four-valued algebra,
for example with values §, 1/4, 3/4, 1 there is no equal sharing
(and no need of a negative sign) and its negation table is:
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p Np

1 ¢
3/4 1/4
1/4 3/4
0 1

In the four-valued system constructed from the three-valued
one, the negation table is:

p Np p Np
1 1] 1 1)
- 1/2 —12
or
—2 ? —Jf2 1/2
] 1 0 1

Here, as in any ‘regular’ even-valued algebra, including the
two-valued calculus, ?0? (or 1/20 1/2) renders value ? (or 1/2),
and —?20—? (or —1/2 0—1/2) renders value —? (or —1/2),
while 20—? (or 1/2 0 —1/2) renders value 1.

The description of pO0q and pAq is amplified so that it covers
all cases of many-valued systems as well as the two-valued
algebra. The value of pOg or of pAq is the same as that of the
variables when these have equal value. When the values of
the variables are different, the following rules hold: The value
of p0q is that of the logical sum of its variables, according to
postulates, or —1 when one of the values of the wvariables
is 1; or 1 when, neither being 1, numerically assigned fractional
values add up to 1 or more; or whatever numerically assigned
value corresponds to the addition of the number values when
they add up to less than 1. The value of pAq is that of the
logical product of its variables, according to postulates, or
—~0 when one of the values of the variables is §; or, one
being 1, then the value of the other; or § when the values of
the variables are complementary; or # when the values of the
variables, without being complementary, are disjoined (ac-
cording to postulates); or the value of one variable when (ac-
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cording to postulates) it is totally included in the other; or
whatever be the value of the logical product of the variables
when (according to postulates) they overlap. (In the system
here considered, ? and —? are, of course, complementary and
both totally included in 1; as for ? in the three-valued calculus,
it is, naturally, totally included in 1),

These descriptions take contradictory values as complemen-
tary classes within the universe; that is, every one of the pairs
exhausts the domain by being all of them in mutual inclusion.

Two sample tables, of the three-valued calculus and the
modified (four-valued) algebra, respectively, are:

p Np pOp pAp pONp pA.Np
1 0 1 1 1 ]
? ? ? ? ? ?
1] 1 1} 1] 1 0

p Np pOp pAp pONp PpA.Np
1 ] 1 1 1 1]
: =0 ? ? 1 ]
. T = =0 1 )
0 1 1] 1] 1 0

If for a moment, to facilitate comparison, we attend only to
the numerical or distributive character of the intermediate
values ? and —?, and consider either of them as ?, the modified
table would look like this:

p Np pOp pAp pONp pA.Np
1 1] 1 1 1 0
? ? ? ? 1 )
1] 1 (1] @ 1 0

But it is not only the distributive character of p as 1/2 and
Np as 1/2 which intervenes, but also the complementary feature
indicated by the negative sign, ‘—', which is now a logical, not
a mathematical sign.
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Now if we define pCq in terms of p0q and Np, so that pCq
.=. NpOq, one table is:

p q Np pCq NpO0q pOg pAgq
1 1 1) 1 1 1 1
1 ? ] ? ? 1 ?
1 =3 n — . 1 —2
1 1] 0 1) ) 1 0
2 f 7 1 1 1 ?
2 7 —2 1 1 ? ?
2 —F =7 = 3 1 1]
? p —2 2 —2 ? ]
—1 1 ? 1 1 1 —2
i ? ? ? ? 1 0
T G ? 1 I fF =P
—2 0 ? ? 7 —7 0
(1] 1 1 1 1 1 1)
0 2 1 1 ] ? 0
0 —2 1 1 T e 1]
0 0 1 1 1 1] 0

If now we take the first table in this paper and modify it so
that it represents a selection of the previous one, we have:

p q Np pCq NpOgq
1 1 0 1 1
1 2 1] ? ?
1 ¢ o0 0 1]
72 1 —2 1 1
7 7 —2 1 1
2 0 —2 —2 =g
0 1 1 1 1
0 2 1 1 1
o 0 1 1 1

Comparing the fourth and fith columns, we get:
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Three- Four- Three- Four-
valued valued valued valued
p qg Np pCq pCq NpOq NpOq
1 1 L] 1 1 1 1
1 ? 1] ? ? ? ?
1 0 @0 ) 0 0 0
? 1 —2 1 1 1 1
? ? —2 1 1 ? 1
2 P —2 ? —? ? —?
(1} 1 1 1 1 1 1
@ 2 1 1 1 1 1
] 0 1 1 1 1 1

The function pCq in the four-valued system takes value —?
instead of ? for ? and @ (for p and q respectively) while NpOq
takes 1 instead of ? for ? and ?, and takes —? instead of ?
for ? and . The equivalence between pCq and NpOq is estab-
lished.

