ON THE AXIOMS OF CHOICE AND REGULARITY

John H. Hagnis

0. Introduction

In § 1 a problem is posed which suggests a need for a very
strong axiom of choice or some extra axiom of set theory. The
Axiom of Regularity (REG) is the extra axiom that is usually
used. In § 2 some implications of REG are given. In terms of a
general definition of “set” given in § 3 it is shown in § 4 that
REG seems to be true for classical mathematical structures.
But the set theoretic mode of thought and modern mathematics
are not limited to classical structures. In § 5 evidence against
REG is given by introducing a new construction process which
can be used to construct (reasonable ?) sets contradicting REG.
The construction process of § 5 is clearly open to question and
is still only at the intuitive level. But the main point of the
article is not to prove REG false, but to show (as is done in § 5)
that REG is a questionable rather than an obviously true axiom
of set theory. So in § 6 a neutral viewpoint is adopted neither
accepting REG nor its negation. However some limitation type
axiom is necessary in order to eliminate such pathologies as
e-cycles like x; €x, €...€Xx, €x;. An Axiom of Limitation
(LIM) is introduced and shown to be equivalent to a "noe-
cycles axiom”. Also LIM and REG are shown to be related
to each other in a very natural way with LIM being a very
weak and REG being a very strong limitation type axiom. Also
since REG is no longer available to resolve the difficulty raised
in § 1, a sufficiently strong axiom of choice (AC*) is intro-
duced to do the job.

1. A motivating problem

Let NBG denote Von-Neumann-Bernays-Gédel set theory
(specifically axioms A, B, C of [4]). To NBG we need to add
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some form of the axiom of choice (abbrev.: AC) in order to do
mathematics as currently practiced. Let us use the following
class form.

AC: For every class X of pairwise disjoint sets, there exists a
choice class C which has exactly one point in common
with each non-empty x=X: in symbols,

(AC)(Vx)x[x =0 = Hu[CNx = {u}]l.

If some of the classes X, ..., X, are proper, then we cannot
form (in NBG) a collection having X, ..., X, as elements; how-
ever, we can intuitively think of such a collection. What if we
have an intuitive collection {X, }, _ of pairwise disjoint clas-

ses ? Intuitively there exists a choice class C which has exactly
one point in common with each Xi\ Since some of the )'(,L could

be proper, clearly AC is not strong enough to justify the exis-
tence of such a choice class. Let us first discuss how such a
situation arises very naturally.

We will define an ordered set to be any ordered pair <x, 1>
of sets such that r € x X x. We think of x as (partly) ordered
by r and write "urv" for “<u, v>er".

For example, x could be quasi, partially, totally, or well-or-
dered by r. The case when r = § corresponds to considering
x as totally unordered, i.e, considering x abstracted from
any ordering on it such as is done when we consider the car-
dinality of the set x.

Let us define two ordered sets <x, r> and <y, s>as being
similar or order isomorphic (abbrev.: <x,r> = <y, s>) iff
there is a bijective f:x—y which preserves ordering, i.e.,

urv & f(u) s f(v) for all u, vex.

The equivalence classes with respect to the equivalence re-
lation “=" will be called similarity classes. Note that in the
case when r=s=@ the notion of order isomorphism reduces to
that of 1:1 correspondence as used in cardinality arguments.

THEOREM 1. If <x,r> is an ordered set with x+0, then the
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similarity class containing <x,r> is a proper class: in sym-
bols,

{<y, 8> | <x, 1> = <y, s>}V,

PROOF. Choose some element uy=x. Then for any u&x let x,
be the set obtained from x by replacing u, by u. Also let r,
denote the relation obtained from r by replacing all pairs
<ug, v=>, <V, up>>, or <uy, U>> € r by the corresponding new
pairs <u, v>, <v,u>, or <u, u> respectively. Then <x, 1>
= <X, I,>. Clearly F, defined on V-x by F(u) = <x,, ru.>>, is
a 1:1 function on the proper class V-x, hence

Z(F) = {F(u) |[ueV-x} ={<x, 1,> |ueV-x}
is a proper class. But
{<y s> <x, 1> = <y, s>}22%(F),

hence is also a proper class, as claimed. QED.

Consider now the intuitive collection 2 of all similarity clas-
ses of well-ordered sets, We just showed that each such si-
milarity class (with the one exception {<@, ¢#>}) is a proper
class. Thus we can't use AC to prove the existence of an NBG
class C which has exactly one point in common with each
XeZ. But intuitively the class of ordinals, denoted by “On",
is just such a class C. Likewise we can't use AC to prove the
existence of a class K, called the class of cardinals, which
consist of exactly one point from each similarity class or un-
ordered sets. What to do ?

In the case of the ordinals we are lucky. We can actually
define in NBG a particular (proper) class, denoted by On, of
well-ordered sets and then prove (even without the use of AC)
that every well-ordered set is similar to exactly one element
of On; put another way, class On intersects each similarity
class of well-ordered sets in exactly one point (cf. [9; p. 179]).
In the case of cardinals we are almost as lucky. Using the
theory of ordinals we can actually define in NBG a particular
(proper) class K and prove (with the aid of AC) that every set
can be put in 1:1 correspondence with exactly one element of
K; put another way, class K intersects each similarity class of
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unordered sets in exactly one point. But what about the case
of totally ordered sets, or partially ordered sets ?

2. The Axiom of Regularity

There is a candidate for an axiom of set theory, axiom D of
[4], called the Axiom of Regularity (abbrev.: REG), which
solves our difficulty. One standard formulation of REG says
that any non-empty class X contains at least one set which
has no element in common with X: in symbols

VX[X=0= dv[veX and vN X = 0]].

The implications of this not very obvious axiom are far reach-
ing, but some easily understandable conclusions are now given.
(Cf. [9, pp. 201-3] for a more detailed treatment.)

