MATHEMATICAL ORGANISMS

F. G. AseEnjo

1. Purposk. This paper presents an axiomatic theory of orga-
nisms which is in partial contrast to axiomatic set theory. Here-
with, are two of the distinctive characteristics. (A few words on
over-all motivation are offered in the final remarks). The prin-
cipal objective of the axiom of foundation in axiomatic set theory
is to eliminate formulas of the form xex. The reason, so it is said,
is that such formulas serve no useful purpose. This is an atomis-
tic prejudice. One of the properties of organisms is that they
have overlapping extensions which in many cases include for
each organism the organism itself as an additional member. In
physiology the division between part and whole, member and
aggregate, is not so easy to draw as in macroscopic physics —
organisms are not simply built out of elements. The axiom system
presented in the next section excludes the axiom of foundation
as well as any of its alternative forms.

The axiom of extensionality is a mathematical convenience
derived from our understanding of macroscopic physics. But
again, in physiology organisms can be coextensive and at the
same time distinguishable from one another. There are already
nonextensional set theories in the literature: for example, Fraen-
kel-Mostowski’s system, originally devised to prove the inde-
pendence of the axiom of choice, in which so-called “atoms” are
coexistensive and distinguishable. Also, Paul J. Cohen’s generic
sets for the proof of the independence of the axiom of choice
in more general set-theoretic settings, although not atoms in the
Fraenkel-Mostowski sense, share some of the characteristics of
nonextensionality in the relationships between the generic sets
and the forcing conditions that determine them. In the next
section some mathematical organisms are subjected to the axiom
of extensionality, while others are not.
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2. MATHEMATICAL ORGANISMS. We shall describe a first-order
theory MO. MO has a finite number of predicate letters =, o, 0y,
..., 0 and a finite number of individual constants, but no func-
tion letters. We shall use capital letters X, X,, ... as variables
and X, Y, Z, ... to represent arbitrary variables. Intuitively, o,
oy, ..., 0 are thought of alternatively as internal or external
relations, according to the terms related. XoY will be read “X
stands in Y”, Xo;Y (i = 1, ..., k) will be read “X i-stands in Y"".

In the interpretations we have in mind the variables take orga-
nisms as values. We define an organism to be an organ if and
only if it stands in itself, otherwise organisms which are not
organs are called proper organisms.

Definition 1. org(X) for XoX.
Definition 2. Org(X) for ~org(X).

Let us introduce small letters x;, X, ... as special, restricted
variables for organs, and boldface small letters x;, x,, ... as
special, restricted variables for proper organisms (x, y, z, ...
represent arbitrary organs, and X, y, z, ... represent arbitrary
proper organisms). In other words, (x)A(x;) stands for (X)(org
(X)>A(X)), ie., A holds for all organs; (Ex,)A(x;) stands for
(EX)(org(X)&A(X)), i.e., A holds for some organ; (Ex;)A(x;)
stands for (EX)(Org(X)&A(X)), i.e., A holds for some proper
organism.

We now present the first proper axioms of MO, the axioms
concerning the relative symmetry of ¢ and the internal relatedness
of proper organisms.

Al. xoeX=Xox.
A2. xox & yox DXoy.

Notice that the extension of each organ includes — apart
from the organ itself (Def. 1) — all the proper organisms in
which the organ stands (A1), plus all the organs of these proper
organisms (A2).
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A3, (EX)(Y)~YoX (Null Organism Axiom).
Definition 3. (Y)~(Yc@).
Theorem 1. Org(Q).

Al and A2 obstruct the usefulness of a pairing axiom for
organs as well as the usefulness of an algebra of organs similar
to the algebra of sets. Given our lack of definite motivation for
selecting any specific axiom system for organs, and in order to
preserve freedom of choice, the existence of organs and proper
organisms will be provided here by proper axioms chosen more
to keep various possibilities open than to formalize regular,
specific relationships between organs and proper organisms —
relationships whose regularity would make them more interesting
from a mathematical viewpoint. As an example of a particular
finite system of organisms that shows the possibilities we have
in mind, let us consider the following axiom system MO,, where
a;, b ..., mi, pi, qi are individual constants for organs, and a,
b, ..., m, n are individual constants for proper organisms.