The difference between the two-valued and a many-valued
system as modified in this paper is thus in the obvious fact that
the latter may assign a value other than 1 or ¢ to a formula,
and it allows more one-variable functions. But their laws
are mutually corresponding. Thus, it is said in Lewis' and
Langford's Symbolic Logic that whereas the triadic relations
pq.>.r and p.>.g>r are equivalent in the two-valued alge-
bra, the corresponding formulas of the three-valued calculus,
pAqCr and pC.qCr, are not; but in our four-valued system they
are, Let us examine first the tables for the two-valued calculus:

pqg .O. T

P q r pq —(pq) pq .>. 1 (or —(pq) V 1)
1 11 1 0 1

1 1 06 1 1) 0

1 01 ¢ 1 1

1 00 0 1 1

6 11 ¢ 1 1

@ 1 06 ¢ 1 1

@ o0 1 0 1 1

6 o0 0 ¢ 1 1
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Now the corresponding matrices for the four-valued system:

pAq.Cr

(or N(pAq)0r)

N(pAq) pAq.Cr

PAq

17-.7...011?.7..1?12.111111?2.11#.?_:11111111
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(or N(pAq)0r)

N(pAq) pAq.Cr

PAq
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pC.qCr

qCr (or NpOr) pC.qCr (or Np0(qCr))

Nq

Np

1 —7 —2

—?
—?
—7

—?
—?
—7

¢ —?

0

?

—7

¢ —? —2

—7
—?

9 —2?

?

o 0
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P q r Np Ng qCr (or NpOr) pC.qCr (or Np0O(qCr))
—? 1 1 ? 0 1 1
—7 1 ? ? 0 ? ?
—7 1 2 ? 0 —2 1
—2 1 6 2 ¢ ¢ ?
—? 7 1 7 —? 1 1
—? 7 ? [ | 1
—7 7 —? 7 —7 2 1
—? 2 @ ¢ —2 7 1
—2 —7 1 ? ? 1 1
—2 —2 7 ? ? ? ?
—? —7 —7¢ ? ? 1 1
—? —? 9 ? ? ? ?
—2 0 1 2 1 1 1
— 0 2 ? 1 1 1
—? 9 —2 ? 1 1 1
—7 0 ¢ ? | 1 1

g 1 1 1 0 1 1

o 1 2 1 0 ? 1

o 1 —2 1 0 —2 1

9 1 0 1 0 0 1

0 7 1 1 —2 1 1

0 7 2 1 —2 1 1

0 72— 1 —2 2 1

o 2 0 1 —2 2 1

0 —2 1 1 ? 1 1

0 —2 2 1 ? ? 1

0 —2 —2 1 ? 1 1

g —2 9 1 ? ? 1

6 0 1 1 1 1 1

o 0 2 1 1 1 1

0 ¢ —2 | 1 1 1

o 0 0 1 1 1 1

PAq.Cr is equivalent to pC.qCr, as can be noticed by inspec-
tion of their corresponding columns.

Likewise the principle of inference is the same for both cal-
culuses, being in each a law of the system. In the two-valued
algebra the two forms (p(p>q))>q and p>((p>q)>q) . are
equivalent, and in our four-valued system the corresponding
functions pA.pCq:Cq and pC:pCq.Cq are also equivalent. Let us
examine first the two-valued form:
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(p(P29q)) 29
P 4 —p p>q9 plp>q —pPEP>9) ((@PlE>29)>q
(or —pVq) (or —(p(p>q))Vq)
1 1 1] 1 1 0 1
1 ¢ /] ] ] 1 1
0 1 1 1 (1] 1 1
o 0 1 1 0 1 1
p2((p2q)>q)
P q —p p>q —(p>q) (P2q)>q po((p29)>q)
(or (or or
—pVq) —((>qVq) —pV((p2q)2q)
1 1 (1] 1 0 1 1
1 0 0 [0} 1 1 1
¢ 1 1 1 0 1 1
0 0 1 1 0 ] 1
Now for our four-valued system:
PA.pCq:Cq
p q Np pCq pApCq N(pA.pCq) pA.pCq:Cq
(or NpOq) (or N(pA.pCq)0q)
1 1 ¢ 1 1 0 1
1 2 0 ? ? - 1
1—2 ¢ —2 P ? 1
1 0 ¢ 1] 0 1 1
7 1 —2 1 ? —2 1
7 7 —2 1 ? P 1
?7 —7 —2 —2 ¢ 1 1
2 @9 —2 —2 0 1 1
—2 1 2 1 3 ? 1
—2 7 2 2 0 1 1
2 =7 7 1 = | ? 1
—2 § 2 ? ¢ 1 1
6 1 1 1 ] 1 1
g 2 1 1 ] 1 1
o —2 1 1 0 1 1
6 0 1 1 /] 1 1
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pC:pCq.Cq
P g Np pCq N(pCq) pCq.Cq pC:pCq.Cq
(or NpOq) (or N(pCq)0q) (or Np0:pCq.Cq)
1 1 0 1 ¢ 1 1
1 2 0 ? — 1 1
1—2 ¢ — ? 1 1
1 0 0 0 1 1 1
? 1 —3 1 ¢ 1 1
7?2 1 0 ? 1
T 77 —2 ? 1 1
A - —0 ? 2 1
-2 1 ? 1 [y 1 1
—?2 7 2 ? —? 1 1
—2 —? ? 1 @ i 1
—2 9 2 ? = —2? 1
0 1 1 1 0 1 1
¢ 2 1 1 0 ? 1
0 —2 1 1 0 —? 1
0 0 1 1 0 0 1