First, REG implies that there are no infinitely descending

oo

€-chains; i.e., there is no sequence of sets {x,},_, such that
L.EXy €EX| €X.

To prove this, assume the contrary. Let A = {x,, Xy, X3,... }
where ...€x, €x,. Then by REG there exists an x;= A such that
x; N A = @, contradicting x;,; €x;N A. (Using AC even the con-
verse is provable.)

Next let us define a function F:On—V by

F(B) = P(U ,_, F(@))

where "P"” denotes the power set operation, ie., P(Y) = {y|

yE€Y} Define H= U aeo“F(a)' We will say that x is a regular

set or x is regular iff x€H. (In the literature these are usually
called well-founded sets.) Then REG implies V=H, i.e., every
set is a regular set. Before proving this let us give a suggestive
interpretation. We can think of V=H as giving us (to borrow
a term from cosmology) a “big-bang” theory of sets. In the
beginning there was only one set, the empty set.

Stage 0: The collection F(0) = P(@) = {@#} is made into a set.
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Stage 1: The collection F(1) = P(F(0)) = {0, {#}} is made into
a set.

Stage f: The collection A = U el F(a), if not already a set is

made into a set. Then any subcollection of A not al-
ready a set is made into a set. Finally all subsets of
A are collected and made into a set called F(p).

Thus V=H=U - F(a) says that a class or collection is a set

iff it is made into a set during one of these stages. Put another
way, each set is constructed or built up from the empty set via
iteration of the union and power set operations sufficiently
many times. (Actually the construction procedure is much
easier at successor ordinals since one can show that F(3+1) =
P(F(B)).)

In order to prove V=H and several other consequences of
REG, let us define an ordinal valued function ¢ : H=On by
o(x) = first a such that x=F(a). We call ¢(x) the rank of the
set x. In terms of our interpretation above the rank of a set x
is closely related to the stage at which collection x was made
into a set,

To prove REG=V =H, assume V—H =+ @. Then by REG there
is some xeV—H such that xN(V—H) = @, i.e.,, x€H. Then
{o(u) luex} is a set of ordinals, hence is strictly bounded
above by some ordinal f}, i.e, uex = ¢(u) < . Then by de-
finition of ¢ and § we have

ueF(o(u)c U __,Flo) for all uex.

<B
Hence

xC U MﬂF(o.],

hence

xeP(U,_,F(w) = F(B)<H
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contradicting
xeV—H.

The rank function has nice properties, the important one for
us being
(*) xey=elx) <ely) for x, yEH

where “<" denotes the standard ordering among ordinals. To
see this, assume g¢(y) = f. Then

xeyeF(f) = P(U F(u))
F(a)

= x&F(a) for some a<f

= p(x)Sa<f = o(y), as claimed.

a<f
=>xeycU

a<f}

The property (*) above of the rank function can be used to
show that REG implies that there are no finite =-cycles; i.e,,
we can't find any sets xy, ..., X, such that

X E2 € ... EX, EX;.

In particular, if we had such a finite =-cycle, then (*) would
give us

o(x1) < 0(%s) <... < o(xy) < o(xy)
hence p(x;) < o(x;), @ contradiction,

Finally another application of REG is to solve our originally
stated problem: to justify the choosing of one element from
each similarity class of an intuitive collection of similarity clas-
ses. In fact REG+ AC implies that given any equivalence re-
lation R, there exists a class which consists of exactly one
element from each non-empty R-equivalence class. (The equiv-
alence relation "=" of similarity is of course just a special
example.) The idea of the proof is simple. Using REG we can
cut each non-empty R-equivalence class X down to a unique
set Xz C; in particular, if

ax = inf{g(u) |ueX}
then
Xr = pr{ueXlo(w) = ax} S F(ay).
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Then we use AC to choose one element from each of these
disjoint sets Xy, hence from each of the R-equivalence classes.
In summary, NBG+REG+ AC implies the following:

(1) no infinitely descending &-chains;

(2) a "big-bang” theory of sets (all sets are regular);

(3) no finite E-cycles;

(4) for any equivalence relation R, there exists a choice class
Cp which consists of exactly one element from each non-
empty R-equivalence class.

Conclusions (3) and (4) are intuitively true statements of set
theory. On the other hand (1) and (2) — which in NBG+ AC are
each equivalent to REG — are not so obviously true. Many
logicians, however, do consider REG to be obvious (cf. [7; p. 56],
[14]). But to discuss whether REG is true or not is to discuss
the question, “"What is a set ?"

3. A definition of "set”

Let us consider the following intuitive definition which we
will refer to as the “generalized big-bang” definition of a set
(abbrev.: GBB). One starts with certain physical and/or con-
ceptual objects, called atoms. We build new sets by stages.
At any stage we form new sets by taking collections of objects
(i.e., atoms and/or sets) formed at previous stages. Also at any
stage we can add new atoms. We iterate this procedure over
all possible stages (one stage for each ordinal a). The collection
of sets so obtained is the collection of all sets.

Classically an urelement is defined as an object which isn't a
collection (hence of course not a set) but which can be an
element of a set. We adopt a broader outlook and define an
atom as an object which is discovered or formed at some stage
by some process other than collecting objects formed at
previous stages. Often atoms will be objects defined by the
properties they satisfy. It is even possible that an atom is itself
a set. However, an atom x can't be a proper class since if x is
introduced in stage «, then x is an element of sets formed
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during stage a+1. Hence proper classes are not considered
to be objects.

One commonly seen version of GBB is to allow starting with
certain atoms which are urelements but not allow adding new
atoms at future stages (cf. [13; p. 233]). One gets what might be
called regular set theory if the collection of all atoms is the
empty set. Then the only objects are sets and GBB reduces to
a vague wording of the simple "big-bang" axiom V=H, which
is equivalent to REG. Thus we can conclude that REG is true
for the concept of set embodied in GBB if we can show that we
can assume without loss of generality that there are no atoms.