S1. ava G =1,... k).
S2. bob (i = 1, ..., ky).

St. mom (i = 1, ..., k).
St + 1. ajob (j = 1, 3).
St + 2. aoc.

St + 3. aon(j = 1,3).
St + 4. bgUC.

St + 5. boa.

St + 6. doa.

St + 7. aab.

St + 8. bon.

St + 9. eon.

St + 10. pap.

St+ 11. q104s.

Here, between curved brackets, are the extensions (as far as o
is concerned) of a few organisms from MO, (the bracket notation
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does not designate an univocal function for organs — see next
section).

a;: {ay,...,2,,a, by, ...,bab,c, ..., Cky, €, 0}
ax: {ay, ..., ayy, al.

dy: {al....,akl, d, b],..., b;‘g.b, n}

b[: {bf e bkg, b, aq, a;;}.

bgl {b[,..., bkg, b, al,a;g,Cl,...,Ck;y,C}.

Gt L€ noss Crna © g, Do} (Same extension for ¢, ..., Ck3.)
p: {p}
qi: {qs. 92}

a: {31,...,a]{l,b,d}.
a:(d. .. dul.
r: {a,..,a,,b, e}.

3. FAMILIES, COLONIES, SPECIES AND HYPERSPECIES. We define
a proper organism to be a family of organs if and only if it
l-stands in itself, otherwise proper organisms which are not
families of organs are called colonies.

Definition 6. Fam(x) for xo;x.

Definition 7. Col(x) for ~Fam(x).

We define a colony to be a proper colony if and only if it
2-stands in itself, otherwise colonies which are not proper
colonies are called 2-species.

Definition 8. col(X) for Col(X) & Xa.X.

Definition 9. 2-Spec(X) for Col(X) & ~ col(X).

Inductively, we define an i-species (2<i<k) to be an (i + 1)-
proper species if and only if it (i + 1)-stands in itself, otherwise
i-species which are not proper species are called (i + 1)-species.

Definition 10. (i + 1)-spec(X) for i-Spec(X) & Xg;, 1 X.

Definition 11. (i + 1)-Spec(X) for i-Spec(X) & ~(i + 1)-spec
(X). (Col(X) and (i + 1)-Spec(X) are, of course, abbreviations
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for Org(X) & ~Fam(X) and i-Spec(X) & ~(i + 1)-spec(X) re-
spectively.)
The following three axioms are the axioms of extensionality.

Ada. X = x.

A4b. x = v = (X)Xox = Xoy) & (X} Xox = Xoyy)
& ... & (X)(Xox = Xoyy).

Adc. X = Yo(org(X) & org(Y)) V (Fam(X) & Fam(Y)) V
(col(X) & col(Y)) V ... (k-spec(X) & k-spec(Y)) V (k-
Spec(X) & k-Spec(Y)).

Notice that equality of organs is individual identity — for
organs, some extension does not guarantee equality.

Definition 12. XY for (ZNZoX>ZoY) & (ZXZo: XD Zo,Y)
& ... &(Z)Zo . XD Za\Y). (Inclusion).

Definition 13. XY for XCY &~X =Y. (Proper In-
clusion).

Notice that unequal organs with the same extension are
properly included in one another.

Theorem 2. MO is a first-order theory with equality.
Theorem 3. org(X) & X = Y Dorg(Y).

Thorem 4. Org(X) & X = Y 2 Org(Y).

Theorem 5. XoyD ~x = Y.

The following are axioms for proper organisms which establish
for them properties that are to a certain extent similar to those
of sets.

A5a. (x)(y)Ez)(u)(Fam(x)>(Fam(y) > (Fam(z) & (Fam(u)
(woz =u = xVu =vy)))).

A5b. (x)(yXEz)(u)(col(x) D (col(y) o (col(z) &(col(u) o
(woiz = u =xVu=y)).