As an illustation let us prove that the other principles shown
in the cited book as not holding in the three-valued system do
hold in our four-valued calculus, making a parallel with their
corresponding laws of the two-valued algebra.

One is Np.Cp:Cp. In the two-valued algebra we have

(—p>p)op:

P —p —p>op —(—p>p) (—p>p)>p
(or pVp) (or —(—p>p)Vp)

1 1] 1 0 1

] 1 )] 1 1

In the four-valued system:

Np.Cp:Cp

p Np Np.Cp. N(Np.Cp) Np.Cp:Cp
(or pOp) (or N(Np.Cp)0p)

1 ¢ 1 0 1

7 —2? ? —7

1
i ? i ? 1
0 1 0 1 1
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Another is p0.Np. We have pV—p, the Law of the Excluded
Middle:

P —p pV—p
1 0 1
] 1 1

Now for p0.Np

T N =
o~
— s i

A third one is pC.N(pC.Np), with its analogue p>—(p>—p):

p —p po>—p —(p>—p) po>—(p2>—p)
(or —pV—p) (or —pV—(p>—p))
1 0 ) 1 1
0 1 1 0 1

For pC.N(pC.Np):

p Np pC.Np N(pC.Np) pC.N(pC.Np)
(or NpONp) (or NpO.N (pC.Np))
1 0 0 1 1
2 —? —? ? 1
—? ? ? —? 1
(] 1 1 0 1

And a fourth is pC.Np:C.Np, or (p>—p)>—p:

pop po>—p —(p>—p) (p>—p)>—p
(or —pV —p) (or —(p>—p)V —p)

1 ) (1) 1
0 1 1 1] 1

[y
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For pC.Np:C.Np:
p Np pC.Np N(pC.Np) pC.Np:C.Np
1 1} 0 1 1
2 —? —? ? |
—7? ? ? —2 1
0 1 1 ] 1

Let us explore now how the many-valued systems take up
one-variable functions

It is obvious that a many-valued system, being richer in pos-
sibilities of value combinations than the minimum (two-valued)
one and other many-valued systems of fewer values that may
be, has possibly more one-variable and many-variable functions
than its predecessors in an arrangement of growing sequence
as to the number of values.

Now the designated values of a many-valued system that in-
cludes 1 and @ are these two values which explicitly embrace
the universe in its entirety. (All other pairs of complementary
values do not need to make @ a part of their formulation, as @
is always included. Thus, the complement of ? is —2; but if we
want to introduce § in the formulation, we will have to make
—2 + ) the complement of ?, and 2 - § the complement of
—?2 But —? ~ @ = —2?, and ? - @ = ?; therefore, the comple-
ment of 7 is —?, and vice versa). (@ is antidesignated.)

In a many-valued system, the relationships among values
are given in the postulates of the system. In our four-valued
form, the assumptions are necessary that ? is totally included in
1, and that —? is totally included in 1. In higher order algebras,
the mutual relations are more complex. Let us study an (arbitra-
ry) eight-valued system with 1 and @ as its designated values.

To facilitate comprehension (as well as for philosophical
reasons whose explanation would be out of place in this paper),
let us consider values and variables as classes, their functional
(and propositional) interpretations fitting that of classes. The
table functions are then taken as compound classes.