In GBB we said that atoms would be physical or conceptual
objects. We will also consider sets as conceptual objects. To
say that object X is a conceptual object is not meant to imply
that we are assuming X exists only in the mind of the conceiver
and has no existence independent of thought. In this paper we
do not take sides between conceptualism and platonism (or
realism). Rather we mean that a conceptual object is a non-
material object whose existence has been or can be discovered
by the use of pure reason.

4. Evidence for REG

One problem with using physical objects such as elementary
particles or hamburgers as atoms is that it gives a time depen-
dent set theory, with sets changing as objects are created or
destroyed. It is better to think of a fixed universe consisting
only of conceptual objects; then if desired, one can set up a
time dependent informal correspondence between physical
and conceptual objects. What can be done in a set theory with
physical atoms can be duplicated up to "conceptual isomor-
phism” in a set theory without physical atoms. Hence without
loss of generality we can assume that there are no physical
atoms. :

But what about atoms which are conceptual objects; e.g.,
what about natural numbers ? Conceptually a natural number
isn't necessarily a collection and isn't thought of as having
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any internal structure, The natural numbers are in fact good
examples of atoms which are introduced conceptually at an
early stage in GBB and are defined formally by the properties
they satisfy. Thus instead of bothering with such foundational
questions as "“What is the number 1 ?”, the mathematician will
usually just assume that he is given a collection of objects
(which we are calling atoms) satisfying the second order axioms
of number theory and will proceed from there., Formally this
corresponds to extending the formal theory NBG by adding
new symbols "N", "O", "S", "+", """ and at least the following
new proper axioms.

(i) NeV (N is the set of natural numbers)
(i) 0&N
(iii) Vx [xeN — SxeN]
(iv) (Vx, y)y[Sx = Sy—>x =y]
(v) (Vx)xSx # 0
(vi) (YZ[0€Z& (Vx)y[xeZ—SxeZ]>NCZ]
(vii) x+yandx.yeN forall x,yeN
(viii) x+0 = x and x+Sy = S(x+y)for all x, yeN
(ix) x.0 =0 and x.Sy = x.y + x for all x, yeN.

Let us call this extended theory NBG+N,

Thus the mathematician just leaves the natural numbers
0,1 = S0, 2 = SS0, ... as unspecified objects or atoms satisfying
certain properties. Whether these atoms are also sets is usual-
ly left unspecified. If we are working in ordinary NBG where
there are no urelements and X&'V implies X is a set, then all
the integers are sets, which sets however being left open. If we
are working in a modified NBG where we allow urelements as
well as sets and classes, (cf. [12]), then we don't even know
whether the integers are urelements or sets.

Logicians have discovered several ways of defining an NBG
set w and NBG set functions fs, f., f such that if N, 0, S, +, .
are interpreted as w, 0, fs, f, and f respectively, then (i) - (ix)
are theorems of (a definitional extension of) NBG (cf. [9; pp.
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175-8] and [10; Ch. IV]; (when referring to [10] we mean the
results of Ch. IV translated into NBG). In fact for such defini-
tions as given in [9] and [10] it is provable in NBG that w itself,
the elements of w, and the sets fs, f. and f are regular sets
(i.e., elements of H). Put simply, N, O, S, +,. can be defined
in terms of regular sets. Thus in summary, what can be done
in a set theory with the natural numbers as atoms can be
duplicated (in fact in many ways) in some definitional exten-
sion of NBG.

The average mathematician when studying number theory
still probably works conceptually in what would be formalized
as NBG+N rather than some definitional extension of NBG.
He would (or should) look at the work of [9] and [10] as
providing models for NBG+N in NBG, hence demonstrating
that he can work in NBG+N free of worries of contradiction
if he already accepts NBG. It is true that anything that can be
done in NBG-+N can be done in a definitional extension of
NBG, but the converse is false; e.g., one can prove such "ac-
cidental”” properties of the natural numbers as 13 in [9] or
12 and 23 but 1&3 in [10].

Let us give another example of a mathematical object which
conceptually isn't necessarily a collection. Specifically, given
any two sets x and y, we have in mind the ordered pair <x,
y>. Even if we wanted to, we couldn't start off with all the
ordered pairs taken as atoms at some fixed stage a: it makes
sense to talk about the ordered pair <x, y> only during some
stage after the conceptual construction of the sets x and y
themselves. Thus if we were to treat ordered pairs as atoms, we
would need to allow the addition of new atoms at every stage.

Instead of bothering with the foundational question "“"What
is the ordered pair <x,y> ?', what the mathematician con-
ceptually does corresponds formally to extending NBG by
adding a new symbol "<, >" and the following proper axioms:

(1) (VXq, X2 Y1 Y[ <X %> = <Yy, Vo> € X1=Y; & X=1Y3]
(ii) (Vx, V)[<x,y>eV]

In 1904 N. Wiener discovered that the ordered pair of two
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pure sets could be defined in simple set theory. Kuratowski's
improved definition reads

<x,v> = {{x}, {x, Y}}-

For another definition which though equally artificial does
have many advantages over Kuratowski's, consider

<x, y> = {{6,x}, {v}}.

(cf. [6]). For these definitions it is easily shown that an ordered
pair of reqular sets is a regular set: in symbols,

X, yEH = <x, y>eH.

In summary: what can be done in a set theory allowing the
addition of ordered pairs as atoms can be duplicated (in many
different ways) in regular set theory.

The same has been shown to be true for other classical con-
ceptual objects such as rational, real, or complex numbers,
geometrical surfaces in R? n-tuples and functions of real or
complex numbers, etc.: what can be done in a set theory with
such atoms can be duplicated in some definitional extension
of NBG without atoms. It is even provable in NBG that the
sets usually chosen to represent such classical objects are
regular sets and the usual set theoretic operations applied to
regular sets give reqular sets. Thus for classical mathematics
it seems to be true that we can work in a set theory with no
atoms without any loss of generality.