A5c. (x)(y)(Ez)(u)(i-spec(x) D (i-spec(y) D (i-spec(z) &
(i-spec(u) o (woz = u = xVu = y))). (2<i<k).
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These are the pairing axioms. Notice that the “pair” deter-
mined by two proper organisms of the same kind — say, two
proper colonies — may include an unlimited number of orga-
nisms of other kinds — organs, families of organs and various
kinds of hyperspecies. Axiom systems can easily be given in
which it is not possible to separate set-theoretically organisms
of one kind from organisms of other kinds. Still, this does not
preclude the definition of ordered “pairs” of proper organisms
of the same kind in the usual manner. But first, the definition
for unordered “pairs”.

Definition 14. Fam(x) & Fam(y) & (z)(Fam(z) > (zo[x,y] =
z=xVz=y)V.

V (col(x) & col(y) & (z)(col(z) D (zoy[x,y] = z = xVz
=YV s

V (k-spec(x) & k-spec(y) & (z)(k-spec(z) D (zox[x,y] =
z=xVz=y))V

V (k-Spec(x) & k-Spec(y) &~x = @ &~y = O &[x,y]
= Q).

Notice that the value of the function [x,y] is unique for any
given pair of non-null proper organisms of the same kind (A4b),
althought [x, y] does not necessarily indicate the extension of the
pairing organism thus formed.

Definition 15. [x] = [x,x].
Theorem 6. (x)(y)[x] = [ylox = vy).
Definition 16. <x,y> = [[x], [x,y]].

Theorem 7. (X)X(Y)W)(V)(<x,y> = <u,v> > x = u&y
= V).

Definition 16 can be extended inductively in the usual manner
to ordered n-tuples, for which we shall use the standard notation
<X1, <aip x“>. ‘

Additional axioms similar to S1-St+ 11 are now in order to
introduce further relationships between different kinds of orga-
nisms. The choice is, again, more heuristic than systematic (r;,s;



MATHEMATICAL ORGANISMS 307

are individual constants for organs, r,s are individual constants
for proper organisms).

St+12. Fam(a) & Fam(b) & ... & Fam(n).
St+13. ajoxr & col(r).

St+ 14. ajos & col(s).

St+ 15. I';08;.

St+16. ross.

St+17. sogr.

St+18. c,oor.

St+19. [a,b] = 1.

St+20. [r,s]on.

St+21. @01“.

With these new axioms the extension of each a; is increased
with r and s. The extension of each c; is increased with r. The
“pair” [a,b] is a proper colony whose extension is {a, b, aj, ...,
Biys 8 G vvos Crabe EtC

We now complete MO with an axiom schema similar to the
general class existence theorem in Godel’s axiomatic set theory.
(Like the theorem, the axiom schema can be obtained from a
finite number of proper axioms.)

A6. Let ¢(x;,....,x,, Yy, ...,Y,) be a wf whose variables
occur among X, ..., X, Y. ..., Yy, and in which only organisms
up to k-proper species are quantified. We call such a wf pre-
dicative., Then

Aba. (Ez)(x;)(x3)...(x,)( ~k-Spec(x;) D (~k-Spec(xs) >
(...2(~k-Spec(x,) D (<xy, ..., X,o>0Z = (X4, ..., Xp,
Yy oo Yoo

A6b. (Ez)(x;)(X,)...(x, ) ~k-Spec(x;) D (~k-Spec(x,) D
(...2(~k-Spec(x,) D (<xy, ..., ;02 = (X4, ..., X,
Wy wvoy D) Jesds (1<igk).

Boolean operations are now definable for proper organisms.
Paradoxes are avoided with the following line of reasoning.
Let ¢ be ~xox or ~xoiX (1<i<k). Then (x)(~k-Spec(x)>
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(X0iz = ~x0;x)), which leads to contradiction and implies k-
Spec(z).

Definition 17. Given any predicative wf ¢(x, ..., x,, Y;, ...,
Y.), we shall use %, £, ..., £,¢(x1, ..., X, Yy, ...,Y,) to denote
the proper organism of all tuples <lxy,..., x,>> satisfying ¢,
such that ~k-Spec(x;) & ... & ~k-Spec(x,).

Definition 18. V stands for %(~k-Spec(x) & x = x).

Theorem(8. ~Xk-Spec(x) >xaV ~xa,VV...vXo, V.

Theorem 9. k-Spec(V).