There is in this connection a formation rule: Whenever a
class-variable is totally included in a class-value, even if the
inclusion is not mutual, it is equated with the class-value. The
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logical reason for this is that, when the field is restricted to
the values, there is no room for other classes, and whatever
foreign element we introduce is spread over the whole class-
value to which it belongs. In case the class-variable covers
parts of two complementary class-values, we must recognize
that it obviously is coincident with the more restricted class-
value in which it is totally included, This reference to 'more
restricted’ means that if a class-variable is (totally) included in
a class-value that is in turn (totally) included in another class-
value, the class-variable is equated with the included class-
value, not with the including one, unless it be formulated that
the class-variable is included in both. Conversely, a class-
variable totally included (according to the formulas) in a class-
value which totally includes another class-value, is not neces-
sarily (and not at all formally) included in the included class-
vaule, and is therefore equated with the including class-value,
not with the included one, unless it be formulated, again, that
it is included in both.

When this is the case, namely that a class-variable is in-
cluded in two class-values of which one is included in the
other, the class-variable is coincident with each as we consider
the values severally, but is equated with the largest, including
class-value when the whole picture is considered. Thus, the
complement of a class-variable is the class-value that is the
complement of the most comprehensive class-value in which
the class-variable is explicitly included according to the for-
mulas, although when the pertinent class-values are severally
considered, the complement is, in each case, the complementary
class-value.

The natural repugnance apt to be found before the fact that
a class seems a proper subclass of itself in our strongly inten-
sional account, may be eased by the interpretation that the
subclass represents the class in the included class-value, being
a mapping of the whole class-variable, a mapping entailing
an infinite regress. _

The inclusion of a class-variable in each class-value, or the
equation of a class-variable with the class-values, determines
then in each case the class-function (a qualified class-variable),
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and the assignment of a value to the function. This assignment
is then interpreted in the tables as an equation between the
assigned value and the function, and therefore, as the total
inclusion (and spread) of the class-function in the (assigned)
class-value. .

Belonging of a class-variable or class-function to a class-
value means inclusion. And also membership, the class-value
being impure. Thus a (say) true class-function has something
true as its membership, which is then part of the membership
of the class-value 'truth’, the class-function being therefore
included in the class-value. But the class-function, having a
true membership, is in itself also true, figuring likewise as a
member in the class-value, the class-values being members of
themselves.

One of the first postulates of the system is that the explicit
equation A= A represents the universe class, 1. The one-varia-
ble functions are made up by equations of the variable with
some value, and their respective complements.

In our sample eight-valued system, the values, by comple-
mentary pairs, are 1, @; T, F; N, I; F = N, TI, of which the last
two are compound in order to exhibit their make-ups. All these
need not be interpreted, but it might help to imagine them
respectively as possibility and self-contradiction; truth and pos-
sible falsehood; necessity and possible non-necessity; either
possible falsehood or necessity, and both truth and possible
non-necessity.

The postulates include those of the class calculus, and the
relevant ones for us now are: T.1 =T, F.1 =F, N.1 =N, L.1 =1,
(F=N)1 = F=N, (TI)1 = TI; 1.0=0, TF=0, NI=0, (F+N)(TI)=
@, TN=N, (TI)N=@, FI=F. Three obvious theorems would be:
(THT=TI, (THI=TI, FN=@. In other words, N is totally in-
cluded in T, (TI) is totally included in T but excluding N, I is
the logical sum of (TI) and F, and, obviously, F+N is the sum
of F and N, as shown in the following Venn diagram:
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1 | (F+N)—

(TI) T N
1

In a two-valued system, a one-variable function —(A=)
would be equivalent to function A=1, Let us call the former
A, and the latter A,. The table for these functions and their
respective complements is:

A, ~A, A, —A,
A —A —(A=0) (A=0) (A=1) —(A=1)
1 0 1 1] 1 (1)
0 1 0 1 ] 1

In a many-valued-system, say four-valued, the two pairs of
functions would be different as to the assigned values cor-
responding to the values that do not enter into the make-up of
the functions (we are going to mark with horizontal lines the
repetitive blocks of assigned values as the range of successive
functions is expanded):

A, —A; g iy
A —A —A=0) (A=0) (A=1) —A=1)
| 1] 1 0 1 (1]
0 1 1] 1 0 1
7 —2 1 [i] 0 1
—2 ? 1 (1} (1] 1

And here we could introduce another one-variable function,
say Ay or (A=1)+(A=7?), and its complement, —A; or —(A=1)
—(A=17):
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Ap _Ap Ax ‘_‘Ax Ay —AY
A —A —(A=0) (A=0) (A=1) —(A=1) (A=1)+(A=?) —A(=1)—(A=?)