5. Evidence against REG

General set theory and modern mathematics, however, are
not limited to the study of classical structures and objects.
Are there any non-classical conceptual objects which can't be
expressed in terms of a set theory with no atoms ? Good can-
didates for such objects seem to be objects X, x;, Xy, ... such
that x, = {x,.:} for all n. This gives us

. EXp) €EX) EXp .
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One of the main goals of this paper is to describe a general
construction procedure which can be used to justify the in-
tuitive existence of infinitely descending -chains of concep-
tual objects.

Let us start by discussing =-descending chains in general.
If we are not excluding the possibility of infinitely descending
€-chains, it seems that we must allow the possibility that for
any ordinal « we can find an &-descending chain of length «.
But what would we mean by a chain of length even w1,
denoted by

X0 E ... EX, E...EX{ EXp ¢

The only reasonable condition seems to be to require (in ad-
dition to the obvious condition that x,.,; €x, for all n<w) that
X. be in x, for all n beyond some m: in symbols,

(8m)(¥n) [n2>m —x, €x,].

This suggests the following generalization. An -descending
chain of length b is defined as a sequence { X, }«<s such that

(i) Xo,1 EX, for all a+1<b
(ii) for every limit ordinal A<, there exists a B <A such that

X, €X. for all B<a<<h.

We say that z is at the bottom of an e-descending chain
{ X« Jags of length -+ 1 starting at x if x, = x and x; = z.

Even if infinitely descending &-chains exist the situation
isn't too messy since, as shown in the next theorem, any two
sets connected by such an &-chain are also connected by a
finite =-chain.

THEOREM 1. If {X.}s¢s is an &-descending chain starting at
x and ending at x5 then there exists a finite se-
quence of ordinals
0= (Io<(11< <ﬂn =%

such that

Xs = Xop EXap-1 € ... EXq EXog = X.
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PROOF. Assume proposition is true for all &-descending
chains of length less than & and consider any €-descending
chain of length 8. If & is a successor ordinal, say 8 = f+1, we
have

X5 = Xp, EXp € ... EX| €X,.

If d is a limit ordinal, then for some <6 we have
Xs EXq for all fa<<i

hence
Xs £ ... EX| EX;.

In either case by induction hypothesis the chain xz € ... x4
€x; can be replaced by a finite subchain, giving us the finite
e-chain

X5 €EXB = Xay € ... EXoy EXogp = Xp. QED.

The notion of an &-ascending chain can be similarly defined
and we can easily show that any =-ascending chain of length
0+1 starting at x and ending at z can be replaced by a finite
&-chain. In summary, any two sets connected by an -ascen-
ding or &-descending chain can already be connected by a
finite =-chain.

If there are &-chains of infinite length descending from a
set x, theorem 2 below shows that there is an upper bound
(depending on x) to the length of such &-chains.

Let us first introduce some terminology which we will use
frequently. We say that z is an =-ancestor of x iff there exists
an e-descending chain {X.}.cs such that x, = x, x; = z and
8>0. By theorem 1 we can always choose {X,}.<s such that &
is some finite ordinal n,

Let U(Z) or UZ denote the union of the sets in the class Z.
We then define U"Z by induction as follows:

Uoz = Z.
UnHiz = U (Urz).

The union axiom of NBG just says that if Z is a set, then so is
UZ hence also U"Z for alln=0.
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For all n=20 we can easily show by induction that there
exists sets xy, Xy, ..., X;,; such that

X1 EXp E ... €EX, EX X, EUnx
For if true for case n = k, then for case n = k+1 we have

Xp,2 EXgy1 € ... X EXy
SXp,2 €, € UKx
X, € Uktix,

Thus clearly z is an €-ancestor of a set x iff z = U"x for some
n=0. We can now even define the ancestor function A where
for any set x A(x) equals the set of all -ancestors of x: in
symbols,

Ax) = U, (Ux) = U{UxIn<w}.

THEOREM 2. Assume that there are no finite e-cycles. Then
for each set x there is an ordinal 8, such that all € -descending
chains starting at x are of length less than b,.
PROOF. For any set x let §, be the first cardinal number greater
than the cardinality of A(x) — in the standard development
of NBG+ AC cardinal numbers are ordinal numbers, Now con-
sider any &-descending chain {X,}.cs with x, = x. All the x.
are different: for otherwise the &-descending chain connecting
X, and xg where X, = xp and a #  could be replaced by a
finite e-chain, giving us a finite €-cycle. Also each x, is an
&-ancestor of xy = x. Hence there can't be any more x, than
there are elements of A(x), hence $<3§,, as claimed. QED.

Now that we have worked a little with &-descending chains
in general, we show how to conceptually construct such chains
of arbitrary length &. For comparison we first review how one
constructs €-ascending chains.

Given any set x and any ordinal & we can easily justify in
NBG the existence of an &-ascending chain {x.}.<s of length
d starting at x. In particular we define f:3 — V by

f(0) =x
flat1) = f(a) U {f(a)} fora+1<d
f(A) = Usorf(e) for limit ordinals A< $.
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Then if we denote f(a) by x. we have x5 €x, € ... and even
X CX,;C ..., assuming x = X, is a regular set.