4. THE CATEGORY OF MATHEMATICAL ORGANISMS. Organisms
can be be described as forming a modified category system in the
following way. The category of mathematical organisms is an
organism A, not a k-Species, together with an organism C that
is a disjoint union of the form C = U [X,Y] for all (X,Y) in
A X A. Each [X,Y] is not an organ, nor is it a k-Species, and can
be void. When it is not void it is composed of a single organism,
namely, the correspondence composed of all pairs (U,V) such
that Uo;X and VoY, and such that Ug,V for some o;, G, Oy,
where the latter are any of the predicate letters o, oy, ..., oy. In
addition, for each triple (X,Y,Z) of members of A we are to
have a function from [Y,Z] to [X,Y], eventually void. The image
of this function is denoted by [Y,Z] - [X,Y] and called the com-
position of [Y,Z] by [X,Y]. Composition functions satisfy two
conditions.

(i) Whenever compositions make sense,
(IZw]-Y.ZD) - [X,Y] = [ZW]- (Y,Z] - [X,YD).
(ii) For each X in A not a k-Species we have an element 1 in

C, namely [X,X], such that [X,X]-[Y,X] = [Y,X] and [X,Y]-
[X,X] = [X,Y] whenever the composition makes sense.

Given a member [X,Y] in C, X is called the domain and Y the
codomain of [X,Y]. Since C is composed of single organisms,
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A is somewhat similar to what in category theory is called an
ordered class. Also, organisms in A can be called objects while
organisms in C can be called correspondences. (“Morphism”, a
truncation of homomorphism, suggests too stronlgy a condition
of single-valuedness that is not intended.)

The elimination of individual objects (k-Species always ex-
cluded, of course) is now possible in a manner similar to the so-
called non-objective approach in category theory. Objects can
be defined in terms of correspondences and retrieved through
appropriate identities.

Saunders MacLane considers Paul J. Cohen’s proof of the
independence of the continuum hypothesis a startling indication
that current axiomatic set theories do not appropriately describe
the entities a mathematician needs to match his intuitive idea of
set as it derives from mathematical usage. MacLane is at present
attempting (and he is not alone in this) to reconstruct mathema-
tically useful fragments of set theory from the standpoint of pure
category theory (“categories without sets”). This is indeed a
considerable project and it is still too early to predict where it
may lead. However, it is perhaps to the point to remark that
categories, given the great generality with which they are now
defined, allow all kinds of unexpected structures with or without
slight modifications — and mathematical organisms are a case
in point. It seems as if category theoreticians, in their desire for
a better set theory (or something that replaces it), may be getting
more than they bargained for — which might be all to the good.

5. FINAL REMARKS. Although this is not the place to elaborate
on biological motivations, nevertheless a few comments are in-
dispensable. Our logic is the logic of solids, said Bergson, which
is why the application of logical concepts to biology is always
ridden with innumerable exceptions and qualifications, and worst
of all, why it fails to convey two important biological facts
(i) Although organs have simple location anatomically conceived,
physiologically they influence one another to such a degree that
they must be thought of as having the same extension as the
whole organism and often a greater one; further, the general
state of the organism constitutes an additional term in the phy-
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sociological composition of each organ. (ii) Environment and the
hierarchy of life are intrinsic to each organism, and although
organisms associate in colonies, colonies in species, etc., this
does not in any way imply that organisms are built with com-
pletely separated individuals or any other elementary abstrac-
tions. Indeed, set-theoretic conceptions and hierarchies have a
tendency to hide and blur biological significance. They are
suitable to describe collections of macroscopic solids but not life.
We need a logic of fluids.

In this logic of fluids a certain amount of ambiguity must find
formal expression, which requires beginning with what we may
call a relativization of the individual. (In biology one must
distinguish an organ without completely separating it in a set-
theoretic sense, lest the organism vanish altogether). This re-
lativization is of course implicit in MO and MO;. (For another,
different, approach to such relativization see [2].) It is our belief
that only through a relativization of the individual can we give
to networks of relations the primary descriptive role that they
should have, a role that is now overshadowed by excessive em-
phasis on final components. Ultimately, one should be able to
describe organisms as pure relations, that is, as systems of cor-
respondences in which events are mere changes in the system.

University of Pittsburgh, Penna. F. G. ASENJO
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