1 0 1 (1) 1 0 1 0
0 1 0 1 0 i (1) 1
? —? 1 0 0 1 1 ¢
—? 7 1 0 0 1 0 1
Again, Ay and —A, differ from the others by the assigned
values corresponding to ? and —2.
In a six-valued system the table for those functions would be:
A, —A Ay —Ay Ay —A,
A —A —(A=0) (A=0) (A=1) —(A=1) (A=1)+(A=?) —A(=1)—(A=?)
1 0 1 0 1 0 1 0
9 1 0 1 0 1 0 1
? —2 1 0 0 1 1 0
—? 2 1 0 0 1 0 1
# —# 1 0 0 1 0 1
—# # 1 0 0 1 0 1

But here again, there is room for yet another one-variable
function (and its complement), A, (and —A,), which differs
from A, (and —A,) as to be assigned values corresponding to
the new pair of values (A, is (A=1+(A=2?)~+(A=#), and —A,
is —(A=1)—(A=?9)—(A=#):

A—A A, —A, A, —A;, A, —A, A, —A,
1 ¢ 1 1] 1 0 1 1] 1 0
o 1 ¢ 1 ] 1 1] 1 0 1
P =9 1 i} ] 1) 1 0 1 0
—2 T 1 1] (1) () 1] 1 0 1
#—# 1 0 1] 0 0 1 1 0
—# # 1 0 1] 0 0 1 1] 1

In our eight-valued sample system, making the notation of
functions to conform with that of the values as to the restrictest
one, the definitions would be:
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Ap=di —(A=0)
—A,=df (A=0)
A, =df (A=1)
—A;=df —(A=1)
A=df (A=1)+(A=T)
—A=df —(A=1)—(A=T)
A,=df (A=1)+(A=T)+(A=N)
—A, =t —(A=1)—(A=T)—(A=N)

Table:
A—A Ay, —A, A.—A; A,
1 0 1 1] 1 ] 1
1] 1 0 1 0 1 @
T F 1 0 0 1 1
F T 1 0 0 1 0]
N I 1 0 1] 1 ]
I N 1 (1} 1) 1 0

F+~N TI 1 1) 0 1 1]
TI F+~N 1 1] 0 1 ¢

>

=

N e L =t ="

celemr o— o= >

=

|
&

el B —_ L=

The functions may be respectively interpreted as 'A is pos-
sible’, ‘A is self-contradictory’; ‘A is the universe’, ‘A is not
the universe’; A is true (and possible)’, ‘A is false (and not the
universe)’; ‘A is necessary (and true and possible)’, ‘A is non-

necessary (and not true and not the universe)’,

We still may introduce the function pair A;,, and —A;, .,

or respectively, (A=1)+(A=T)+(A=N) (A=(F-+N))

—(A=1)—(A=T)—(A=N)—(A=(F+N)), and obtain;

A—A A, —A, A —A,
1 ¢ 1 1] 1 1) 1 0
0 1 1] 1 0 1 1) 1
T F 1 (1) 0 1 1 0
F T 1 0 0 1 ] 1
N I 1 o 0 1 ) 1
I N 1 1] 1) 1 0 1

F+N TI 1 1] 0] 1 (1) 1
TI F~N 1 1] 1) 1 0 1

et arS =

Ay —A, Ay —A,

— e D) e S S

Af+n

= N

Ll =N N = N S >
3
=

and
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And, of course, we may introduce other one-variable func-
tions until the combinatory possibilities of the system are ex-
hausted, taking into account that the terms of each pair of com-
plementary functions follows the commutative property. For
example, another important function is (A=1)-+(A=0), and
—(A=1)—(A=0), of which the assigned values would be, in
our table:

_ e eSS

STV . = =

On account of the complementary property of the values, the
two-variable function A -+ —A is a tautology, whereas A—A is
an inconsistency. The one-variable function A=A and its
complement —(A=A) are also, respectively, a tautology and
an inconsistency.

The tables for many-variable functions are, of course, highly
complex. While such a function as A~B is neither a tautology
nor an inconsistency (the two designated values appearing —
as in the included two-valued calculus —, and some assigned
values corresponding to non-designated ones), a function like
(AB=A)=(A-+B=B) is a tautology, its complement being,
naturally, an inconsistency. It is worth noting that the same
is valid for the two-valued system.

Flushing, New York, Jorge TALLET

Author's note: The interpretation set forth in this paper attends to the
relationships among values, wherein negation is taken as complementarity.
This approach does not preclude propositional interpretations — which
may be even quasi-truth-functional — whereby negation is taken as con-
tradiction. It is intended te provide a basis framework of truth-functional
value relations upon a dichotomous principle.