Figuratively speaking we see that in constructing -ascen-
ding chains we conceptually construct each xg in terms of
previously completely constructed x.(a<<g). We call this a
recursive process, In contrast, to conceptually construct -
descending chains {x,,}u - for 52w we will use a new process,

called a simultaneous process, in which infinitely many sets
are simultaneously constructed. '

The construction process for simultaneously building the sets
X. for a<<d will take several stages, numbered 0, 1, ..., 3 say.
(These stages have nothing to do with the stages mentioned in
the GBB definition of a set given in § 3.) At each stage f§ for
f<d’ we will work a little on the construction of various of
the x.'s by adding some “elements” to such x,'s. At stage &’
we will complete our constructing activities by conceptually
sealing off all the x,'s. At any stage f<3" we have that each x,
is only an incomplete or potential set: it is entirely possible
that more elements may be added to x, at stage §+1. It is only
at stage o' that each x. becomes a completed collection, hence
a set; and it is the case that conceptually speaking all he x,'s
become sets simultaneously.

In the rest of this section by an integer n or an ordinal % we
mean the von-Neumann representation of n or §, say as devel-
oped in [9]. In particular we need the facts that all von-Neu-
mann integers are von-Neumann ordinals which in turn are
all regular sets satisfying a<f§ iff a=f, a+1 =aU {a} and
B = {a]a<B}.

Let us illustrate our new conceptual process by constructing
some regular sets, first by means of the recursion process and
then again by means of the simultaneous process.

EXAMPLE 1. Consider any integer N20. Then we claim that
there exists sets x, ..., Xy such that for 0<n<N we have

X, = {n, Xai1s .00 Xx}-

To construct such x, by the recursion process we proceed as
follows. Let y, = {N} and for any k<N let
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Yk+1 = {N_' [k+1], Yor o Yk}

Finally, let x, = yy-, for 0<n<N.

Clearly the y, are regular sets since they are built up by
recursion starting with the regular set {N}. Hence the x, are
reqgular,

In our construction of the same x, by the simultaneous
process we will use stages 0, ..., N, N+1. We first use sugges-
tive wording to aid the conceptual visualization of the process.

At stage 0 we make an open necked (conceptual) balloon and
label it xo. We then put (one copy of) the integer 0 inside x,
by passing it through the open neck of x,. This condition in-
sures that we will have 0&x, when we finish all our stages.
Assume we have completed stages 0,1, ..., n— 1 where n<N.,
At stage n we introduce and start to work with x, and continue
with our construction activities on the x; for i<n. In particular
we make another conceptual balloon, label it x,, and put one
copy of x, inside each copy of each x; for i<n. We then put
(one copy of) the integer n inside each copy of x,. These con-
ditions insure that we will have (representations of) x, €x; for
i<n and n €x, when we finish all our stages. At stage N+1
we (conceptually) simultaneously seal off the necks of all
copies of all the balloons labeled x, for 0Xn<N. This sealing
off insures that what is in the balloons representing the set x,
is only that which has been placed there during one of the
stages 0, 1, ..., N; e.g.,, we will have xy = {N} and xy_; =
{N —1, xy}. Visually, what is in the sealed balloon x, is what
one sees upon bursting x,. E.g., upon breaking x, one sees
a copy of the integer 0 and balloons labeled x;, X, ..., Xy; Oone
does not see a copy of any of the integers 1, 2, ..., N. Thus the
balloon x, being inside the balloon x;, will be interpreted as
X, X, not as x, S x,.

Another advantage of the balloon interpretation is that we
can picture the x,'s as stretchable: we can always put more
objects inside x, as long as the neck of the balloon x, isn't
sealed off.

A different less heuristic description of the procedure for
simultaneously constructing the desired sets can be stated in
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terms of conditions imposed on potential sets Xy, ..., Xy during
the various stages, with no mention of balloons.

Stage 0sn<N: require n €x, and x, €x; for all i<n. Stage
N-+1 (closure stage): require that for any n the object or
potential set x, contains only those elements forced into x, by
the conditions imposed during the stages 0, 1, ..., N.

The “proof” that x, = {n, X,,1, ..., Xy} is now trivial. We
have that n, x4, ..., Xy are elements of x, by stages n,n+1,
..., N respectively. No other elements were added to x, in
any of the other stages. By stage N+1 these are the only
elements in x,, as desired.

One obviously needs to place some restrictions upon what
conditions can be introduced during various stages of a
simultaneous process. E.g., if we required x;ex;, x;=x; and
Xy €Xp during stages 0, 1 and 2 respectively and applied closure
in stage 3 we would get

X EXg EX1 EXy,

an =-cycle, which we don't want.

Let us say that set x is normal iff x is not an =-ancestor of
x: in symbols, x& A(x). Let us say that x is semi-regular iff x
and every €-ancestor of x is normal. In other words x is
semi-regular iff for any &-descending chain {x.} < with x =
X9 we have a<<<d implies X.*xs.

Since it is intuitively true that there are no finite -cycles,
we expect all sets to be semi-regular. Thus whenever we
construct some non-regular sets we will prove or at least
discuss their semi-regularity.

That we need to place some more restrictions on the simul-
taneous construction process is shown by the following exam-
ple and the discussion that follows.

EXAMPLE 2. Consider any non-empty index class I. Then for
each i€l we can construct an &-descending chain {x,} s
satisfying

xi, = {x'4,1} for n=0.

A description of a simultaneous construction of such xi,, stated
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in terms of conditions imposed on the x', during various stages,
is as follows:

Stage n=0; require xi,,; €xi, for each il

Stage w: closure step.

That x', = {x',,,} follows trivially from the definition of stages
n and w. Clearly all the x', are non-reqular. But there are ob-
vious problems. What is the difference between say x!y and xJ;
if i#j ? These two objects appear merely to be copies of each
other, but we can't prove that they are equal. For that matter,
xiy even seems to be a copy of xi, for any n=>0.

For any set x let A*(x) = {x} U A(x), often called the
transitive closure of x. We say that two sets x and y have the
same e-structure iff A*(x) and A*(y) are =-isomorphic, i.e.,
there exists a 1:1 function f from A*(x) onto A*(y) such that

uev & f(u) =f(v) for all u, ve A*(x).

We abbreviate this by "A*(x) = A*(y) under f".

Intuitively one feels that two sets with the same -structure
are equal. Strong support for his feeling is given by the fol-
lowing result, provable in NBG without REG.

THEOREM 3. Let x and y be regular sets. Then x and y have
the same =-structure iff x = vy.
PROOF. Use the proof of the Shepherdson-Mostowski theorem,
cf. [3; p. 73]. Since x and y are assumed to be regular and since
REG restricted to the class H of all regular sets is provable in
NBG, the proof can be carried out without assuming REG. QED.
Now we don't know what part of our intuition or knowledge
of regular sets should carry over to non-reqular sets, if the
latter exist in any reasonable sense. But it does seem falacious
to recognize the existence of two or more distinct sets which
can't be conceptually distinguished by just looking at their
€-structures. And we do want to construct as reasonable non-
regular sets as possible. So we propose the following axiom.

STRUCTURE AXIOM: If two sets have the same &-structure,
then they are equal: in symbols

A*x) = A¥(y)=2x=1vV.
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THEOREM 4. There is no sequence {x,},~o such that
Xn = {x,.1} for n=0.

PROOF (in NBG + Structure + No =-cycles): Assume there is
such a sequence of sets. Then A*(x;) and A*(x;) have the same
€-structure: the e-isomorphism f is given by

f(X-Hk) = Xj+x for k?O.

Hence according to the Structure Axiom x; = x;. Thus we have
Xy €X,, contradicting the no e-cycles axiom. QED.
We say that x is a non-regular set if we can find sets x,, xs,
. such that

.. EXy X EX.

Whenever we construct a sequence {x.} ok of what we con-
o

sider to be non-regular sets we will prove that
A*(Xa) = A*(Xpg) = X = Xp

And clearly no non-regular set can be -isomorphic to a
regular set.

Even though the simultaneous process needs restrictions
placed on it, we still find it a useful conceptual tool for con-
structing non-regular sets. This will now be illustrated in the
next three theorems.

Our first example is a simple one.

THEOREM 5. By the simultaneous construction process there
exists an infinite &-descending chain {x, }n<. given by

Xy = {n, x,,:} for n=0.

Given such sets, it is provable in NBG that they have the fol-
lowing properties:

(i) all x, are non-regular but still finite
(i) m=n=x, #* X, and not: A*(x,) = A*(x,)
(iii) x, is semi-regular for each n.

PROOF. A description of a simultaneous construction of the
desired x,, stated in terms of conditions imposed on the x,
during various stages, is as follows:
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Stage n=0: require n €x, and x,,1 EX,.

Stage: w: closure.
For any n the only stage at which any potential element is ad-
ded to x, is stage n, and then we add the element n and the
potential element x,,:. Thus, by stage o we have

Xp = {nn Xn+1}°

The proofs of properties (i) - (iii) are similar to but simpler than
the proofs of similar properties for the next theorem which we
will prove in detail. = QED.

Our next theorem shows one way to construct an =-descen-
ding chain of length 8, given any §>0.

THEOREM 6. By the simultaneous process, for any ordinal
>0 there exists an =-descending chain {xa}u <3 such that

X = {Xu|a<p<d} U {a} for all a<s.

It is provable in NBG that such sets, if they exist, have the fol-
lowing properties:

(i) if d<w, then all x, are regular;

(ii) if 82w, say d =A+n where X is a limit ordinal and
n=0, then x, is non-regular for a<A} and regular for
A<a<<d.

(iif) a<B<<d = x. # xp and not: A*(x,) = A*(xg).

(iv) x. is semi-regular for any a<9.

PROOF. A description of a simultaneous construction of the
desired x., stated in terms of conditions imposed on the x,
during various stages, is as follows:

Stage B(0<p<d): require § =xp and x3 Ex, for all a<p.

Stage &: closure,

Now consider what potential elements we put in x, for some
fixed a<d. At any stage p<a we put nothing in; at stage p=ua
we only put « in; at any stage p where a<<u <% we only put x,
in. According to stage & there are no other elements in x,, hence
as desired we have

(e %= (x| a<u<d} U {a}.
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Now to discuss the regularity of the x. for a<d. If & isn't a
limit ordinal, then
d=A+N+1

where A = 0 or a limit ordinal depending on whether <<w or
8>w. One then shows that

X Xty o XuN

are regular sets as in example 1. If 8>, say d=1+n where *
is a limit ordinal, then for any a<) we have

a+k<) for all k=0,
hence
e EXare EXe 1 EXa

hence x, is non-regular,
Next we show that for any a <8 we have

(2)« A(xs) = As = pr {xu| a<<p<d} U B
hence
(B)s A*(xs) = {xula<p<d} U

If p<<a or p = @, then u €0 €x. or pE x. respectively, hence
n €A(X.). If a<lp<d, then o Ep €x, EXq hence p and x, are in
A(X2). Thus A, €S A(Xd).

To show A(x.) € A, assume y EA(X.), hence

Y=V, € ... €Y1 EXa.

Clearly y; €A, by (1).. Assume yy €A, and yi,1 EVk
Then vy ,; €A.. For if y, €3, then so is yi,.1 €5 C Ay
and if

Yi = Xu for some a<p<d
then yx.1 =p Or Vi, = x  for a<p<v<y, hence yy.; €A.

Thus by induction y = y, € A,, as desired.
We can easily show that

Xa * Xy if a<B<A.
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We have a4 €x,. But a &€x; for otherwise
a = x, for some B<<p<<d by (1)s;
but since u €x, we would then have the contradiction
u €a where a<f<p.
Next we show that x, is normal for all a<$. For if not then
Xs €EA(Xe) = {Xu | a<p<d} U b,

Since x, *Xx, for a*p we must have x, €39, say x, = p. But we
also have o ex,, hence a<u <, hence the contradiction

hEX EX: = .

Each x, is semi-regular since x. and all its -ancestors are
normal,

We are at last ready to prove that if A*(xg) = A*(xg), say
under the €-isomorphism f, then x, = xp. First we show by in-
duction that f(u) = n for all p<<d. Assume

(4) f(p) =p for p<v<<d.
Thenpu € v= = f(u) €f(v), hence vZf(v). Conversely,

xef(v)
= f~(x) ef1(f(v)) = v
= f(f~1(x)) v by (4)
= XEv.

Thus f(v) = v, as desired.
Next we have f(x.) = X3 because otherwise
f(xa = xp
= f(x.) €A(xp) since f(x.) €A*(xs) = A(xg) U {xs}
= f(x.) Eyy € ... €Ey¢ = xp for some yg, Vi, .1 Yay
=X, €Yy, € ... ef7(y)) = 7(x3) EA*(XW)
= Xo EA(XS) '

contracting normality of X..

Finally we have a = 3, hence x. = x as desired. For if not,
then without any loss of generality we can assume a<p<3d.
Then
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OEXy
= a = f(o) €f(xa) = x5 = {x, | p<pu<d} U {B}
= a = X, for some f<pu<d
=u €x, = a where a<fi<p,

a contradiction. QED.
Our last example is also the most sophisticated.

THEOREM 7. Consider any ordinal >0 and any semi-regular
set x. Then we can find an =-descending chain {Xa}«.cs such
that x5 = x. In fact using the simultaneous construction process
we can build such a sequence so that it is provable in NBG
that these sets, if they exist, have the following properties:

(i) a<P<d = xp EXa Xp TX,, nOt: A*(xp) = A*(X,)
(ii) X, is semi-regular for any a<#é.

PROOF. Let y be the first ordinal larger than all ordinals in x
or any of the e-ancestors of x. We now give a description of a
simultaneous construction of sets x, for « <9, stated in terms of
conditions imposed on the x, during various stages.

Stage p(0<p<9d): require X, Ex, and y+u Ex, for all a<p. Also
require x Cx,.

Stage 8+ 1: closure.

One easily shows that for any a <& we have

(5): X« =xU{xy|la<pu<d} U{y+pla<u<d}

Note that this will give x;=x.
That xgEx, and x3CSx, for any a<f<d is obvious from (5)
and (5)s. To prove xsCx, we obviously have

ytoatl Ex,

but using (5)s we can show that

(6) vtat1 &xp

In detail we have y+a+1 &x by definition of y. Also
ytat+l & {x,|p<u<d}.

For if B<p<®, then x,#vy+a+1 since y+p+1 ex, by (5), but
v+tu+l &y+tatl since a<p; and if p =& then xs#y+a+l
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because y+a €y+a-+1 whereas y hence y+a is larger than any
ordinal in X; = x. Finally since a<f we have

ytat+1l {ytn|B<u<s}.
Next one verifies that
(e A = As=n AR U {x.|a<p<d) Ufp|puy+o).

To show that each x. is normal, assume otherwise.

Then for some o we have x, €A(x.). Using (7)« we show that
this leads to a contradiction. In particular x« €A(x) and x.¥p
for p<y+95 because x, isn't normal by assumption whereas any
element of A(x) or any ordinal p is.

Also x, # X, for any a<p<3d.

Each x, is semi-reqular since x, and all its =-ancestors are
normal.

Finally we show that if A*(x.) = A*(xg), say under the -
isomorphism f, then x.=xz. As in proof of similar part in
theorem 6 we show that f(u)=p for all p€ A*(x,) and f(X.) =xa.
Then if a=f without any loss of generality we can assume
a<p<8.

Then
yt+at+1l €xq, by (5«
=vy+tatl =fytatl) €f(x) = X,
contradicting (6). QED.

We have given some examples of non-standard conceptual
objects. That these objects exist conceptually seems almost
as unquestionable as the conceptual existence of infinite sets.
What is questionable is whether they are sets according to a
reasonable conception of what a set is.

In terms of the GBB definition of a set given in § 3 simulta-
neously constructed non-regular sets would be introduced as
atoms at various stages. There could be no upper bound on
such stages since regular sets of any rank can be used in the
construction of non-regular sets.

If our non-regular sets (or at least some of them) are ac-
cepted as "true” sets, then REG is false. If they aren't sets, then
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one still must show that what can be done in a theory with such
atoms can essentially be done without them.

Non-regular sets have been used by some authors. “"Sets”
x such that x = {x}, hence x=x, have been used so as to
handle individuals (urelements); cf. [10; pp. 30-32]. But such
usage has been to improve the formal presentation with no
suggestion of really thinking of an individual as an object
which is an element of itself. Mostly non-regular sets have
been used to show independence results; e.g., [8]. Even then
non-regular sets have only formally existed: they constituted
elements of a non-standard model in which some "true” axiom
of set theory was shown to be falsifiable (hence independent).

That REG is independent from NBG+AC was first proven
in [1] and more recently in much stronger forms in [2] and [5].
The results in [2] and [5] seem more than strong enough to show
the relative consistency (with respect to NBG+ AC) of any
reasonable formal axiom which would justify the existence
of our simultaneously constructed sets. That these results are
too strong follows from the fact that they allow such patholo-
gies as xx.

6. A neutral viewpoint

One main point of this paper is not to prove that REG is
false but to show that REG is a questionable rather than an
obviously true axiom of set theory. Having made an attempt
to do this in § 5 we will now take a neutral viewpoint neither
accepting REG nor its negation. However, some limitation type
axiom is necessary to eliminate such pathologies as -cycles.
REG is a strong version of such a limitation axiom. We now
introduce the weakest possible version which is equivalent to
but simpler in form and more usable than the “no (finite)" -
cycles' hypothesis.

AXIOM OF LIMITATON (abbrev.: LIM)., There exists a func-
tion ¢ with domain V and a strict partial ordering << on £(p),
the range of g, such that

xey=o(x)<eo(y) forallx, yeV.
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All the following theorems are provable in NBG.

THEOREM 1. LIM = no finite €-cycles.
PROQF. If there were sets x;, ..., X, such that

X1 EXp € ... EX; €EXy
then
o(x1) <e(x2) <...<e(xa) <e(xy),

hence o(x;) <po(x;) by transitivity of <, yet not: o(x;) <o(x;) by
assymmetry of <, a contradiction. QED.

THEOREM 2. No finite e-cycles = LIM. In particular, if there
are no finite &-cycles, then we can find a ¢:V — V such that

(i) xey—o(x)col(y)
(i) xS y—o(x)So(y)

PROOF: Define p: V— V by o(x) = A(x) where A(x) denotes
the set of =-ancestors of x. Then (ii) just says that xCy implies
A(x) S A(y) which is obviously true. To prove (i), assume x€Y.
Clearly A(x) € A(y) and xe A(y). If x€A(x), then there would
be x, ... X, such that x = x, € ... €x, X, contradicting hypo-
thesis of no -cycles. Thus xe A(y) — A(X), hence A(x)c A(y)
as desired. QED.

Theorems 1 and 2 tell us that an equivalent form of LIM
would be
LIM*: There exists a function ¢ : V— V such that

xey = o(x) < o(y) fo all x, v.

Note that theorems 1 and 2 imply that, besides eliminating -
cycles, LIM also eliminates other pathologies such as xSyeEx.

We conjecture that LIM and the Structure Axiom of § 6 are
mutually independent relative to NBG+ AC. However LIM and
the Structure Axiom are related to REG, as we now prove in the
next two theorems.

THEOREM 3. REG = LIM and the Structure Axiom.
PROOF. REG implies there are no e-cycles, hence LIM. Also
REG implies the Structure Axiom by theorem 5.3. QED.
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THEOREM 4. If we can choose ¢ and < in LIM such that #(o)
is strictly well-ordered by <, then REG holds.
PROOF. We want to show that

X #0¢=dx[xeXand xNX = ).

Let A = {o(x) | x=X}. Then A is a non-empty subclass of the
class Z(p) strictly well-ordered by <, hence A has a <-first ele-
ment, say a,. Choose one element x, from {xeXlp(x)=0,}. We
don't need AC since we are making only one choice.) Then
xp €X and xo NX = @: for if x, NX = @, say u €x, NX, then
p(u) € o(x¢) = ay vet ueX, contradicting the definition of «a.
QED.

Comment: The rank function ¢ defined in § 2 satisfied

(i) xey = o(x) < ofy)
(ii) (o) is strictly well-ordered by "c".

What we can't show in NBG and need REG for is to show that
the domain H of the rank function is all of V.

Say the p of LIM is interpreted as a function which relates each
set to a stage of some kind, may be a stage measuring the
complexity of sets. Then LIM says that if xey then o(x) <e(y),
hence x belongs to a lower, earlier, or simpler stage than does
y. LIM thus says that the stages are partially ordered. REG says
that the stages are well-ordered.

Having rejected REG as an axiom and chosen the weaker
axiom LIM, we are now back to where we started in § 1: how
do we justify the choosing of one element from each class in
an intuitive collection 2 of mutually disjoint (possibly proper)
classes ? Given any such 2 we can define an intuitive equiva-
lence relation R given by

R(x, 7) < IX[XeZ &xeX &yeX].

Conversely, given any intuitive equivalence relation R, we
have that R breaks up its field into mutually disjoint classes,
viz., the R-equivalence classes. Thus we have a correspondence
between intuitive collections 2 of mutually disjoint classes and
intuitive equivalence relations. In general we can't work with
such collections of classes in NBG, but we can handle many
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of the corresponding equivalence relations. For any NBG
equivalence relation R let [x]g denote the R-equivalence class
determined by x. We suggest the following replacement for AC.
AXIOM AC*: For each equivalence relation R, there exists
a class C such that C intersects every non-empty R-equivalence
class in exactly one point: in symbols,

(HC) (VI [x]r # 0= Fu[CN [xz = {u}]].

THEOREM 5. AC* = AC

PROOF. Consider any class X of pairwise disjoint non-empty
sets. Define RcV X V by

<x, 7> € Re (Aw)x[xew & yeW].

Then R is an equivalence relation on its field. (The field of a
relation is the union of its domain and range.) Clearly the R-
equivalence classes are just the sets weX. QED.

In summary, we have weakened the limitation type axiom
from REG to LIM which in turn necessitated strengthening the
choice axiom from AC to AC* in order to handle the problem
raised in § 1.

It seems that AC* is adequate for our purposes, resolves the
difficulties of § 1, avoids need of hypothesizing REG, and yet
is still intuitively true. There are some stronger (candidates
for) axioms of class-set theory which we now give.

STRONG WELL-ORDERING AXIOM (abbrev.: WO*): The class
V of all sets can be well-ordered.

WEAK BIG BANG AXIOM (abbrev.: WBB): There is a func-
tion F with domain On such that

(i) a<p=> F(o) S F(@), all o, p=0n
(i) v=uU =i F(o)
The relation between WBB and GBB of § 3 is clearly that GBB
implies WBB.

It is easy to show that WO0* implies AC* and WBB. Con-
versely one can show that AC-+ WBB implies W0*, hence AC¥*,
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by using the idea of the proof that AC+REG implies W0* as
given in [11; pp. 84-7]. Thus if one accepts the GBB character-
ization of a set, then one must accept WBB and hence doesn't
need AC*,

Stevens Institute of Technology John H. Harris
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